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Abstract—A hybrid approach is presented here, based on the 

design of experiments (DOE) methodology and on the artificial 

neural networks (ANNs) for the modeling of the three 

component cutting force system in longitudinal turning of AISI 

D6 tool steel specimens. The selected inputs of the ANN model 

are the cutting speed, the feed rate and the depth of cut. The 

outputs are the three components of the cutting force, namely 

the feed force (Fz), the radial thrust force (Fx) and the 

tangential (main) cutting force (Fy). Twenty seven experiments 

were conducted having all different combinations of cutting 

parameter values. The three cutting parameters have three 

levels each one. The neural network toolbox of Matlab 

software was used to create, train, and test the ANN. A feed-

forward back-propagation neural network (FFBP-NN) was 

selected to simulate the data. The results obtained indicate that 

the proposed modeling approach could be effectively used to 

predict the three component cutting force system during 

turning of AISI D6 tool steel, thus supporting decision making 

during process planning and providing a possible way to avoid 

time- and money-consuming experiments. 

 
Index Terms—neural networks, turning, cutting forces, D6 

tool steel 

 

I. INTRODUCTION 

urning is a type of material processing operation where a 

cutting tool is used to remove unwanted material to 

produce a desired product and it is generally performed on 

either conventional or computer numerically controlled 

(CNC) lathes. In recent decades, considerable improvements 

were achieved in turning, enhancing machining of difficult-

to-cut materials and resulting in improved machinability 

(better surface finish and lower cutting forces) [1]. 

 

 
Manuscript received November 16, 2011; revised March 14, 2013. 

N. M. Vaxevanidis is with the Department of Mechanical Engineering 

Educators, School of Pedagogical & Technological Education (ASPETE), 

N. Heraklion, Athens, Greece (e-mail: vaxev@aspete.gr) 

J. D. Kechagias is with the Department of Mechanical Engineering, 

Technological Educational Institute of Larissa, Larissa, 41110 Greece 

(phone: 0030-2410-684322; e-mail: jkechag@teilar.gr). 

N. A. Fountas is with the Department of Mechanical Engineering 

Educators, School of Pedagogical & Technological Education (ASPETE), 

N. Heraklion, Athens, Greece (e-mail: n.fountas@webmail.aspete.gr) 

D. E. Manolakos is with the School of Mechanical Engineering, 

National Technical University of Athens (NTUA) Greece (e-mail: 

manolako@central.ntua.gr) 

 

Cutting force estimation and modeling are of major 

importance for the metal cutting theory. There is a great 

number of inter-related parameters that affect the cutting 

forces, such as operational parameters, cutting tool 

geometrical characteristics and coatings, etc; therefore the 

development of a proper model is a quite difficult task [2]. 

Although that an enormous amount of related data is 

available in machining handbooks, the majority of these data 

attempt to define the relationship between only a few of the 

various cutting parameters whilst keeping the other 

parameters fixed [3]. 

ANNs are one of the most powerful computer modeling 

techniques, currently being used in many fields of 

engineering for modeling complex relationships which are 

difficult to describe with physical models. ANNs have been 

extensively applied in modeling many metal-cutting 

operations either conventional (turning, milling, grinding) or 

unconventional (EDM, AWJM, etc) [3-8]. 

This paper aims at developing a model for cutting force 

estimation and optimization based on ANNs. 

II. ARTIFICIAL NEURAL NETWORKS OVERVIEW REVIEW STAGE 

Τhe origin, the development and the mathematical details 

of implementation of the ANNs can be found in a number of 

excellent reference works/textbooks, see for example [9]; 

therefore they are not discussed in the following sections. 

III. EXPERIMENTAL PROCEDURES 

The experimental procedure was designed using Taguchi 

method [10], which uses an orthogonal array to study the 

entire parametric space with performing only a limited 

number of experiments. Α three parameter design was 

selected with each parameter having three levels (Table I). 

