
 

 
Abstract— Supplier selection possesses the need to evaluate 

multiple criteria incorporating vagueness and imprecision with 
the involvement of a group of experts, and is considered as a 
crucial multi-criteria group decision making problem. In this 
paper, a novel fuzzy multi-criteria group decision making 
approach integrating quality function deployment (QFD), 
fuzzy weighted average (FWA), and data envelopment analysis 
(DEA) is developed for supplier selection. The proposed 
methodology enables to consider the impacts of inner 
dependence among supplier assessment criteria. The upper 
and the lower bounds of the weights of supplier assessment 
criteria are identified by using FWA method that allows for the 
fusion of imprecise and subjective information expressed as 
linguistic variables. DEA is implemented for supplier selection 
utilizing the data from the house of quality (HOQ) and the 
weights of supplier assessment criteria obtained using FWA. 
The proposed decision making framework is illustrated using a 
data set from a previously reported supplier selection problem. 
The proposed approach is a sound and effective decision aid 
that considers qualitative as well as quantitative aspects, and 
thus improves the quality of complex supplier selection 
decisions.   

 
Index Terms—Data envelopment analysis, decision support 

systems, fuzzy weighted average, QFD, supplier selection. 
 

I. INTRODUCTION 

UPPLIER selection is considered as one of the essential 
issues encountered by operations and purchasing 

managers to sharpen the company’s competitive advantage. 
As organizations become more dependent on their suppliers, 
the consequences of poor decisions on the selection of 
individual suppliers and the determination of order 
quantities to be placed with the selected suppliers become 
more severe [1]. 

The classical multi-criteria decision making (MCDM) 
methods that consider deterministic or random processes 
cannot effectively deal with supplier selection problems 
since fuzziness, imprecision and interaction coexist in real-
world. In this paper, an integrated group decision making 
methodology is presented to rectify the problems 
encountered when using classical decision making methods 
in supplier selection. 
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Supplier selection is a popular area of research in 
purchasing with methodologies ranging from conceptual to 
empirical and modeling streams. Supplier selection 
decisions are complicated by the fact that various criteria 
must be considered in decision making process. Dickson [2] 
conducted one of the earliest works on supplier selection 
and identified 23 supplier attributes that managers consider 
when choosing a supplier.  

Most of the research on supplier selection focuses on the 
quantifiable aspects of the supplier selection decision such 
as cost, quality, and delivery reliability. However, as firms 
become involved in strategic partnerships with their 
suppliers, a new set of supplier selection criteria, which are 
difficult to quantify, needs to be considered. Fuzzy set 
theory is an effective tool to deal with uncertainty. In the 
literature, there are a number of studies that use different 
fuzzy decision making techniques to evaluate suppliers. 
Several authors have used fuzzy mathematical programming 
approaches ([3] - [5]). A number of studies have focused on 
the use of fuzzy multi-attribute decision making (MADM) 
techniques for supplier selection process ([6] - [8]). Lately, 
few researchers have employed the quality function 
deployment (QFD) in supplier selection ([9] - [11]). 

Data envelopment analysis (DEA) has been actively used 
in supplier evaluation and selection for more than a decade 
owing to its capability of handling multiple conflicting 
factors without the need of eliciting subjective importance 
weights from the decision-makers ([12]-[14]). One of the 
major limitations of the use of conventional DEA approach 
in supplier selection process is the sole consideration of 
cardinal data. Difficulty in predicting a number of factors 
considered in supplier selection demand imprecise data to 
be taken into account as well. Another major limitation is 
the poor discriminating power of DEA models resulting in a 
relatively high number of suppliers rated as efficient.  

Although previously reported studies developed 
approaches for supplier selection process, further studies are 
necessary to account for imprecise information regarding 
the importance of purchased product features, relationship 
between purchased product features and supplier assessment 
criteria, and dependencies between supplier assessment 
criteria.  

In this paper, a fuzzy multi-criteria group decision 
making approach based on QFD, fuzzy weighted average 
(FWA), and DEA is proposed. This method identifies how 
well each supplier attribute accomplishes meeting the 
requirements established for the product being purchased by 
constructing a house of quality, which enables the 
relationships among the purchased product features and 
supplier assessment criteria to be considered.  
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II. QUALITY FUNCTION DEPLOYMENT 

Quality function deployment is a customer-oriented 
design tool which focuses on developing a holistic systems 
approach to aid the planning and realization of products or 
services at a quality level that will meet or exceed customer 
expectations by bridging the communications gap between 
the customers and the design team [15]. QFD aims at 
delivering value by taking into account the customer needs 
and then deploying this information throughout the 
development process. The reported benefits of QFD include 
better products or services that are highly focused and 
responsive to the customer needs, developed in a shorter 
period of time with fewer resources.  

