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Abstract—The early exercise property of American option 

changes the original Black-Scholes equation to an inequality 
that cannot be solved via traditional finite difference method. 
Therefore, finding the early exercise boundary prior to spatial 
discretization is a must in each time step. This overhead slows 
down the computation and the accuracy of solution relies on if 
the early exercise boundary can be accurately located. A simple 
numerical method based on finite difference and method of 
lines is proposed here to overcome this difficulty in American 
option valuation. Our method averts the otherwise necessary 
procedure of locating the optimal exercise boundary before 
applying finite difference discretization. The method is efficient 
and flexible to all kinds of pay-off. Computations of American 
put, American call with dividend, American strangle options 
are demonstrated to show the efficiency of the current method. 
 

Index Terms—American option, finite difference method, 
method of lines, American put option, American call option 
with dividend, American strangle option 
 

I. INTRODUCTION 

N last two decades, the problem of pricing American   
options has been investigated extensively both in 

numerical methods and analytical approximations. These two 
approaches both encounter the arduous challenge which is 
known as a free boundary value problem arising form the 
early exercise feature of American options. The difficulty 
associated with the valuation of American options stems 
from the fact that the optimal exercise boundary must be 
determined as a part of the solution. Unfortunately, the early 
exercise boundary cannot be solved in a close form, and, 
consequently, nor can the option’s value. Up to now, 
reviewing all relevant literatures, most efforts have been 
exerted mainly on locating the free boundary that sets the 
domain for the Black-Scholes equation. 

For analytic approximations, Johnson [19] adopted an 
interpolation scheme to price the American put option for a 
non-dividend paying stock. MacMillan [22] used a quadratic 
approximation, which involved solving an approximate 
partial differential equation (PDE) for the early exercise 
premium, the amount by which the value of an American 
option exceeds a European one, to evaluate an American put 
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option. Geske and Johnson [15] obtained a valuation formula 
for American put option expressed in terms of a series of 
compound-option functions. Following [22], Ju and Zhong 
[20] presented an efficient and accurate approximate formula 
for pricing American options on a dividend paying stock. 

For numerical approximations, the most popular 
numerical methods for pricing American options can be 
classified to lattice method, Monte Carlo simulation and 
finite difference method. Sure, besides finite difference 
methods, there are other popular numerical method based on 
discretization for solving PDEs like finite element method, 
boundary element method, spectral and pseudo-spectral 
methods and etc. Here we just use finite difference to stand 
for methods of this kind. In fact, finite difference method 
ranks as the most popular one among its kind in financial 
engineering. The lattice method is simple and still widely 
used for evaluating American options. It was first introduced 
by Cox et al. [9], and the convergence of the lattice method 
for American options is proved by Amin and Khanna [1]. The 
Monte Carlo method is also popular among financial 
practitioners. It is appealing, simple to implement for pricing 
European options, and especially has advantage of pricing 
multi-asset options. For pricing American options, Monte 
Carlo method requests some further modification due to the 
early-exercise feature. Fu [13], [14] priced American-style 
options by using Monte Carlo method in conjunction with 
gradient-based optimization techniques. Duck et al. [11] 
proposed a technique which generates monotonically varying 
data to enhance the accuracy and reliability of Monte 
Carlo-based method in handling early exercise features.  

The application of finite difference method to price 
American options can be first found in [4], [5], [26]. Jaillet et 
al. [18] showed the convergence of the finite difference 
method. A comparison of different numerical methods for 
American options pricing was discussed in [6], [16]. 
Generally, there still exist some difficulties in using these 
numerical methods. For finite difference method, the 
difficulty arises from the early exercise property, which 
changes the original Black-Scholes equation to an inequality 
that cannot be solved via traditional finite difference process. 
Therefore, finding the early exercise boundary prior to spatial 
discretization (discretization on underlying asset) is a must in 
each time step. This overhead slows down the computation 
and the accuracy of solution relies on if the early exercise 
boundary can be accurately located. For lattice method and 
Monte Carlo simulation, although they do not have the free 
boundary value problem, they would need some extra efforts 
to compute the Greeks and the optimal exercise boundary, 
which are mostly desired in practice besides option valuation.  

