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Abstract—Over the past years mathematical models, based
on experimental data from MRI and CT scans, have been
well developed to simulate the growth of aggressive forms
of malignant brain tumours. The tumour growth model we
are considering here, apart from proliferation and diffusion,
is being characterized by a discontinuous diffusion coefficient
to incorporate the heterogeneity of the brain tissue. For its
numerical treatment by high order methods, we have developed
a Discontinuous Hermite Collocation (DHC) finite element
method, with appropriately discontinuous basis functions as-
sociated with the discontinuity nodes, to discretize in space.
In this work, together with the classical backward Euler and
Crank Nicolson schemes, we also consider the deployment of a
third order diagonally-implicit Runge-Kutta (RK3) scheme to
discretize in time. Several numerical experiments are included
to demonstrate the performance of the method. The numerical
investigation conducted, reveals that the DHC-RK3 is an order
O(τ3 + h4) scheme.

Index Terms—Gliomas, Discontinous Hermite Collocation,
Backward Euler, Crank Nicolson, Diagonal Implicit Runge-
Kutta.

I. INTRODUCTION

GLIOMAS are among the most common and malig-
nant forms of primary brain tumours. The most typ-

ical problem in diagnosis and treatment of patients with
glioma is the rapid infiltration of tumour cells in adjacent
normal tissue. Well known mathematical models, such as
[7],[14], [15] and [3], have been developed to simulate the
progress of untreated diffusive brain tumours. Their gener-
alization to incorporate the heterogeneity of the brain tissue
(white-grey matter) was achieved in the works of Swanson
([11],[12],[13]) by introducing an appropriately discontinu-
ous diffusion coefficient. In such a case the mathematical
model is described by ([11]):

∂c̄

∂t̄
= ∇ ·

(
D̄(x̄)∇c̄

)
+ ρc̄ , (1)

where c̄(x̄, t̄) denotes the tumour cell density, ρ denotes the
net proliferation rate, and D̄(x̄) is the diffusion coefficient
representing the active motility of malignant cells satisfying

D̄(x̄) =

{
Dg , x̄ in Grey Matter
Dw , x̄ in White Matter , (2)

with Dg and Dw scalars and Dw > Dg , since glioma cells
migrate more rapidly in white than in grey matter.
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On the anatomy boundaries zero flux boundary conditions
are imposed while for t = 0 an initial spatial distribution of
malignant cells c̄(x̄, 0) = f̄(x̄) is assumed.

The above model has been extensively studied (e.g.
[11]-[13]) and found to be effective in simulating the
behaviour of real malignant brain tumours in the time frame
for gliomas.

Using the dimensionless variables ([11]) :

x =

√
ρ

Dw
x̄ , t = ρt̄ , c(x, t) = c̄

(√
ρ

Dw
x̄, ρt̄

)
Dw

ρN0
,

and f(x) = f̄

(√
ρ

Dw
x̄

)
with N0 =

∫
f(x)dx to denote the initial number of tumour

cells in the brain at t = 0, as well as the transformation

c(x, t) = etu(x, t) ,

the model in 1 + 1 dimensions reduces to
ut = (Dux)x , x ∈ [a, b] , t ≥ 0

ux(a, t) = 0 and ux(b, t) = 0 .

u(x, 0) = f(x)

(3)

For the purpose of our analysis, it is enough to consider a
multi-domain area consisting of three consecutive regions of
grey-white-grey matter. In this case the diffusion coefficient
D = D(x) takes the form

