
Abstract---Regularization of least squares estimation 
method was proposed earlier in order to improve estimation of 
oxygen tension in retinal vessels and it was shown to be very 
effective. Optimum points for cost function of the regularized 
least squares (RLS) estimation were found using iterative 
methods which do not require considerable computations for 
small oxygen tension (۽ܘ૛) maps. However, as ۽ܘ૛ maps get 
larger, iterative solutions become computationally expensive. 
In this study, to find optimum points of the RLS cost functions 
of larger ۽ܘ૛ images, we propose an accelerated solution 
derived from closed form solution of the RLS cost function.  

 
Index Terms---accelerated closed form solution, 

regularized least squares estimation, retinal oxygen tension 
estimation. 

I. INTRODUCTION 

It was shown that, in many cases, there is a strong link 
between abnormal oxygenation of retinal tissue and 
common eye diseases [1]-[2]. In this regard, reliable 
estimation of oxygen tension in retinal vessels may be 
helpful in early diagnosis of the eye diseases. Estimation of 
retinal vessels oxygenation was obtained using 
phosphorescence lifetime imaging model (PLIM) [3]-[4]. In 
PLIM, for the estimation of the model parameters, a linear 
model proposed by Lakowicz et al. [5] is used.  

Conventionally, to estimate oxygen tension in retinal 
vessels, the least squares (LS) estimation method was used 
[3]-[4]. Although it is computationally efficient, the LS 
estimation method produces high variance and artificial 
peaks in the estimates, and therefore gives values outside of 
the physiological range. In this respect, regularization of the 
LS estimation was proposed by Yildirim et al. [6] in order to 
overcome these shortcomings and utilize knowledge of the 
prior distribution of the parameters.  

Regularization is utilized successfully in many fields such 
as image processing [7], biomedical imaging [8], and 
astronomical imaging [9]. Likewise, it was shown in [6] that 
the regularized least squares (RLS) estimation generates 
improved results compared with the LS estimation.  

In their study [6], considering the physiology of retinal 
tissue [10] in which oxygen tension of a retinal vessel does 
not vary rapidly in a small neighborhood, Yildirim et al.  
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assumed that mean value of a pixel value in an oxygen 
tension map of retinal blood vessels is equal to the weighted 
average of oxygen tension values of its neighboring pixels. 

This assumption was used as a base to form regularization 
term in the RLS cost function.  
On the other hand, so as to obtain minimum of the cost 
function, they applied iterative methods and this approach 
requires heavy computation especially for large pOଶ maps. 
Hence, fast algorithms are needed to handle large pOଶ maps.  

Fast approaches have been developed for regularized 
estimation methods. K. C. Toh and S. Yun proposed an 
accelerated proximal gradient method to minimize a non-
smooth convex regularized cost function [11]. In their study 
[12], J. Lampe and H. Voss proposed a fast algorithm for 
Tikhonov based regularized total least squares estimation 
problem. N. Mastronardi1, P. Lemmerling and S. Van 
Huffel provided a fast regularized total least squares 
algorithm for solving the basic deconvolution problem [13]. 

In this study, after deriving closed form solution for the 
RLS method, we propose a method to accelerate 
implementation of the RLS estimation. It was shown that the 
proposed method is much faster than the iterative solution 
and performs with negligible difference from the iterative 
solution on mean absolute error (MAE). Additionally, where 
such neighborhood relationship given in this problem is 
present, the approach derived in this study can be applied to 
other imaging problems. 

II. PAST RLS ESTIMATION 

In [6], for the lifetime imaging model parameter ܽଵ, the 
RLS cost function was defined as: 

 

௔݂భ
௜ ൌ ሺܽଵ

௜ െ ,ሺ2ࡽ : ሻ࢏࢟ሻଶ ൅ ሺܽଵߚ
௜ െ തܽଵ

௜ ሻଶ,       (1) 

 

where 	Qሺ2, : ሻ is second row of the pseudo-inverse matrix of 
the system matrix, 	y୧ is phosphorescence intensity 
observation vector of i-th pixel, β is the regularization 
parameter, and aതଵ୧  stands for the mean value of the 
parameter to be estimated for the i-th pixel considering 3x3 
neighborhood relation. As seen from the cost function (1), 
for a pixel, RLS estimate values of parameter ܽଵ is 
dependent of ܽଵ parameter values of its neighbors. This 
means that there is no pixel-wise isolated solution and the 
problem must be handled considering all pixels in the 
image. The cumulative cost function is as follows:  
 

௔భܨ ൌ ∑ ௔݂భ
௜ெ

ଵ  ,           (2) 
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where, M denotes the total number of pixels. To find 
minimum points of the global cost function, a gradient-
based iterative approach was used and the closed form 
solution was not provided in [6].  