In this paper, we propose a simple numerical method 
based on finite difference method and method of lines (MOL) 
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to overcome the difficulty mentioned above in American 
option valuation. Particularly, our method averts the 
otherwise necessary procedure of locating the optimal 
exercise boundary before applying finite difference 
discretization. This method is efficient, flexible to all kinds of 
pay-off, and easy to implement when compared with many 
other methods. The results also show that our method 
possesses the optimal accuracy intrinsic to finite difference 
discretization, and thereby make it a powerful tool for 
practitioners when evaluating American option and financial 
derivatives having American option feature.  

This paper is organized as follows. Section II is devoted 
to the description of method of lines. Section III describes the 
core idea of our scheme of evaluating American option 
through the spirit of Black-Scholes inequality with 
demonstrations through successful computation of American 
put, American call with dividend, and American strangle 
options. Optimal accuracy is also shown in these examples. 
Section IV depicts the scheme of locating the optimal 
exercise boundary. The dual optimal exercise boundaries in 
American strangle option are particularly compared with 
Chiarella and Ziogas [7], and satisfactory agreement is 
observed. Section V makes the conclusion by emphasizing 
the merits of the current method. 

II. METHOD OF LINES 

Under the usual assumptions, Black and Scholes [2] and 
Merton [23] have shown that the price V of any contingent 
claim written on a stock, whether it is American or European, 
satisfies the famous Black-Scholes equation: 
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where volatility σ, the risk-free rate r, and dividend yield D 
are all assumed to be constants. The value of any particular 
contingent claim is determined by the terminal and boundary 
conditions. For an American option, notice that the PDE only 
holds in the not-yet-exercised region. At the place where the 
option should be exercised immediately, the equality sign in 
(1) would turn into an inequality one. That means the option 
value V(S,t) at each time follows either V(S,t)=f(S,t) for the 
early exercised region or 
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not-yet-exercised region, where f(S,t) is the payoff of an 
American option at time t. There is a moving boundary that 
separates these two regions and makes the whole problem a 
free boundary problem for Black-Scholes equation. 
Generally, this early exercised boundary is difficult to locate 
and there is no simple closed-form expression for it. Most 
finite difference methods nowadays exert their efforts on 
locating the early exercise boundary that is a must before 
finite difference discretization can be applied to the 
not-yet-exercised region. 
 

The method of lines (MOL), a popular method for solving 
PDEs in engineering, was first promoted by Liskovets [21]. 
The idea is first reducing a time-dependent PDE to a system 
of ordinary differential equations (ODEs) in time via 
semi-discretization in space. Then this system of ODEs in 
time can further be solved efficiently by many 
well-developed ODE solvers. This methodology has been 
successfully applied to the valuation of American options on 

common stock, and is found to be accurate and efficient [8], 
[17], [24]. To explain how MOL is employed, here we simply 
take valuation of a European call as an example. 
Incorporating with 2nd order finite difference scheme, we can 
discretize (1) on a uniform mesh of underlying asset price 
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The boundary conditions of equation (1) are 
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Both boundary conditions above exhibit linear behavior close 
to boundaries, and hence they can be incorporated into this 
system of ODEs by neglecting the 2nd order derivative in S, 
and compensating 1st order derivative in S with 2nd order 
accurate, one-sided difference approximation 
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for (2) with S   being truncated to Smax which is specified 
by Smax=3K or Smax=4K considering both computational 
efficiency and acceptable boundary error. Equations (2-4), 

symbolically denoted as 
ௗ௏೔
ௗ௧
ൌ ஻ௌܮ ௜ܸ , pose as an ordinary 

differential initial value problem in time and can be solved by 
many efficient ODE solvers which have been developed in 
hundreds of years. Actually, traditional finite difference 
method incorporating with explicit Euler scheme in time 
integration is equivalent to choose forward Euler scheme as 
the ODE solver in MOL. Likewise, popular Crank-Nicolsen 
finite difference scheme is equivalent to select the 
Adams-Moulton one-step method (trapezoidal rule) as the 
ODE solver in MOL. As noted in [24], the free boundary 
initially moves with infinite speed but slows down very 
quickly. Therefore, this stiff problem would be hard to 
implement efficiently by plain finite difference methods. To 
evaluate American option efficiently, it would request a 
self-adjusting-in-time-step solver for time integration, and 
this can be done easily by novel ODE solvers nowadays 
featuring self-adjusting variable step size and order (VSVO). 
Many VSVO type ODE solvers have been collected in 
popular MATLAB® ODE suite. In the current study, we 
selected ode23 from the suite to be our demonstrating ODE 
solver. Ode23 implements an explicit Runge-Kutta (2,3) pair 
developed by Bogacki and Shampine [3]. It features by an 
adaptive step size controlled by specified error tolerance and 
is an efficient on-step solver for moderately stiff ODE’s. 
More details of this solver can be found in [3].  