D(x) =

 γ , a ≤ x < w1

1 , w1 ≤ x < w2 ,
γ , w2 ≤ x ≤ b

(4)

ba

a a

11

w1 w2

where γ :=
Dg

Dw
< 1 is the dimensionless diffusion coef-

ficient in grey matter and 1 is the dimensionless diffusion
coefficient in white matter. Furthermore, an initial source of
tumour cells f(x) is considered in the form of

f(x) =
K∑
i=1

δ(x− ξi) , ξ ∈ [a, b] , (5)

where δ(x) denotes Dirac’s delta.
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Working towards the development of high order numeri-
cal schemes, we introduced (cf. [9]) a Collocation method
with Hermite cubic elements and appropriate discontinuous
nodal basis functions at the interface points to treat the
first derivative discontinuities (Section II). In Section III,
the Discontinuous Hermite Collocation (DHC) method is
coupled with a thrid order diagonally implicit Runge-Kutta
scheme (DIRK) to produce a high order stable method ca-
pable of efficiently treating our model problem among many
other demanding problems. Its performance is investigated
in Section IV through several numerical experiments.

II. DISCONTINOUS HERMITE COLLOCATION (DHC)

The discontinuous diffusion coefficient D(x), described in
(4), directly implies discontinuity of ux, hence continuity of
Dux, across each interface. In fact, as the linear parabolic
nature of the initial-boundary value problem (3) implies
continuity of u (or c) across each interface, that is

[u] := u+ − u− = 0 , at x = wk , k = 1, 2 , (6)

where

u+ := lim
x→w+

k

u(x) and u− := lim
x→w−

k

u(x) ,

integration of the equation in (3) over the discontinuity
interfaces yields

[Dux] := D+u+x −D−u−x = 0 , at x = wk , k = 1, 2 . (7)

Taking into consideration the above continuity constrains
an alternative way to state the model can be described by

ut = Duxx , x ∈ R` , ` = 1, 2, 3 , t ≥ 0

ux(a, t) = 0 and ux(b, t) = 0

[u] = 0 and [Dux] = 0 at x = wk , k = 1, 2

u(x, 0) = f(x)

(8)

where R` define the three regions

R1 := [a,w1) , R2 := (w1, w2) , R3 := (w2, b] . (9)

For each region t×R̄` we consider a rectilinear grid with
sides parallel to the x and t axes. In x-direction the grid
spacing h` is given by the form h1 := (w1 − a)/N1 ,

h2 := (w2 − w1)/N2 ,
h3 := (b− w2)/N3 ,

(10)

where N` denotes the number of subintervals of R̄`, and in
t-direction the grid spacing is τ .

Then, the grid points (xj , tn) are given by

xj := a+ jh , j = 1, . . . , N + 1 , (11)

and
tn = nτ , n = 0, 1, . . . (12)

where N = N1 +N2 +N3 and h = h` when xm ∈ R̄`.

For sufficiently smooth solutions u, Hermite cubic poly-
nomial approximations seek fourth order O(h4max), hmax =
max{h1, h2, h3}, approximate solutions U(x, t) in the form

U(x, t) =
N+1∑
j=1

[α2j−1(t)φ2j−1(x) + α2j(t)φ2j(x)] (13)

where the Hermite cubic basis functions φ2j−1(x) and
φ2j(x), centered at the node xj , are defined by

φ2j−1(x) =



φ
(
xj−x
h

)
, x ∈ Ij−1

φ
(
x−xj

h

)
, x ∈ Ij

0 , otherwise

, (14)

φ2j(x) =



−hψ
(
xj−x
h

)
, x ∈ Ij−1

hψ
(
x−xj

h

)
, x ∈ Ij

0 , otherwise

(15)

with Ij := [xj , xj+1], and the functions φ(s) and ψ(s) being
the generating Hermite cubics over [0, 1]; that is, for s ∈
[0, 1],

φ(s) = (1− s)2(1 + 2s) , ψ(s) = s(1− s)2 . (16)

Of course, the fictitious elements I0 and IN+1 are omitted.

For the solution u of our model problem in (8), since there
are discontinuities at the interface points w1 ≡ xN1+1 and
w2 ≡ xN1+N2+1, it is apparent that we have to force the
approximate solution U(x, t) (13) to satisfy the conditions
described in (7); thus, for k = 1, 2 ,

[DUx] := D+U+
x −D−U−x = 0 , at x = wk , (17)

or, equivalently, after using well known properties of the
Hermite cubic functions,{

γ φ2i(x
−
i ) = φ2i(x

+
i ) , i = N1 + 1 ,

φ2i(x
−
i ) = γφ2i(x

+
i ) , i = N1 +N2 + 1 .