The key objective of QFD is to translate the desires of 
customers into design requirements, and subsequently into 
parts characteristics, process plans and production 
requirements. In order to establish these relationships, QFD 
usually requires four matrices, each corresponding to a stage 
of the product development cycle. These are product 
planning, part deployment, process planning, and 
production/operation planning matrices, respectively. The 
product planning matrix translates customer needs into 
design requirements; the part deployment matrix translates 
important design requirements into product/part 
characteristics; the process planning matrix translates 
important product/part characteristics into manufacturing 
operations; the production/operation planning matrix 
translates important manufacturing operations into day-to-
day operations and controls [16].  

In this paper, we focus on the first of the four matrices, 
also called the house of quality (HOQ). Relationships 
between customer needs (CNs) and design requirements are 
defined by answering a specific question corresponding to 
each cell in the HOQ. In order to incorporate the 
relationship between design requirements, pairwise 
comparisons are performed in the area referred as the “roof 
matrix”. 

III. FUZZY WEIGHTED AVERAGE 
 

We will consider the general fuzzy weighted average with 
n criteria. Let 
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Since jW
~

 and ijX
~

 are fuzzy numbers, the weighted 

average iY
~

 is also a fuzzy number. In this paper, the method 

proposed by Kao and Liu [17] is used for calculating fuzzy 
weighted average. Kao and Liu [17] approached the 
problem via mathematical programming technique and 
developed a pair of fractional programs to find the α-cut of 

iY
~

 based on the extension principle. An outline of the 

method is provided below. 

In order to find the membership function
iY  , one needs 

to find the right shape function and the left shape function 
of 

iY  , which is equivalent to finding the upper bound 
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It is evident that the maximum and minimum of iy  must 

occur at  UijX


 and  LijX


, respectively. Hence, the 

variable ijx  in the objective function of formulations (4) 

and (5) can be replaced by  UijX


 and  LijX


, 

respectively. Following the variable substitution of Charnes, 

Cooper and Rhodes [18], by letting 


 
n

j
jwt

1

1  and 

jj twv  , formulations (4) and (5) can be transformed to 

the following linear programs: 
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obtained from formulations (6) and (7). The membership 
function 

iY   can be constructed through enumerating 

different α values. 

IV. DATA ENVELOPMENT ANALYSIS 

Data envelopment analysis is a linear programming based 
decision technique designed specifically to measure relative 
efficiency using multiple inputs and outputs without a priori 
information regarding which inputs and outputs are the most 
important in determining an efficiency score. DEA 
considers n decision making units (DMUs) to be evaluated, 
where each DMU consumes varying amounts of m different 
inputs to produce s different outputs.  

The relative efficiency of a DMU is defined as the ratio 
of its total weighted output to its total weighted input. In 
mathematical programming terms, this ratio, which is to be 
maximized, forms the objective function for the particular 
DMU being evaluated. A set of normalizing constraints is 
required to reflect the condition that the output to input ratio 
of every DMU be less than or equal to unity. The 
mathematical programming problem is then represented as 
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where 
0jE  is the efficiency score of the evaluated DMU 

(j
0
), ru  is the weight assigned to output r, iv  is the weight 

assigned to input i, y
rj
 denotes amount of output r produced 

by the jth DMU, x
ij
 denotes amount of input i used by the jth 

DMU, and  is an infinitesimal positive number. A DMU 
attains a relative efficiency rating of 1 only when 
comparisons with other DMUs do not provide evidence of 
inefficiency in the use of any input or output. 

The fractional program is not used for actual computation 
of the efficiency scores due to its intractable nonlinear and 
nonconvex properties [18]. Rather, it is transformed to an 
ordinary linear program that is computed separately for each 
DMU, generating n sets of optimal weights. 

The original DEA models assume that inputs and outputs 
are indicated as crisp numbers. Over the past decade, a 
number of researchers have published on DEA models 
incorporating imprecise data. Kao and Liu [19] developed 
an –cut based approach to transform a fuzzy DEA model 
to a number of crisp DEA models. Since the efficiency 
values of DMUs are expressed by membership functions, a 
rank order of DMUs is obtained by employing fuzzy 
number ranking methods that may produce inconsistent 
outcomes. Despotis and Smirlis [20] proposed a DEA model 
dealing with exact and interval data. Their approach 
requires an increase in the number of variables by (m + s) (n 
– 1), for i = 1, …, m and r = 1, …, s, for each linear 
program. Moreover, generalizing their approach to fuzzy 
data would be problematic since it is more reasonable to 
evaluate DMUs using the same level of –cut for each 
linear program. Lertworasirikul et al. [21] have proposed a 
possibility approach for solving fuzzy DEA models. Due to 
its extremely permissive nature, the possibility approach has 
a low discriminating power which often results in several 
efficient DMUs at all possibility levels. 

