


Abstract—Learning to program is hard. But it can be

facilitated for novice undergraduates. The programming task
requires them to master, for instance, the solutions for
standard problems and the meaning of running programs.
Completing programming worked-out examples directs these
students’ attention to learning the essential of relations
between problem-solving moves. Hence, the learning of
programming solutions was supported by this program-
completion approach in both the 2010 and 2011 editions of a
computer science introductory module at the University of
Minho. The learning of running worked-out examples can be
further assisted by a program visualization tool. This pilot
study reports the changes verified after introducing the
Portugol tool for students to automatically visualize the
execution of programming worked-out examples in the 2011
edition of that same module; and compares those changes to
the 2010 edition. The positive significant effect on students’
achievements, which made them rise, is then showed and
discussed.

Index Terms—computer science education, novice
programmers, program visualization, worked-out examples

I. INTRODUCTION

TUDENTS who choose to graduate in Polymers
Engineering Integrated Master (PEIM) – a five-year

degree program at the University of Minho (UM), have to
pass the two-module Programming and Numerical Methods
(PNM9703) course. Programming is a Computer Science
(CS) introductory module of this second year course of
PEIM studies. Learning to program entails acquiring and
developing complex knowledge and skills [1], [2], [6], [8],
[9], [17], [21]. Some examples follow on what the
programming task requires from these novice
undergraduates. They are supposed to master [4], [14], [15]:

 --The solutions for standard problems.
 --The meaning of running programs.
 --The general idea of programs.
 --A programming language.
 --The skills of planning, developing, testing, and

debugging programs.
Active learning techniques may help students accomplish

these points, as these techniques keep them highly involved

Manuscript received March 07, 2013; revised March 30, 2013. This

work was supported in part by FEDER Funds under program “Programa
Operacional Fatores de Competitividade – COMPETE” and Portuguese
Funds, by the “FCT – Fundação para a Ciência e Tecnologia” under Grant
FCOMP-01-0124-FEDER-022674.

I. C. Moura is with the Centro Algoritmi, Universidade do Minho, 4800-
058 Guimarães, Portugal (phone: 351-253-510266; fax: 351-253-510300;
e-mail: icm@dsi.uminho.pt).

in the learning process [8], [9], [12], [13]. But, providing
minimal guidance to novice undergraduates (e.g., by making
them generate the solutions for programming problems) puts
a heavy load on their working memory. (The human
working memory has limited capacity for dealing with new
information.) The latter prevents some of these students
from learning CS fundamentals. Worked-out examples can
help mitigate this problem. Studying and further completing
worked-out examples (e.g., solutions for standard
programming problems) directs novice students’ attention to
learning the essential of relations between problem-solving
moves, reducing the cognitive load on their working
memory [7], [15], [18], [19].

The programming module of the PNM9703 course covers
two thirds of the semester. So, the material taught consisted
of programming basic constructs (e.g., variables, assignment
statements, selections, loops, and arrays). In 2011 and 2010,
in-class active instructional activities (see, e.g., [5], [11],
[16]) were used to introduce these CS fundamentals. That is,
during each lab session the instructor presented a standard
programming problem and led the students to build the
corresponding algorithmic solution; then, they were
supposed to code, test, and debug it. In addition, students
were handed over a set of short, textbook-type algorithmic
segments of 1 to 30 lines long (tops) (i.e., worked-out
examples that solved standard programming problems).
These examples started by being complete and flawless. As
the weeks progressed, flaws and missing lines were
increasingly added for students to complete and/or correct.
Throughout the programming module students were
supposed to study, complete, and/or correct each worked-
out example and to code, test, and debug it. They were also
requested to find out the general idea for each example (i.e.,
the programming problem). Assessment consisted of two
individual tests. These tests (mainly of multiple-choice
questions) aimed at evaluating students’ recognition of
syntactic errors and understanding of the structure and
function of simple algorithmic and code sequences [21].
This program-completion approach seemed to facilitate the
learning of solutions for standard programming problems
(e.g., [7]–[9], [12], [13], [15], [18], [19], [21]).