III. VALUATION OF AMERICAN OPTIONS 

American options differ from European ones by that the 
holder can select to exercise at any time before the expiry 
date. This early exercise feature of American options causes 
the free boundary problem of Black-Scholes equation. So far 
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all finite difference methods for pricing American options, 
including those employing MOL mentioned above, request to 
find out the optimal exercise boundary first in each time step. 
This procedure is a must, and accurate location of this 
optimal exercise boundary is crucial to the overall accuracy. 
That is why many analytical mathematicians study this 
subject and compete on deriving a better analytic 
approximation of optimal exercise boundary that is crucial to 
finite difference methods.  
 

However, our current method does not request this 
optimal exercise boundary at all in each time step, and this 
optimal exercise boundary can be extracted from the 
numerical results afterwards if wanted. Due to the saving of 
overhead on computing this optimal exercise boundary, our 
method is much more efficient compared with other 
numerical methods. The key idea of our method is to modify 
(2-4) to  

 
ௗ௏೔
ௗ௧

ൌ ݉݅݊ሺܮ஻ௌ ௜ܸ, 0ሻ,			݅ ൌ 0,1, … ,ܰ.               (5) 

 
This idea is based on the fact that the value of an American 
option, when evolving backward in time, can not allow 
smaller than its final pay-off at any time before expiration. If 
it is smaller than its final pay-off, the option should then be 
early exercised at that spot. This spirit can also be observed in 
evaluating American options by binomial tree. To elaborate 
our point, for those nodes i that do not need early exercise, 
their option values would be governed by the backward time 
evolution of Black-Scholes equation and 
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ݐ݀
ൌ ݉݅݊ሺܮ஻ௌ ௜ܸ, 0ሻ ൌ ஻ௌܮ ௜ܸ. 

 
For option values at other nodes i that would fall below their 
final pay-off if following the backward evolution of 
Black-Scholes equation, it would request an early exercise 
and then 
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Equation (5) actually can deduce the Black-Scholes 
inequality for American options: 
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Solving (5) is straight forward and easy to implement in 

the frame work of MOL. Extracting the optimal exercise 
boundary, if wanted, can be done afterwards from the result 
by re-computing dVi/dt, for all i at each time step, and 
locating the single zero of dVi/dt through interpolation. This 
trajectory of single zero would be the optimal exercise 
boundary. The details of computing this optimal exercise 
boundary will be discussed in a later section below. Actually, 
this idea can be implemented by conventional finite 
difference techniques such as forward Euler and 
Crank-Nicolsen methods too. We can simply integrate the 
Black-Scholes equation backward in time at each time step, 
and then replace the option value falling below the final 

pay-off by it at those nodes that need an early exercise. This 
can be justified rigorously by thinking of Black-Scholes 
inequality above as Black-Scholes equation with an 
additional a priori unknown forcing function. The only 
purpose of this forcing function is to make sure that, once the 
prices at those nodes fall below the pay-off when evolving 
backward in time, the forcing function will compensate those 
prices to become the pay-off value. One may still argue about 
the adoption of this unknown a priori forcing function, and 
this can be justified by the governing equation (6) for 
American put option shown below. We can see the option 
price retains its continuity in both the function itself and its 
spatial derivative all the time at the interface (the early 
exercise boundary) and then for the whole domain [0,Smax]. 
This implies the existence of a forcing function that is 
non-zero only on those early-exercised nodes. Though 
forward Euler or Crank-Nicolsen finite difference scheme 
may then look like a simpler way to evaluate American 
options by adopting the idea above, however, as mentioned 
before, the free boundary moves extremely fast near the 
expiry date, which would request much finer mesh in time 
near the expiry date. This makes these two conventional 
finite difference techniques with fixed time step very 
inefficient to reach small time error near the expiry date. If 
the mesh of time is not appropriately resolved near the expiry 
date, it may cause large errors in both the option value and 
optimal exercise boundary. Under this situation, MOL 
employing VSVO-type error-control ODE solvers would be a 
much more superior method. Also, the current method agrees 
with the spirit of linear complementarity. Here, we use 
American put option, American call option with dividend and 
American strangle option to demonstrate how our simple 
approach would work.  