In here, a pessimistic DEA formulation based on Karsak 
[22] that enables incorporating imprecise data is presented 
to address decision problems regarding the evaluation of 
relative efficiency of DMUs. Imprecision in inputs and 
outputs are taken into account using fuzzy data.  

Define  , ,ij ija ijb ijcx x x x , for 0
ija ijb ijcx x x    as 

the fuzzy input i used by the jth DMU, and 

 , ,rj rja rjb rjcy y y y  as the fuzzy output r produced by the 

jth DMU, where 0 rja rjb rjcy y y   . Let  Lijx


 and 

 Uijx


 denote the lower and upper bounds of the -cut of 

the membership function of ijx , and likewise,  L

rjy


 and 

 U

rjy


 denote the lower and upper bounds of the -cut of 

the membership function of rjy , respectively. Let i = vi·i, 

where 0  i  vi. Then,  iji

L

i
v x


  and  iji

U

i
v x


  can 

be represented as 

   L
i i ija i ijb ija

i i
v v x x xxij 

    , 

Proceedings of the World Congress on Engineering 2013 Vol I, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



 

   U
i i ijc i ijc ijb

i i
v v x x xxij 

    . 

Similarly, define r = ur·r, where 0  r  ur. Then, 
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Let  
0

L

E j  denote the lower bound of the -cut of the 

membership function of the efficiency value for the 
evaluated DMU (j0). Utilizing the substitutions given above, 
the pessimistic scenario DEA model incorporating fuzzy 
data can be written as follows: 

   0 0 00
max

L

r rrj a rj b rj a
r

y y yuE j     

subject to                      (9) 

 0 0 0
1i ij c i ij c ij b

i
v x x x      

   0 0 00 0 0
0r i ij c i ij c ij brrj a rj b rj a

r i

y y yu v x x x           

 
  00,  1,2,..., ;  

r rrjc rjc rjb
r

i ija i ijb ija
i

y y yu

j n j jv x x x





 

     




 

 

0,     1, , ;r r pu u r s r p   

0,     1, , ;r r pu u r s r p     

0,     1, ,rr r su      

0,      1, ,i i i mv      

0,           1, ,r r s     

0,           1, ,i i m     

0,      1, ,r r su      

0,      1, ,i i mv      

 

where, in addition to the earlier notation introduced for 
previous formulations, βr, γr  [0,1] represent the lower and 
upper bounds of the relative importance weights of output r, 
respectively, and they are normalized in a way that  
βp = γp = 1. 

V. FUZZY DECISION MAKING FRAMEWORK 

In this section, an integrated decision making approach 
that utilizes QFD, FWA, and DEA is developed to address 
the supplier selection problem. The proposed methodology 
considers the ambiguity resulting from imprecise statements 
in expressing relative importance of CNs, relationship 
scores between CNs and supplier attributes (SAs), degree of 
dependencies among SAs, and the ratings of each potential 
supplier with respect to each SA by using fuzzy set theory. 
The stepwise representation of the decision making 
framework is as follows: 

Step 1. Construct a decision-makers’ committee of Z experts 

 1,2,...,z Z . Identify the characteristics that the product 

being purchased must possess (CNs) in order to meet the 
company’s needs and the criteria relevant to supplier 
assessment (SAs). 

Step 2. Construct the decision matrices for each decision-
maker that denote the relative importance of CNs, and the 
fuzzy assessment to determine the CN-SA relationship 
scores.  

Step 3. Let the fuzzy value assigned as the relationship score 

between the lth CN  1,2,...,l L  and the kth SA 

 1,2,...,k K , and importance weight of the lth CN for the 

zth decision-maker be   , , ,klz klza klzb klzcx x x x  and 

 , ,lz lza lzb lzcw w w w , respectively. Compute the 

aggregated fuzzy assessment of the relationship scores 

between the kth SA and the lth CN  klx , and aggregated 

importance weight of the lth CN  lw  as follows: 

1

Z

kl z klz
z

x x


                                 (10) 

1

Z

l z lz
z

w w


                                      (11) 

where  0,1z   denotes the weight of the zth decision-

maker and 
1

1
Z

z
z

  . 