Research in CS education (for a detailed review, see [15])
argues that novice undergraduates also find it hard to
mentally simulate the execution of a program; and thus,
understanding the meaning of running programs. To address
this problem, the literature on program animation for
training purposes (e.g., [2]–[4], [14], [17]) suggests
instructors to introduce these students to a simple

Visualizing the Execution of Programming
Worked-out Examples with Portugol

Isabel C. Moura

S

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

description of the machine they are learning to operate (e.g.,
the procedural notional machine); and use a program
visualization tool to support this description. It also suggests
instructors to give students basic programming tasks so they
can interact with the tool. According to these same authors,
such use of these tools can help novice undergraduates build
a clear mental model of the execution of programs, by
showing them the hidden mechanics of the notional
machine. The more students deepen their understanding
about the execution of programs, the more likely they are to
succeed in learning CS fundamentals.

Portugol Integrated Development Environment (IDE) 2.3
was then incorporated in the learning environment of the
2011 edition of the PNM9703 programming module; and
students were further required to use it. This program
visualization tool allowed them to automatically animate
procedural algorithmic solutions written in a Portuguese
pseudo-code like language. So, having a stable version of
the Portugol IDE, students were supposed to: (i)
automatically format a given algorithmic solution (or
worked-out example) (i.e., color and indent the pseudo-
code); (ii) automatically check the latter for syntactic errors;
(iii) correct them; (iv) run/test the syntactically correct
algorithmic solution step-by-step while monitoring the
corresponding change of the internal state of the variables;
(v) edit the solution as needed; (vi) repeat steps (i) to (v)
until they got a complete and flawless solution for a
standard programming problem.

This pilot study reports on the impact that the
implementation of the PNM9703 programming module (at
the UM in the fall semester of 2011), entailing the use of a
tool for students to automatically visualize the execution of
programming worked-out examples, had on their academic
achievements. Empirical results regarding the effectiveness
and pedagogical benefits of visualization tools are mixed
(for an overview, see [2], p. 376-377). However, since the
Portugol IDE 2.3 was integrated into an environment that
tends to facilitate learning [3], [7], [9], [12], [13], [18], [19],
a positive effect was expected. Method and results are then
presented. A discussion follows on this study’s results and
potential ways of improving such an implementation.

II. CONTEXT AND RESEARCH DESIGN

Programming is hard to learn although being generally
accepted (at the UM) as a useful skill for engineering
students (e.g., [1], [2], [6], [9], [14], [15]). Plus, the PEIM
studies only had a programming module (part of PNM9703
– a second year mandatory course, with no prerequisites,
offered in the fall semester) exclusively dedicated to the
development of CS fundamentals. Given the short term (two
thirds of the semester) for the module, the instructor’s main
concern was to avoid over expose students to content. This
gave them the opportunity to interact with the content in a
meaningful way and avoided blocking the learning [20].
Reference [1] also suggests that the procedural paradigm is
more appropriate than the object-oriented one to teach
programming fundamentals to novice undergraduates. So,
the CS material aimed at the PNM9703 programming
module was reduced to its basic constructs (e.g., variables,
assignment statements, selections, loops, and arrays) and

taught in accordance with the procedural paradigm.
Both editions (i.e., the 2011 and 2010) of the PNM9703

programming module under scrutiny consisted of a weekly
130-minute lab session. In-class active instructional
activities were used (see, e.g., [1], [5], [8], [11], [16]). That
is, students started each session by being lectured (for
approximately 5-15 minutes) on the algorithmic constructs
intended for the solution of a standard programming
problem (refer to Appendix A). Then, they were asked to
put together (individually or in groups of two) an
algorithmic solution in a couple of minutes (i.e., students
practiced the knowledge lectured). Right after, one of the
students’ solutions was written, discussed, and improved on
the board. This was done by having the instructor: (i)
showing the students how to manually trace the execution of
an algorithm; (ii) asking ‘what-if’ questions; (iii) letting the
students work on their answers and presenting them before
class. (CS fundamentals previously taught were revisited, as
needed.) In the remainder of each lab session,
undergraduates were supposed to study, complete, and/or
correct textbook-type algorithmic solutions (or worked-out
examples) of 1 to 30 lines long (tops). (Flaws and missing
lines were increasingly added to these solutions throughout
the module.) In addition, students were guided through the
programming language text book so they could code, test,
and debug (individually or in groups of two) the algorithmic
solutions. Students were also asked to summarize the
general idea for the solutions (i.e., to find out the
programming problem being solved). At home, students
were supposed to finish the worked-out examples started in
class. Visual Basic was the adopted programming language.
The MS Excel 2007 VBA programming environment was
chosen. (This environment made it easy for students to
automate the handling of datasheets they work with during
the PEIM program.)