III. DERIVATION OF THE PROPOSED SOLUTION FOR 
THE RLS ESTIMATION 

In the following expressions, images are handled in a 
vector form by reordering the matrix elements column wise. 
To derive the closed form estimation of these parameters, 
cost function of aଵ defined in [6] for the i-th pixel can be 
rewritten as follows: 

 
ɸ௔ଵ
௜ ൌ 	 ሺࢇଵሺ݅ሻ െ ෝଵሺ݅ሻሻଶࢇ ൅ ଵሺ݅ሻࢇሺߚ െ ,ሺ݅ࡷ : ሻࢇଵሻଶ, (3) 

 
where	ࢇෝଵ	is the LS estimate of the ܽଵ parameter. M and S 
denote number of pixels in oxygen tension map and 
phosphorescence intensity observation number per pixel, 
respectively. Y  is noisy observation of phosphorescence 
intensity for entire image.	K defines neighborhood relation 
between pixels and formed considering for 3x3 window size 
(see Appendix). As can be seen from the cost function (3), 
for a pixel, the RLS estimate of the parameter ܽଵ is 
dependent of the ܽଵ parameter values of its neighbors. 
Therefore, any pixel isolated solution does not exist and a 
joint optimization is needed. Hence, we define the global 
cost function of aଵ for all pixels as:  
 

	௔భܥ ൌ 	∑ ɸ௔భ	
௜ெ

௜ୀଵ   
	௔భܥ ൌ ሺࢇଵ െ ෝଵሻଶࢇ ൅ ଵࢇሺߚ െ   ଵሻଶࢇࡷ

ൌ ଵࢇଵ்ࢇ െ ෝଵࢇଵ்ࢇ2 െ ෝଵࢇ
  ෝଵࢇ்

൅ߚሺࢇଵ்ࢇଵ െ ଵࢇࡷଵ்ࢇ െ ଵࢇ்ࡷଵ்ࢇ ൅  ଵሻ.   (4)ࢇࡷ்ࡷଵ்ࢇ

 

Taking gradient of the cost function with respect to ܽଵ and 
equalizing the gradient to zero, we find the RLS estimate of 
ܽଵ as follows: 

 
ෝଵିோ௅ௌࢇ ൌ ሺ۷ ൅ ࡵሺߚ ൅ ࡷ்ࡷ െࡷെ்ࡷሻି૚ࢇෝଵ.     (5) 

 
To simplify the notation, we define a new matrix L as: 
 

ࡸ ൌ ࡵ ൅ ࡵሺߚ ൅ ࡷ்ࡷ െ  ሻ,        (6)்ࡷെࡷ
 

where I stands for the identity matrix.  
Using the matrix L, the RLS estimate of the parameter ܽଵ 
can be rewritten in a simpler form as: 
 

ෝଵିோ௅ௌࢇ ൌ  ෝଵ.   (7)ࢇ૚ିࡸ
 

Here it should be noted that in order to find the RLS 
estimate of  the other model parameter  ܾଵ [6], the same 
procedure described for the parameter ܽଵ is followed. 
Therefore, it will not be repeated for the parameter ܾଵ. 
In the formulation of the mean values of the parameters to 
be estimated in (3), weighting coefficients of 3x3 window 
were chosen considering geometrical distance from the pixel 
under interest. K is a symmetric positive definite and 
Toeplitz sparse matrix, due to the choice of this type of 
window.  