Step 4. Construct the inner dependence matrix among the 
SAs, and compute the original relationship measure between 

the kth SA and the lth CN, *
klX . Let kkD   denote the degree 

of dependence of the kth SA on the k'th SA. Then, according 
to Fung et al. [23], the original relationship measure 
between the kth SA and the lth CN should be rewritten as 

*

1

K

kl kk k l
k

X D x 


                         (12) 

where *
klX  is the actual relationship measure after 

consideration of the inner dependence among SAs. A design 
requirement has the strongest dependence on itself, i.e. kkD  

is assigned to be 1. 

Step 5. Calculate the upper and lower bounds of the weight 
for each SA by employing formulations (6) and (7). 

Step 6. Construct the decision matrices for each decision-
maker that denote the ratings of each potential supplier with 
respect to each SA. 
Step 7. Aggregate the ratings of suppliers using Eq. (10). 
Step 8. Construct the DEA models for supplier selection. 
The attributes that are to be minimized are viewed as inputs, 
whereas the ones to be maximized are considered as 
outputs. The upper and lower bounds of the weights for 
each SA calculated at Step 5 are used as weight restrictions 
in the DEA models. 
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Step 9. Determine the maximum feasible value for  , which 
can be computed by maximizing   subject to the constraint 
set of the respective DEA formulation for j = 1, …, n, and 

then by defining  max min jj  .  

Step 10. Compute the DEA efficiency scores for the 
suppliers by employing a pessimistic scenario DEA model. 
Select the supplier with an efficiency score of 1. 

VI. ILLUSTRATIVE SUPPLIER SELECTION EXAMPLE 

A supplier selection problem addressed in an earlier work 
by Bevilacqua et al. [9] is used to test the effectiveness of 
the proposed fuzzy MCDM framework.  The problem can 
be summarized as follows: 

The analysis is performed for the evaluation of ten clutch 
plate suppliers. There are six fundamental characteristics 
(CNs) required of products or services purchased from 
outside suppliers considered in this study. These can be 
listed as product conformity, cost, punctuality of deliveries, 
efficacy of corrective action, availability and customer 
support, and programming of deliveries. Seven criteria 
relevant to supplier assessment  are identified as 
“experience of the sector (EF)”, “capacity for innovation to 
follow up the customer’s evolution in terms of changes in its 
strategy and market (IN)”, “quality system certification 
(SQ)”, “flexibility of response to the customer’s requests 
(FL)”, “financial stability (FS)”, “ability to manage orders 
on-line (RR)”, and “geographical position (PG)”. The 
evaluation is performed by a committee of three decision-
makers. The data that are provided in the HOQ depicted in 
Figure 1 and in Table II consist of assessments of three 
decision-makers employing linguistic variables represented 

in Table I.  

TABLE I 
LINGUISTIC TERM SET [9] 

Very low (VL) (0, 1, 2) 
Low (L) (2, 3, 4) 
Medium (M) (4, 5, 6) 
High (H) (6, 7, 8) 
Very high (VH) (8, 9, 10) 

The aggregated importance of each CN and the 
aggregated impact of each SA on each CN are obtained by 
using Eqs. (10) and (11). As equal weights are assigned to 
each decision-maker in our case, we set 

31321  . The aggregated impact of each SA 

on each CN is equivalent to the original relationship 
measure between SAs and CNs since inner dependencies 
among the SAs do not exist in Bevilacqua et al. [9].  

The upper and lower bounds of the weight of SAs for  
α = 0 are calculated through formulations (6) and (7) as 
represented in Table III. Since all of the SAs are to be 
maximized, they are considered as outputs in the DEA 
formulation, and thus a dummy input with a constant value 
of 1 is introduced. Using the pertinent data given in Tables 
II and III,  is computed as 0.0171 employing Step 9 of the 
proposed algorithm. With  = 0.0171, the efficiency scores 
of suppliers are calculated using formulation (9). The 
supplier efficiency scores are provided in Table IV. Supplier 
5 (S5) is the only efficient alternative among the candidate 
suppliers, and thus considered as the most suitable. 