Yet, many novice undergraduates are unable to write a
piece of code by the end of a whole semester practicing
programming [9]. So, the two individual tests consisted
mainly of multiple-choice questions; and were aimed at
evaluating students’ recognition of syntactic errors and
understanding of the structure and function of simple
algorithmic and code sequences [21]. The first test (i.e., a
multiple-choice test) covered material on variables,
assignment statements, selections, and ‘while’ loops. In
addition, the second test (which also covered ‘for’ and ‘do-
until’ loops and arrays) required students to: (i) fill-in the
gaps for a simple algorithmic and/or code segment; and (ii)
write a simple piece of code equivalent to a given one.
Overall grades for the programming module of the
PNM9703 course were derived 40% from the first test and
60% from the second test. Students took the first and second
tests after attending four and eight lab sessions, respectively.

The 2010 edition of the PNM9703 programming module
aimed at facilitating the learning of solutions for standard
programming problems, by using the reported program-
completion approach [7], [9], [15], [19], [21]. But, students
were also supposed to manually trace the execution of
worked-out examples (just like the instructor did during lab
sessions, as she used the call stack to describe the execution
of procedural algorithmic solutions). This required them to

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

mentally simulate the execution of examples and imagine
the dynamic behavior and side-effects of running examples.
However, many novice undergraduates found these
activities extremely difficult. Consequently, in 2010,
students had a hard time understanding the meaning of
running programs (whether written in a pseudo-code or
programming language) [2]–[4], [14], [15], [17].

To help students overcome this difficulty, in 2011 they
were required to automatically animate worked-out
examples (or algorithmic solutions), by using Portugol IDE
2.3. (The tool interface is presented in Fig. 1.) That is,
firstly, students used the tool editor (i.e., the large upper
window right below the pull-down menu in Fig.1) to write
an example and automatically format it. (The “automatic
format” option in the Editar pull-down menu (see Fig. 1)
automatically colors and indents the pseudo-code, which
makes it easy to read.) Second, students were supposed to
use the “verify” option in the Algoritmo pull-down menu
(see Fig. 1) to automatically check the example for syntactic
errors. (This option highlights pseudo-code lines that have
errors in the editor screen and provides feedback on each
error – one at a time). Third, students had to correct the
syntactic errors reported by the tool using the “verify”
option as needed (i.e., until they got an error-free solution).
Finally, students were required to run/test the example (free
from syntactic errors) using the “Executa e Monitora”
option in the Algoritmo pull-down menu. (This option opens
a new window with two vertical frames, i.e., the “Executa e
Monitora” window in the centre of the screen in Fig. 1). By
repeatedly pushing the right button on top of the left frame
(for continuing with the execution of the next statement),
students were able to execute an example step-by-step at
their own pace and visualize (on the right frame) the effect
of each statement on the internal state of the variables. This
step-wise animation allowed students to form and explore
their own hypothesis (as they inserted input data, e.g.) and
draw conclusions for the examples [2], [4], [14]. After a few
lab sessions, some students got bored with this way of
running examples. They were then told to use the left button
on top of the left frame (i.e., the “50%” button of the
“Executa e Monitora” window in Fig. 1). The “50%” button

and the cursor (located right below this button on the left
frame of the “Executa e Monitora” window in Fig. 1)
allowed students to establish the slow-motion speed at
which Portugol IDE 2.3 showed them (on the right frame)
the automatic step-wise execution of the example and the
corresponding update of the internal state of the variables.
The instructor gave students feedback on their solutions and
corresponding visualizations, as needed. In general, making
students interact with a program visualization tool (like
Portugol IDE) increases their engagement with it; and thus,
enhances their understanding of the execution of procedural
solutions and their mental models for the procedural

notional machine [2], [4], [14]. Students were introduced to
Portugol IDE 2.3 in the beginning of the module and taught
how to use it.