(18)

This can be achieved if, instead of the Hermite cubic basis
functions in (15), we define the basis functions φ2i(x) as
follows:

φ2i(x) =


−hγψ

(
xi−x
h

)
, x ∈ Ii−1

hψ
(
x−xi

h

)
, x ∈ Ii

0 , otherwise

, i = N1 + 1

(19)
and

φ2i(x) =


−hψ

(
xi−x
h

)
, x ∈ Ii−1

h
γψ
(
x−xi

h

)
, x ∈ Ii

0 , otherwise

, i = N1+N2+1 ,

(20)
shown in figures Fig.1, Fig.2 for γ = 0.3.
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q2i (x)

xiï1
xi

q2iï1 (x) i=N1+1

xi+1

Fig. 1: Cubic basis functions for i = N1 + 1

q2i (x)

xi xi+1

q2iï1 (x) i=N1+N2+1

xiï1

Fig. 2: Cubic basis functions for i = N1 +N2 + 1

Substituting the approximate solution (13) in the differen-
tial equation we obtain:

N+1∑
j=1

[α̇2j−1(t)φ2j−1(x) + α̇2j(t)φ2j(x)] =

D
N+1∑
j=1

[
α2j−1(t)φ′′2j−1(x) + α2j(t)φ

′′
2j(x)

]
,

(21)

where the dot defines the first derivative with respect to time.
If we now force the above residual to exactly vanish at the
two Gaussian collocation points ([2]) in each subinterval and
working as in ([9]), the elemental collocation equations that
correspond to the element Ij , j = 1, . . . , N take the matrix
form:

C
(0)
j



α̇2j−1

α̇2j

α̇2j+1

α̇2j+2


=
D

h2
C

(2)
j



α2j−1

α2j

α2j+1

α2j+2


(22)

where h and D are as defined in (10) and (4) equations and

C
(κ)
j =

s
(κ)
1

h
ζj
s
(κ)
2 s

(κ)
3 − h

βj
s
(κ)
4

s
(κ)
3

h
ζj
s
(κ)
4 s

(κ)
1 − h

βj
s
(κ)
2

 , κ = 0, 2 (23)

with s(0)1 = 9+4
√
3

18 , s
(0)
2 = 3+

√
3

36 , s
(0)
3 = 9−4

√
3

18 , s
(0)
4 =

3−
√
3

36 , s(2)1 = −2
√

3 , s
(2)
2 = −1 −

√
3 , s

(2)
3 = 2

√
3

and s
(2)
4 = −1 +

√
3 . The constants ζj and βj are used

to distinguish the elemental matrices for the elements IN1

and IN1+N2+1 since the basis functions in those elements
are using equations (20) and (21) respectively. Therefore,
for j ∈ {1, . . . , N}

ζj =

 1 , j 6= N1 +N2 + 1

γ , j = N1 +N2 + 1
,

βj =

 1 , j 6= N1

γ , j = N1

.

(24)

To produce the boundary collocation equations we force
the approximate solution U(x, t) to satisfy the boundary
conditions at every time step, namely

α̇2 = 0 , α2 = 0 , α̇2N+2 = 0, α2N+2 = 0 . (25)

A careful assembly of all interior elemental and boundary
collocation equations, described above, leads to the system

Aȧ = Ba (26)

where ȧ =
[
α̇1 α̇3 · · · α̇2N+1

]T
, a =

[
α1 α3 · · ·α2N+1

]T
and

A =


Ã1 B1

A2 B2

�
AN−1 BN−1

AN B̃N

 , (27)

B =


F̃1 G1

F2 G2

�
FN−1 GN−1

FN G̃N

 . (28)

with the 2×2 matrices Aj , Bj , Fj and Gj are defined through
the matrices in (23) and the relationships[

Aj Bj
]

= C
(0)
j and

[
Fj Gj

]
=
D

h2
C

(2)
j . (29)

The tilde analogues of the above matrices are obtained by
omitting their second column.