Components of the matrix ࡷ்ࡷ can be written as follows:  
 

ሺࡷ்ࡷሻ௜	௝ ൌ ∑ ௝	௞ܭ௞	௜ܭ	
ெ
௞ୀଵ ൌ ∑ ௞	௝ܭ௞	௜ܭ	

ெ
௞ୀଵ .       (8) 

 
Since ܭሺ݆, ݇ሻ ൌ ሼ0			݂݅	|݆ െ ݇| ൐ ܴ ൅ 1 (see Appendix), all 
non-zero units of the matrix  ࡷ்ࡷ are within the 2R+2 
range on the diagonal where R is number of rows in the 
oxygen tension map. That is,	ሺࡷ்ࡷሻ௜	௝ ൌ ሼ0			݂݅	|݅ െ ݆| ൐
2ܴ ൅ 2. Moreover, if	ܯ െ 2ܴ െ 2 ൐ ݅	ܽ݊݀	݆ ൐ 2ܴ ൅ 2, 
then   
 

ሺࡷ்ࡷሻ௜	௝ ൌ ݂ሺ|݅ െ ݆|ሻ,            (9) 
 

where f is a concave function having a maximum at zero. 
We see that if the first and last 2R+2 rows of the matrix 
 is a positive definite symmetric  ࡷ்ࡷ ,are ignored ࡷ்ࡷ	
Toeplitz matrix. Additionally, since all matrices in L are in 
Toeplitz form except for the matrix	ࡷ்ࡷ, the matrix L also 
shares same properties with the matrix	ࡷ்ࡷ.  That is, L is a 
purely positive definite symmetric Toeplitz matrix except 
for the first and last 2R+2 rows. Furthermore, since the 
matrix L possesses the mentioned properties, its inverse 
shares the same properties with it. Therefore, if a row 
between the first and last 2R+2 rows of the inverse of the 
matrix L is chosen, the inverse of the matrix L can be 
reconstructed with negligible differences in the first and last 
2R+2 rows. When large pOଶ  images are under process, 
these mentioned properties of the matrix L and its inverse 
become very useful because inversion of the matrix L is 
almost impossible for large images. This is because for large 
pOଶ maps, the size of L becomes extremely large. For 
example, for a 640x480 pOଶ  map, L is a 307200x307200 
matrix which is impossible to take its inverse with regular 
computers. As a result, for large pOଶ   maps only iterative 
approaches become applicable in finding optimum points of 
the RLS cost function which also takes longer times. 
Additionally, we observed that the most significant 
coefficients in ିࡸ૚ do not vary by reducing its dimension 
even extremely. Hence, after calculating a small ିࡸ૚  and 
acquiring the most significant units in it, we can extend the 
solution to larger pOଶ  maps with negligible error. For 
example, if we find the matrix ିࡸ૚ for 21x21 pOଶ map and 
acquire the most significant weight coefficients in it, we can 
use them to obtain RLS estimates of the model parameters 
for much larger  pOଶ  maps such as a 1024x1024 pOଶ map 
or even much larger ones. Additionally, since the matrix ିࡸ૚ 
has almost symmetric Toeplitz property, the problem solely 
becomes a mean average problem which is considerably 
easy in computational sense. 

IV. RESULTS 

In our experiments we used both simulated and real data. 
In simulations, we added an i.i.d. white Gaussian noise with 
15, 20 and 25 dB SNR values to a 485x600 phantom given 
in Fig.1 for different ߚ scenerios.  

In the iterative RLS estimation, we utilized standard 
Newton-Raphson method to find minimum of the RLS cost 
function. For the initial values of model parameters to be 
estimated by the Newton-Raphson method, LS estimates of 
the parameters were chosen.  
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Fig. 1- 485x600 phantom pOଶ  map. Color bar represents oxygen tension 
values in in mm-Hg 

 
Fig. 2- MAE of the LS, iterative RLS (er-rls1), and the proposed RLS 
estimation (er-rls2) methods 

 
As for the proposed RLS method, we first derived the 
equations (3-8) for a 21x21 pOଶ map that was quite 
sufficient to capture the relevant information for the 
485x600 pOଶ map. Following that, we found the ିۺ૚ which 
is a 441x441 matrix and then extended to the dimension 
required for the original image.  

 
 

 
Fig. 3. Computation times in seconds of iterative RLS and proposed RLS 

estimation methods for different beta values 

Computer system used in simulations is a standard 
notebook having Intel® Core™2 Duo 2.27 GHz processor 
and 4 GB memory. In the simulations unless otherwise is 
stated, pre-set values of the β, window size and SNR are 
respectively 5, 3x3 and 20dB.  

We compared mean absolute error (MAE) performances 
of the LS, iterative RLS and proposed RLS methods for 
different values of ߚ. It can be easily seen from the Fig.2 
that there is a negligible difference between MAE 
performances of the iterative (er-rls1) and proposed RLS 
estimation (er-rls2) methods. 