Portugol IDE 2.3 is a freeware environment for training
procedural paradigm fundamentals [10]. It is a standalone
application that can be downloaded from the Portugol
website (http://www.dei.estt.ipt.pt/portugol) and easily
installed on a personal computer. The tool interface is
simpler than Jeliot’s (refer to [2], p. 378) but, fairly similar
to it. Overall, Portugol IDE 2.3 is a simple, intuitive, and
stable IDE that enables novice undergraduates (on their
own) to create, edit, develop, test, and automatically animate
algorithmic solutions. These solutions must be written in a
Portuguese (i.e., students’ native language) pseudo-code
like language (refer to Appendix B), which is quite similar
to the one taught in the 2010 edition of the PNM9703
programming module. Portugol IDE 2.3 pseudo-code
language is built around a small number of constructs and
kept simple in its syntax and semantics. This program
visualization tool has been used by Portuguese and Brazilian
higher education institutions.

III. RESEARCH QUESTIONS AND METHODOLOGY

Literature on program animation for training purposes
[2]–[4], [14], [15], [17] suggests that if novices are provided
with: (i) a simple description on how the notional machine
works; (ii) an easy to use program visualization tool that
illustrates the mechanics of it; (iii) the possibility of
completing basic programming tasks using the tool, they
will be able to build a clear mental model of the execution
of solutions for standard programming problems. The more
students deepen their understanding about the meaning of
running programs, the more likely they are to succeed in

Fig. 1. The Portugol IDE 2.3 interface.

TABLE I
STUDENTS’ MEANS AND STANDARD DEVIATIONS FOR THE FIRST AND

SECOND TEST GRADES BY SEMESTER

 First test

 Fall 2011 (N = 31) Fall 2010 (N = 22)
Mean (SD) 11.7 (3.28) 10.2 (3.86)

Minimum 6.2 3.2
Maximum 18.5 16.8

Second test

 Fall 2011 (N = 31) Fall 2010 (N = 22)
Mean (SD) 13.7 (3.13) 11.1 (2.93)
Minimum 5.4 6.8
Maximum 19.4 15.6

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

learning CS fundamentals. This hypothesis raised the
following research questions:
1) Are there differences in students’ achievements (on

average) for the first individual test between the 2011
and 2010 editions of the PNM9703 programming
module?

2) Are there differences in students’ achievements (on
average) for the second individual test between the
2011 and 2010 editions of the PNM9703 programming
module?

In the current study quantitative methodologies were used

in the analysis and interpretation of data.

IV. DATA COLLECTION AND RESULTS

Data spanning two semesters were collected. Students
who had previously been exposed to a similar CS content
were excluded from both the 2011 and 2010 samples. (An
improvement in these students’ grades was expected.) This
means that a total of 63 students (i.e., 35 in the fall of 2011
and 28 in the fall of 2010) attended the programming
module of the PNM9703 course for the first time. Students
who dropped the module in both semesters (even though a
few of them have taken the first test) were also excluded.
Consequently, data from a total population of 53 students
(i.e., 31 from the 2011 edition and 22 from the 2010 edition)
were examined. These novice undergraduates were from the
second year of PEIM studies.

 The averages of students’ achievements (on a 0-20 scale)
for the first and second individual tests by semester are
summarized in Table I.

Overall, Table I results seem to show an improvement for
the class that attended the 2011 programming module of the
PNM9703 course. That is, the highest grade averages for the
first and second tests were received by those who studied in
the 2011 edition of the module. Examining the first research
question, the Mann-Whitney test result on the equality of
mean ranks (Z = -1.67, p-value < 0.10) suggests that the
2011 students’ first test grade average is numerically and
marginally statistically different from the 2010 students’
first test grade average. Therefore, the 2011 undergraduates
might have started taking advantage of Portugol IDE 2.3
(after four weeks of using it for running increasingly
difficult worked-out examples) to better understand the
information presented in lab sessions. Concerning the
students’ achievements for the second test (i.e., the second
research question), the Mann-Whitney test result on the
equality of mean ranks (Z = -2.78, p-value < 0.01) indicates
that the 2011 students’ second test grade average is
numerically and statistically different from the 2010
students’ second test grade average. This significant
improvement for the 2011 students’ performance suggests
that the programming module approach that used the
Portugol IDE 2.3 facilitated the development of an
appropriate mental model of the execution of procedural
solutions for standard programming problems. Therefore, an
improvement in the learning of CS fundamentals might have
occurred in the 2011 edition. However, it took about eight
weeks (of practicing with the referred program visualization
tool) for these undergraduates to accomplish the latter

result.

V. DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS

FOR FUTURE RESEARCH

This pilot study reports on the use of a tool for students to
automatically visualize the execution of programming
worked-out examples in an undergraduate CS introductory
module of the PNM9703 course at the UM in 2011. This
module implementation comprised:

 --In-class active instructional and learning activities for
solving standard programming problems and tracing the
execution of corresponding algorithmic solutions.