A. American Put Option 

Here the optimal exercise boundary Sf,P(t) separates the 
underlying asset domain in two regions, continuation and 
stopping regions. On the stopping region  [0, Sf,P(t)ሻ×[0,T], 
V(S,t)=KP-S, while on the continuation region 
[Sf,P(t), ∞ሻ ×[0,T], V(S,t) needs to satisfy the following 
free-boundary problem: 
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(6) 

 
Naturally, finding out the optimal exercise boundary would 
be a must before integrating (6). Instead, our simple method 
solves (5) with linear boundary conditions (3-4) and the 
terminal condition V(S,T)=max(KP-S,0). The specific 
parameter values adopted here in our computation are 
r=10%, σ=40%, D=0, T=1, KP=1/5, and stock price ranges 
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from S=0 to S=1 with the infinite domain of S being truncated 
by five times of the exercise price KP. The error analysis of 
our result is reported in Table I. The first part in this table lists 
the calculated option price at the exercise price. For 
calculating absolute error, we calculated a binomial tree with 
exhaustive N=10,000 time steps and used the result as the 
exact solution Vexa(Si,0). Here, we again limit the maximum 
time step to be 10-4 so that the total error would be dominated 
only by the spatial error. The column of absolute error again 
shows perfect 2nd order convergence. In the second part, the 
maximum absolute error (MAE), 

0
max ( ,0) ( ,0)i exa i

i N
V S V S

 
 , 

shows that the order of accuracy deteriorates slightly from 2nd 
order, and the location of MAE is mostly close to the free 
boundary except at N=400, in which the location of MAE is 
close to exercise price. This deterioration may be due to the 
fact that V fails to twice differentiable at the optimal exercise 
boundary. As we know, error analysis of finite difference is 
based on Taylor expansion. 2nd order of accuracy on the 
whole range of S would request the justification of twice 
differentiability on all S. As to the computed free boundary, 
from Table I, it seems to converge in first-order sense without 
rigorous analysis provided here.  

B. American Call Option with Dividend 

The optimal exercise boundary Sf,C(t) separates the 
underlying asset domain to continuation and stopping 
regions. On the stopping region (Sf,C(t), ∞ሻ ×[0,T],  
V(S,t)=S-KC, while on the continuation region 
[0,Sf,C(t)]×[0,T], V(S,t) needs to be solved from the following 
free-boundary problem for American call options: 
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          (7) 

The above opting pricing problem can be solved exactly in 
the same way as pricing American put option before only 
with the terminal condition changed to V(S,T)=max(S-KC,0). 
Table II reports the error analysis of American call option 
pricing. The specific parameter values are r=9%, σ=40%, 
D=10%, T=1, KC=1/5, and stock price ranges from S=0 to 
S=1. Same as before, the infinite domain of S is truncated by 
five times of the exercise price KC. The first part in this table 
lists the calculated option price at the exercise price. Again, 
for calculating absolute error, we calculated a binomial tree 
with exhaustive N=10,000 time steps and used the result as 
the exact solution. Here, both the local error at the exercise 
price and MAE show perfect 2nd order of convergence, with 
MAE happening near exercise price instead of optimal 
exercise boundary as happening above in the case of 
American put.  