The system (26) can also be written as a system of ODEs
in the form:

ȧ = C(t, a) (30)

where C(t, a) = A−1Ba.

III. DIAGONALLY IMPLICIT RUNGE-KUTTA SCHEMES

In this section, we couple the DHC method, described
in the previous section, with efficient A-stable diagonally
implicit Runge-Kutta (DIRK) schemes. For comparison pur-
poses we also consider the classical backward Euler (BE) and
Crank Nicolson (CN) implicit time discretization procedures.
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Upon writing the system of ODEs (30) at time level t =
tn+1 as

ȧ(n+1) = C(tn+1, a(n+1)) (31)

where
C(tn+1, a(n+1)) = A−1Ba(n+1)

and
ȧ(n+1) =

[
α̇
(n+1)
1 α̇

(n+1)
3 · · · α̇(n+1)

2N+1

]T
a(n+1) =

[
α
(n+1)
1 α

(n+1)
3 · · ·α(n+1)

2N+1

]T
,

the classical BE takes the form:

a(n+1) − a(n)

τ
= C(tn+1, a(n+1)) (32)

or, equivalently,

(A− τB)a(n+1) = Aa(n) , (33)

where the starting vector a(0) is determined in a straight
forward way from the model’s initial condition (cf. (8) and
(5)). Similarly, the CN scheme is expressed as

a(n+1) − a(n)

τ
=

1

2
(C(tn+1, a(n+1)) + C(tn, a(n))) (34)

or, equivalently,

(A− τ

2
B) a(n+1) = (A+

τ

2
B) a(n) . (35)

For an initial value problem in the form yt = g(t, y),
y(0) = y0, the well celebrated idea of Runge-Kutta methods
(e.g. cf. [4], [5], [1]) is to use weights bi and quadrature
points di, 1 ≤ i ≤ q, to approximate y(n+1) from y(n) using
the q intermediate stage formula

y(n+1) = y(n) + τ

q∑
i=1

big(tn,i, y
(n,i)) , (36)

with tn,i = tn + diτ and

y(n,i) = y(n) + τ

q∑
j=1

aijg(tn,j , y
(n,j)) , 1 ≤ i ≤ q . (37)

Formulas (36) and (37) together define a Runge-Kutta
method, which we designate by displaying its coefficients:

a11 · · · a1q d1
...

...
...

aq1 · · · aqq dq
b1 · · · bq

(38)

The semi-implicit (cf. [4], [5]) Runge-Kutta methods, de-
termined by the property aij = 0, j > i, and in particular the
diagonally-implicit (cf. [6], ) Runge-Kutta (DIRK) methods,
by further imposing aii = a, i = 1(1)q, are the targeted
subcategories we are interested in this work. Following the
work in [6] (see also [1]) it is well known that, for q = 2,
there is exactly one A-stable DIRK method of order p = 3
described by:

λ 0 λ
1− 2λ λ 1− λ

1
2

1
2

(39)

where λ = 1
2 +

√
3
6 .

Deploying now the (2,3)-DIRK scheme, described above,
for the solution of the DHC system of ODE’s in (30) we
obtain:

a(n,1) = a(n) + τ λ C(tn,1, a(n,1))

a(n,2) = a(n) + τ
[
(1− 2λ)C(tn,1, a(n,1)) + λC(tn,2, a(n,2))

]
a(n+1) = a(n) +

τ

2

[
C(tn,1, a(n,1)) + C(tn,2, a(n,2))

]
(40)

or, equivalently,

(A− τλB) a(n,1) = A a(n)

(A− τλB) a(n,2) = A a(n) + τ(1− 2λ)B a(n,1) .