 --Using a program visualization tool (i.e., Portugol IDE
2.3) for novice undergraduates to automatically animate
worked-out examples (i.e., short, textbook-type algorithmic
solutions for standard programming problems that were
handed over complete and flawless, in the beginning, and
increasingly incomplete and/or flawed as the module
progressed) that they were supposed to study, complete,
and/or correct.

 --Coding, testing, and debugging the referred
algorithmic solutions.

 --Two individual test assignments consisting mainly of
multiple-choice questions.

Both individual test grade averages for the 2011
programming module of the PNM9703 course indicate that
students responded favorably to the use of Portugol IDE 2.3.
That is, given Table I results, this implementation of the
module (in the 2011 edition) provided a better learning
environment for novice undergraduates to build a clear
mental model of the execution of procedural solutions for
standard programming problems, compared to the 2010
implementation. Therefore, students were more likely to
succeed in learning CS fundamentals [2]–[4], [14], [15],
[17]. Note that students took some time (about eight weeks)
to learn the program visualization tool (i.e., Portugol IDE
2.3) and to fully benefit from its use. That is, the substantial
(and statistically significant) improvement in the 2011 test
grade averages (compared to the 2010 ones) was reported
for the second individual test only. This result resembles the
findings of [3]’s. These authors’ approach to teaching and
learning CS fundamentals differed from the one reported
here. But, the program visualization tool they used (i.e.,
Jeliot 2000) was fairly similar to Portugol IDE 2.3.

To conclude, the current study suggests that, in CS
introductory modules, instructors can provide an enhanced
learning environment aimed at improving novice
undergraduates’ academic achievements. This environment
entails (at least) facilitating the learning of: (i) solutions for
standard programming problems, by using a program-
completion approach; and (ii) the meaning of running
programs, by using a program visualization tool. However,
the successful integration of the tool into such an
environment depends on the following course of action [2]–
[4], [14], [17]. Instructors shall, first, pick a stable, easy to
learn and use tool. Second, introduce students to the tool in
the beginning of the module. Third, make sure that students
use the tool throughout the module by, for instance, giving
them basic programming tasks (e.g., worked-out examples
for them to study, correct and/or complete); and remind

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

them (as needed) that they will be tested on the
understanding of the structure and function of pseudo-code
sequences structurally identical to the ones trained in class.
Finally, instructors shall explicitly teach students how to use
the tool and to interpret its automatic visualizations (in the
beginning and later on in the module, as needed) by, for
instance, making students run worked-out examples step-
by-step at their own pace and giving them feedback on the
examples and the corresponding step-wise animations.

It can be argued that the undergraduates who participated
in this study have the same background, since they are all
second year students of the PEIM program. But, the author
could not control for the membership of the students to each
semester. So, future implementations entailing automatic
visualizations of the execution of worked-out examples in
CS introductory modules shall provide further insight into
students’ background and characteristics. That is, qualitative
data shall be gathered on: (i) students’ overall demographics
(e.g., sex, age, and experience and efficacy with computers)
and programming experience; (ii) students’ perceptions and
attitudes towards CS and the program visualization tool
(e.g., satisfaction with the tool); and (iii) how students use
the tool. With this data, future studies may aid the case that
the effects reported here on students’ performance are from
the tool and not artifacts of the composition of the different
classes.

Future studies shall also use a larger population that will
help to further validate the significance of the results
obtained.

APPENDIX A: AN EXAMPLE OF A STANDARD PROGRAMMING

PROBLEM (TRANSLATED INTO ENGLISH)

Write a program that computes the average of three given
grades for a student.

APPENDIX B: AN EXAMPLE OF AN ALGORITHMIC SOLUTION

Version 1.1

inicio
variavel real nota1, nota2, nota3
variavel real soma, media

ler nota1, nota2, nota3

soma <- nota1 + nota2 + nota3
media <- soma / 3

escrever media

fim

Declaration of variables

Data input

Computation

Data output

ACKNOWLEDGMENT

The author thanks several anonymous reviewers for their
helpful comments and suggestions.

REFERENCES
[1] M. Barak, J. Harward, G. Kocur, and S. Lerman, “Transforming an

introductory programming course: from lectures to active learning via
wireless laptops,” Journal of Science Education and Technology, vol.
16, no. 4, pp. 325–336, 2007.