The performance of the LS method is much poorer than 
the other two methods especially for lower SNR values. 
However, if we look at Fig.3, we see that there is a 
significant difference in computation time performances of 
the iterative RLS and the proposed methods. The higher the 
 .values are, the more time the iterative RLS method takes ߚ
For a 	ߚ value 10, the iterative RLS method requires 40 
seconds whereas the proposed RLS requires only less than 2 
seconds. If the pO2 map to be estimated has higher 
dimensions, then the time difference between 
implementation of the both methods would be much more 
notable. Therefore, we can say that the proposed method is 
more preferable compared with the iterative one in the sense 
of computational complexity 

 
 

 

 
Fig. 4- (1) The frame in Fig.1 and its estimates in the presence of noise with 20 dB SNR using the (2) LS and (3) proposed RLS methods. The color 
bar represents oxygen tension in mm-Hg 

Proceedings of the World Congress on Engineering 2013 Vol III, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



 

Fig. 5- pOଶ map (120x85 pixels) of a rat generated using the LS(1), iterative RLS(2) and the proposed RLS(3) methods. The color bar represents 
oxygen tension in mm-H

 

In order to show artifacts of the LS estimation more clearly, 
we compared the results of the proposed and LS estimation 
methods in Fig. 4 for a frame shown with a rectangle in Fig. 
1. As mentioned in [6], while the LS estimation results in 
spiky pOଶ  maps, the RLS estimation generates smoother 
pOଶ  maps whose values fall more in the physiologically 
expected range. MAE of the proposed RLS estimation 
method is 2.8 mm-Hg whereas MAE of the LS estimation 
method is 9.7 mm-Hg. We also used real pOଶ  maps 
(120x85 pixels) acquired from rat retina and obtained its 
estimates in Fig. 5 using the LS, iterative RLS and the 
proposed RLS methods. Both the iterative and proposed 
RLS methods generated pO2 maps which are smoother and 
the variation in their maps is more acceptable when 
compared with the result of the LS estimation method.  

V. CONCLUSION 

In the existing applications, maximum resolution of pO2   

maps is 2 micron and typical pOଶ  frame size is around 
256x80 pixels. However, to analyze small capillaries, 
imaging systems having more resolution and frame sizes are 
required. Therefore, fast RLS estimation methods will be 
needed.  In this study, considering past work proposed by 
Yildirim et al., where optimization of the RLS cost function 
was made following iterative procedures, we derived a 
closed form solution to the RLS estimation of retinal 
oxygenation and using this solution, we proposed an RLS 
estimation procedure which is much faster than the regular 
closed form solution and the standard iterative methods.  

APPENDIX 

For a 3x3 interrelation window size, we assume that 
interrelation window for pixels in the image has coefficients 
as: 

  อ
ݍ ݌ ݍ
݌ ݈ ݌
ݍ ݌ ݍ

อ    (A.1) 

where l, p and q denote weight of pixel to itself, weight of 
direct adjacent pixels and weight of cross adjacent pixels to 
the pixel under consideration, respectively. In order for 
mean of the weighting window to be one, we equalize these 
coefficients as: 

 

 

݈ ൌ ܽ/ሺ4 ∗ ሺܾ ൅ ܿሻ ൅ ܽሻ, 

p  ൌ ܾ/ሺ4 ∗ ሺܾ ൅ ܿሻ ൅ ܽሻ , 

ݍ ൌ ܿ/ሺ4 ∗ ሺܾ ൅ ܿሻ ൅ ܽሻ,       (A.2)    

 

where.	ܽ ൒ ܾ ൒ ܿ. 

After defining l, p and q, we form the K as follows: 
 

,ሺ݆ܭ ݇ሻ ൌ

ە
ۖ
۔

ۖ
ۓ
݈				݂݅		݆ ൌ ݇																	
݆		݂݅				݌ ൌ ݇ േ 1									
݆		݂݅				݌ ൌ ݇ േ ܴ									
݆		݂݅				ݍ ൌ ݇ ൅ ܴ േ 1		
݆		݂݅				ݍ ൌ ݇ െ ܴ േ 1		
ۙ															݁ݏ݅ݓݎ݄݁ݐ݋				0

ۖ
ۘ

ۖ
ۗ

,    (A.3) 

 

where K(j,k) denotes weight coefficient of the kth pixel on 
jth pixel on the image or vice versa, and R denotes the 
number of rows in the oxygen tension map. 
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