C. American Strangle Option 

 To demonstrate the flexibility of our method that can be 
applied to any kind of pay-off function, here we apply our 
method to the option pricing of an American strangle 
position, unusually seen on the market, studied first by 
Chiarella and Ziogas [7]. American strangle pay-off can be 
comprehended as a combination of American put and call, 
and there would be two free boundaries when option evolves 
backward in time. The optimal exercise boundaries Sf,P(t) and 
Sf,C(t) separates the underlying asset domain into continuation 
and stopping regions. On the stopping region  
[0, ௙ܵ,௉ሺݐሻሻ ×[0,T], V(S,t)=KP-S, and (Sf,C(t), ∞ሻ ×[0,T], 
V(S,t)=S-KC, while on the continuation region 
(Sf,P(t),Sf,C(t))×[0,T], V(S,t) is governed by the following 
free-boundary problem for American strangle: 
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Though the pay-off of American strangle is a combination of 
put and call positions, its current value would not just be the 
sum of the associated American put and call. This is chiefly 
because the dual optimal exercise boundaries, Sf,P(t) and 
Sf,C(t), are not independent. Chiarella and Ziogas [7] first 
derived a set of complicated coupled integral equations for 
these dual early exercise boundaries. Then they solved the 
Black-Scholes equation for the option value in the 
continuation region by Crank-Nicolsen finite difference 
method. Using our simple method, it needs only to change the 
terminal condition to be the following pay-off function 
V(S,T)=max(KP-S,0)+max(S-KC,0), and follow the procedure 
same as above. 
 

Table III reports our result of American strangle pricing. 
The parameter values r=5%, σ=20%, D=10%, T=1, KP=1, 
KC=1.5, are adopted from Table 1 of [7]. The infinite domain 
in S is truncated by five times of KC in the current 
computation. In this table, we quote the Crank-Nicolson 
finite difference result from the Table 1 of [7], where they 
employed 1460 time steps and 120000 space-nodes in their 
finite difference calculation. We might as well treat this 
exhaustive solution as exact. The American strangle prices 
calculated by our simple approach with various number of 
space nodes and the associated absolute errors are listed in 
the table. Here we did not limit maximum time step to a very 
small number as before (just chose ordinary 10-2 for the 
maximum time step) in ode23. The errors show fast 
convergence to the exact solution. The computational 
efficiency of our method can be especially noted by that our 
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N=800 results almost match with every digit of the exact 
solutions that used N=120,000 space nodes in [7]. We 
conclude that our simple method can be easily and robustly 
applied to all kinds of pay-off functions and have a 
satisfactory accuracy with an economic spatial resolution.  

IV. ESTIMATING THE OPTIMAL EXERCISE BOUNDARY 

Different from other methods, the optimal exercise 
boundary is not requested at each time step for our method. 
However, it can be extracted from the numerical result 
afterwards if wanted.  We first re-compute dVi/dt, for all i at 
each time step by (2). Then the optimal exercise boundary Sopt 
would be the single zero of  

డ௏

డ௧
ሺܵ,  .ሻ=0 as mentioned beforeݐ

Instead of doing time-consuming root finding, Sopt can be 
simply interpolated by dVi/dt. The way is to see S as function 
of ߲ܸ ⁄ݐ߲  instead, since ሺ߲ܸ ⁄ݐ߲ ሻ௜ vs. Si is monotonic across 
Sopt. We can then interpolate to find Sopt through Si vs. 
ሺ߲ܸ ⁄ݐ߲ ሻ௜. There are other more accurate ways of locating 
Sopt like utilizing Delta value for example. Taking American 
put as an example, we can extrapolate to find Sopt that 

approximates 
డ௏

డ௦
൫ܵ௢௣௧, ൯ݐ ൌ െ1 through Si vs. ሺ߲ܸ ⁄ݏ߲ ሻ௜  in 

the continuation region near optimal exercise boundary. Fig. 
1 shows the dual optimal exercise boundaries  Sf,P(t) and 
Sf,C(t) of the American strangle option in Table III. To 
demonstrate the accuracy of locating optimal exercise 
boundary by the current method, we particularly computed 
the dual optimal exercise boundaries Sf,P(t) and  Sf,C(t) with 
r=10%, σ=20%, D=5%, T=1, KP=1, KC=1.1, as in Figs. 2 and 
3 of [7] and the comparison is shown in Fig. 2. Obviously, 
our result agrees very well with [7]. 