A a(n+1) = A a(n) +
τ

2
[B a(n,1) +B a(n,2)]

(41)

IV. NUMERICAL RESULTS

In this section, we numerically investigate the performance
of the DHC-DIRK method. For comparison purposes, we
also include some results from the performance of the DHC
method combined with the classical BE and CN schemes.

The numerical experiments include refer to the following
three model problems:

Model Problem 1

a = −5, w1 = −1, w2 = 1, b = 5, γ = 0.5

and
f(x) =

1

η
√
π
e−x

2/η2 ,

Model Problem 2

a = −5, w1 = 1, w2 = 1.5, b = 5, γ = 0.5

and

f(x) =
1

η
√
π

(e−(x+3.5)2/η2 + e−(x−3)
2/η2) ,

Model Problem 3

a = −5, w1 = −2, w2 = 1, b = 5, γ = 0.5

and

f(x) =
1

η
√
π

(e−(x−3)
2/η2 + e−(x−4)

2/η2) .

In all model problems η = 0.2.

Using the DHC-DIRK method, the tumour growth pattern
associated with each one of the above three model problems
is depicted in Fig. (3), Fig. (4) and Fig. (5) respectively.

The order of convergence of the DHC, coupled with
all time discretization schemes considered here, is show
schematically in Fig. (6), Fig. (7) and Fig. (8) for the Model
Problems (MP) 1, 2 and 3 respectively. It is apparent that
the order of convergence remains four as in the continuous
Hermite Collocation.

The order of convergence of all Time Discretization
Schemes (TDS) is demonstrated through in Fig. (9), Fig.
(10) and Fig. (11) for the Model Problems (MP) 1, 2 and 3
respectively. In all model problems, Nt denotes the number
of time steps and the order of convergence remains one,
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Fig. 3: The behaviour of the method DHC/ DIRK for MP 1
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Fig. 4: The behaviour of the method DHC/ DIRK for MP 2
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Fig. 5: The behaviour of the method (DHC)/(DIRK) for the
model problem 3.

two and three for BE, CN and DIRK methods, respectively.
Observe the behaviour of the CN method due to oscillations
at the beginning of the process.

Finally, we include tables Tables I, II and III for the
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Fig. 6: Order of convergence of the DHC method for MP 1
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Fig. 7: Order of convergence of the DHC method for MP 2
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Fig. 8: Order of convergence of the DHC method for MP 3

comparison of all time discretization schemes, coupled with
the DHC method, with respect to the computational cost
(measured in secs) needed to evolve from t = 0 to t = 4,
using a time step τ = 0.1.
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Fig. 9: Order of convergence of the TDS for MP 1
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Fig. 10: Order of convergence of the TDS for MP 2
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Fig. 11: Order of convergence of the TDS for MP 3

Table I Computational time for MP 1
N B.E. C.N. DIRK
64 0.2445 0.2481 0.2886

128 0.2692 0.2700 0.2797
256 0.3159 0.3193 0.3317
512 0.4050 0.4128 0.4359

Table II Computational time for MP 2
N B.E. C.N. DIRK
64 0.2504 0.2492 0.2560

128 0.2689 0.2756 0.2804
256 0.3170 0.3242 0.3283
512 0.4111 0.4199 0.4269

Table III Computational time for MP 3
N B.E. C.N. DIRK
64 0.2447 0.2520 0.2549
128 0.2694 0.2736 0.2820
256 0.3174 0.3215 0.3328
512 0.4105 0.4248 0.4278

V. CONCLUSION

In this work, we have investigated the performance of a
stable high order method, obtained from the coupling of a
fourth order Discontinuous Hermite Collocation method with
a third order Diagonally-implicit Runge-Kutta scheme, to
treat a brain tumour growth model which, apart from prolifer-
ation and diffusion, is being characterized by a discontinuous
diffusion coefficient to incorporate the heterogeneity of the
brain tissue.
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