TABLE II 
RATINGS OF SUPPLIERS WITH RESPECT TO SAs [9] 

 Suppliers          

SAs S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

EF (M,L,M) (H,H,H) (L,M,VL) (M,M,L) (VH,VH,VH) (H,VH,VH) (VL,L,VL) (L,L,H) (M,M,M) (H,H,H) 

IN (L,M,L) (H,M,M) (VH,H,VH) (H,H,H) (VH,VH,VH) (L,VL,L) (M,M,M) (M,H,M) (H,H,H) (VL,L,VL)

SQ (M,L,M) (M,M,H) (VH,VH,H) (VL,VL,L) (VL,VL,VL) (M,M,L) (VH,VH,VH) (H,H,H) (M,M,L) (M,M,H) 

FL (M,M,H) (VH,VH,H) (L,L,L) (VL,VL,L) (H,H,H) (M,M,M) (H,VH,VH) (VL,VL,L) (L,H,L) (L,L,VL) 

FS (M,M,M) (VH,VH,VH) (L,L,L) (H,H,H) (M,M,L) (H,H,VH) (L,L,L) (H,H,H) (VL,VL,VL) (VH,VH,H)

RR (VL,L,L) (VL,L,VL) (VL,L,L) (VL,VL,VL) (L,L,M) (VL,VL,VL) (M,M,H) (VH,VH,VH) (VL,VL,L) (VL,VL,M)

PG (VL,M,L) (L,L,M) (VL,L,VL) (VH,H,H) (VL,VL,M) (VL,VL,L) (L,M,L) (VL,VL,L) (VL,VL,L) (VL,VL,M)

 

EF IN SQ FL FS RR PG 

Importance 
of 

Customer 
Needs 

Conformity (VH,H,H) (VH,VH,VH) (L,VL,VL) (M,L,L) (L,VL,VL) (H,H,H) (L,L,L) (VH,VH,H)

Cost (M,M,L) (H,H,M) (VH,VH,VH) (L,L,L) (M,M,M) (L,L,VL) (M,M,H) (M,L,M) 

Punctuality (H,M,H) (M,M,M) (L,L,L) (H,VH,VH) (L,L,L) (VH,VH,VH) (H,H,H) (H,M,M) 

Efficacy (H,H,VH) (VH,VH,VH) (M,L,L) (H,VH,VH) (L,L,L) (M,VL,H) (L,VL,VL) (M,M,L) 

Programming (H,H,H) (H,H,M) (L,L,L) (M,M,M) (L,VL,VL) (H,H,H) (VL,VL,VL) (L,VL,L) 

Availability (H,M,H) (VH,VH,H) (VL,L,L) (H,VH,VH) (M,M,M) (H,H,VH) (H,H,VH) (M,L,L) 

 Fig. 1 First house of quality for the supplier selection problem. 
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TABLE III 

UPPER AND LOWER BOUNDS OF THE WEIGHT OF SAs FOR α = 0 

EF 
 LEFY   5.488 

 UEFY   7.861 

IN 
 LINY   6.201 

 UINY   8.806 

SQ 
 LSQY


 2.217 

 USQY


 4.919 

FL 
 LFLY   4.434 

 UFLY   7.364 

FS 
 LFSY   1.817 

 UFSY   4.317 

RR 
 LRRY   4.95 

 URRY   7.739 

PG 
 LPGY   2.915 

 UPGY   5.938 

TABLE IV 
EFFICIENCY VALUES FOR THE SUPPLIERS 

Suppliers Efficiency values 

S1 0.679 
S2 0.982 
S3 0.746 
S4 0.727 
S5 1.000 
S6 0.726 
S7 0.860 
S8 0.892 
S9 0.673 

S10 0.677 

VII. CONCLUSION 

In this study, a decision methodology is presented that 
allows for a tradeoff among all types of information within 
the supply chain through integrating QFD planning, FWA 
method that identifies the upper and lower bounds of the 
weights of supplier selection criteria, and DEA. 

The proposed methodology possesses a number of 
advantages compared to other MCDM methods presented in 
the supplier selection literature. First, the proposed approach 
enables to incorporate imprecise data into the analysis using 
linguistic variables. Second, it is apt to consider the impacts 
of relationships among the purchased product features and 
supplier selection criteria, and also the inner dependence 
among supplier selection criteria. Third, the proposed 
method uses FWA method, which rectifies the problem of 
loss of information that occurs when integrating imprecise 
and subjective information, to calculate the upper and lower 
bounds of the weights of supplier selection criteria. Fourth, 
DEA circumvents the possibility of selecting a suboptimal 

supplier. Finally, the decision approach presented in here 
avoids the troublesome fuzzy number ranking process, 
which may yield inconsistent results for different ranking 
methods. The implementation of the proposed approach in 
supplier selection problems using real-world data will be the 
subject of future research. 
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