[2] M. Ben-Ari, R. Bednarik, R. Levy, G. Ebel, A. Moreno, N. Myller,
and E. Sutinen, “A decade of research and development on program
animation: the Jeliot experience,” Journal of Visual Languages and
Computing, vol. 22, no. 5, pp. 375–384, 2011.

[3] R. Ben-Bassat Levy, M. Ben-Ari, and P. Uronen, “The Jeliot 2000
program animation system,” Computers & Education, vol. 40, no. 1,
pp. 1–15, 2003.

[4] J. Bennedsen and C. Schulte, “BlueJ visual debugger for learning the
execution of object-oriented programs?,” ACM Transactions on
Computing Education, vol. 10, no. 2, pp. 8:1-8:22, 2010.

[5] R. Felder and R. Brent (2009). Active learning: an introduction. ASQ
Higher Education Brief [Online]. 2(4). Available:
http://www.asq.org/edu/2009/08/best-practices/active-learning-an-
introduction.%20felder.pdf

[6] A. Forte and M. Guzdial, “Motivation and nonmajors in computer
science: identifying discrete audiences for introductory courses,”
IEEE Transactions on Education, vol. 48, no. 2, pp. 248-253, 2005.

[7] P. Kirschner, J. Sweller, and R. Clark, “Why minimal guidance during
instruction does not work: an analysis of the failure of constructivist,
discovery, problem-based, experiential, and inquiry-based teaching,”
Educational Psychologist, vol. 41, no. 2, pp. 75-86, 2006.

[8] M. Linn and M. Clancy, “The case for case studies of programming
problems,” Communication of the ACM, vol. 35, no. 3, pp. 121-132,
1992.

[9] R. Lister, “After the gold rush: toward sustainable scholarship in
computing,” in Proc. 10th Conference on Australasian Computing
Education, Wollongong, 2008, pp. 3–17.

[10] A. Manso, C. Marques, and P. Dias, “Portugol IDE v3.x: a new
environment to teach and learn computer programming,” in Proc.
IEEE EDUCON Education Engineering, Madrid, 2010, pp. 1007–
1010.

[11] J. McConnell, “Active learning and its use in computer science,” in
Proc. 1st Conference on Integrating Technology into Computer
Science Education, Barcelona, 1996, pp. 52–54.

[12] M. Prince and R. Felder, “The Many Faces of Inductive Teaching and
Learning,” Journal of College Science Teaching, vol. 36, no. 5, pp.
14–20, 2007.

[13] M. Prince and R. Felder, “Inductive teaching and learning methods:
definitions, comparisons, and research bases,” Journal of Engr.
Education, vol. 95, no. 2, pp. 123–138, 2006.

[14] H. Ramadhan, F. Deek, and K. Shihab, “Incorporating software
visualization in the design of intelligent diagnosis systems for user
programming,” Artificial Intelligence Review, vol. 16, no. 1, pp. 61–
84, 2001.

[15] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching
programming: a review and discussion,” Computer Science
Education, vol. 13, no. 2, pp. 137–172, 2003.

[16] K. Smith, S. Sheppard, D. Johnson, and R. Johnson, “Pedagogies of
engagement: classroom-based practices,” Journal of. Engr.
Education, vol. 94, no. 1, pp. 87–101, 2005.

[17] P. Smith and G. Webb, “The efficacy of a low-level program
visualization tool for teaching programming concepts to novice C
programmers,” Journal of Educational Computing Research, vol. 22,
no. 2, pp. 187–215, 2000.

[18] J. Sweller and G. Cooper, “The use of worked examples as a
substitute for problem solving in learning algebra,” Cognition and
Instruction, vol. 2, no. 1, pp. 59-89, 1985.

[19] J. van Merriënboer, P. Kirschner, and L. Kester, “Taking the load off
a learner’s mind: instructional design for complex learning,”
Educational Psychologist, vol. 38, no. 1, pp. 5–13, 2003.

[20] M. Weimer, Learner-centered teaching. Five key changes to practice.
San Francisco, CA: Jossey-Bass, 2002.

[21] S. Wiedenbeck, “Novice/expert differences in programming skills,”
International. Journal of Man-Machine Studies, vol. 23, no. 4, pp.
383–390, 1985.

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