V. CONCLUSION 

We have introduced an efficient numerical method to 
evaluate American options in this article. This simple method 
is much easier to implement compared with those numerical 
methods requesting the early exercise boundary calculated in 
advance at each time step. Not requesting the early exercise 
boundary makes it flexible to suit all kinds of pay-off 
function. The optimal exercise boundary can be easily 
extracted afterwards from the computed option values at each 
time step if wanted. Various ways like interpolating on the 
Theta or Delta values can do the purpose efficiently. This 
efficient method can be directly extended to evaluate many 
more general American option problems such as two-factor 
American option [12], [25], and two-factor convertible bond 
with embedded call and put options [10]. Also, tracing their 
optimal exercise boundaries/regimes afterwards is easy by 
current method no matter how complicated those 
early-exercised constraints would be. 
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TABLE I 
ERROR ANALYSIS FOR AMERICAN PUT OPTION 

At the Money 

N  Binomial Price MOL Price Absolute Error 

50 

239167.2 E  

236815.2 E  435270.2 E  
100 238493.2 E  574212.6 E  

200 238999.2 E  568044.1 E  

400 239125.2 E  624050.4 E  

Whole Underlying Price Range 

N  Maximum Abs. Error Location Free Boundary 

50 444314.3 E  1400.1 E  1453.1 E  

100 558743.9 E  1500.1 E  1337.1 E  

200 508001.3 E  1350.1 E  1333.1 E  
400 618810.5 E  1825.1 E  1330.1 E  

The parameter values are r=10%, σ=40%, D=0, T=1, KP=1/5 and price of 
underlying asset ranges from S=0 to S=1. The maximum time step is set to 
10-4 in ode23. 
 
 

TABLE  II 
ERROR ANALYSIS FOR AMERICAN CALL OPTION WITH DIVIDEND 

At the Money 

N  Binomial Price MOL Price Absolute Error 

50 

288331.2 E  

286049.2 E  428149.2 E  

100 287764.2 E  568926.5 E  
200 288191.2 E  539543.1 E  

400 288299.2 E  613296.3 E  

Whole Underlying Price Range 

N  Maximum Abs. Error Location Free Boundary 

50 428149.2 E  1000.2 E  1525.3 E  

100 581994.5 E  1900.1 E  1531.3 E  

200 551350.1 E  1900.1 E  1530.3 E  

400 632402.4 E  1975.1 E  1530.3 E  

The parameter values were parameter values are r=9%, σ=40%, D=10%, 
T=1, KC=1/5, and price of underlying asset ranges from S=0 to S=1. The 
maximum time step is set to 10-4 in ode23. 
 
 

 
 
 
 
 

TABLE  III 
ERROR ANALYSIS FOR AMERICAN STRANGLE OPTION 

Method, 
N 

S 

 0.75 1.00 1.25 1.50 1.75
CN, 

120000 
0.275648 0.100319 0.038560 0.092314 0.255619 

MOL, 
100 

0.275677 
(0.00002) 

0.100094 
(0.00022) 

0.038632 
(0.00007) 

0.091799 
(0.00051) 

0.254837 
(0.00078) 

MOL, 
200 

0.275659 
(0.00001) 

0.100283 
(0.00003) 

0.038566 
(0.00000) 

0.092196 
(0.00011) 

0.255507 
(0.00011) 

MOL, 
400 

0.275650 
(0.00000) 

0.100319 
(0.00000) 

0.038563 
(0.00000) 

0.092307 
(0.00000) 

0.255597 
(0.00002) 

MOL, 
800 

0.275648 
(0.00000) 

0.100329 
(0.000010) 

0.038563 
(0.000003) 

0.092336 
(0.000022) 

0.255632 
(0.000013) 

The parameter values are r=5%, σ=20%, D=10%, T=1, KP=1, KC=1.5, and 
price of underlying asset ranges from S=0 to S=7.5. The maximum time step 
is set to 10-2 in ode23. The numbers in the parentheses are the absolute error.  
 
 

 
 
Fig.  1. Dual optimal exercise boundaries together with option value are 
shown for American strangle option. 
 
 

 
Fig.  2. Comparison of dual optimal exercise boundaries computed by the 
current method with their counterparts in Chiarella and Ziogas [7]. Solid and 
dash lines are Sf,P(t)  and Sf,C(t)  computed by current method respectively; ✕ 
and  are their counterparts from Chiarella and Ziogas [7]. 
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