The standard L27 (3
13

) orthogonal array was used (Table II) 

[10]. Note, that the selection of L27 was done by taking into 

account preliminary experimentation in which strong 

interactions among cutting parameters were noticed. 

The three turning parameters (factors) considered in this 

study are: cutting speed (S, m/min), feed rate (f, mm/rev) 

and depth of cut (a, mm). The kinematics of the longitudinal  

turning process is illustrated in Fig.1. A 3D cutting force 

system was considered according to standard theory of 

oblique cutting [2].  
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Columns 1, 2, and 5 of Table II are assigned to cutting speed (m/min), feed rate (mm/rev), and depth of cut (mm), 

while the rest columns left vacant. The selection of this 

orthogonal array have been done taking in account previous 

preliminary experimental work that shows strong 

interactions between cutting parameters. 

Turning experiments were conducted using a Kern Model 

D18L conventional lathe. A SECO
®
 coated tool insert, 

coded as TNMG 160404 – MF2 with TP 2000 coated grade, 

was used during the present series of experiments. The tool 

has triangular shape with cutting edge angle, Kr 55
ο
. Note 

that the accurate determination of cutting forces is essential 

for processes performance, for the evaluation of machining 

accuracy as well as for tool wear studies and for developing 

machinability criteria [11]. 

The test material was a tool steel supplied from 

Uddelholm Greece s.a with commercial name Sverker3
®
. It 

is a high-carbon (2.05%), high-chromium (12.7%) tool steel 

alloyed with tungsten (1.1%) identical to AISI D6 grade, 

with hardness 240 HB. The test specimens were in the form 

of bars; 43 mm in diameter and a tailstock was used. 

Cutting force components were measured using a three-

TABLE I 

PARAMETER DESIGN. 

 Parameters Units 
Levels 

1 2 3 

A Cutting speed (S) m/min 115 81 57 

B Feed rate (f) mm/rev 0.15 0.1 0.06 

C Dept of cut (a) mm 1.5 1 0.5 

 

TABLE II 

L27(3
13) ORTHOGONAL ARRAY [10]. 

 Column 

Exp. 

No. 
1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 2 2 2 2 2 2 2 2 2 

3 1 1 1 1 3 3 3 3 3 3 3 3 3 

4 1 2 2 2 1 1 1 2 2 2 3 3 3 

5 1 2 2 2 2 2 2 3 3 3 1 1 1 

6 1 2 2 2 3 3 3 1 1 1 2 2 2 

7 1 3 3 3 1 1 1 3 3 3 2 2 2 

8 1 3 3 3 2 2 2 1 1 1 3 3 3 

9 1 3 3 3 3 3 3 2 2 2 1 1 1 

10 2 1 2 3 1 2 3 1 2 3 1 2 3 

11 2 1 2 3 2 3 1 2 3 1 2 3 1 

12 2 1 2 3 3 1 2 3 1 2 3 1 2 

13 2 2 3 1 1 2 3 2 3 1 3 1 2 

14 2 2 3 1 2 3 1 3 1 2 1 2 3 

15 2 2 3 1 3 1 2 1 2 3 2 3 1 

16 2 3 1 2 1 2 3 3 1 2 2 3 1 

17 2 3 1 2 2 3 1 1 2 3 3 1 2 

18 2 3 1 2 3 1 2 2 3 1 1 2 3 

19 3 1 3 2 1 3 2 1 3 2 1 3 2 

20 3 1 3 2 2 1 3 2 1 3 2 1 3 

21 3 1 3 2 3 2 1 3 2 1 3 2 1 

22 3 2 1 3 1 3 2 2 1 3 3 2 1 

23 3 2 1 3 2 1 3 3 2 1 1 3 2 

24 3 2 1 3 3 2 1 1 3 2 2 1 3 

25 3 3 2 1 1 3 2 3 2 1 2 1 3 

26 3 3 2 1 2 1 3 1 3 2 3 2 1 

27 3 3 2 1 3 2 1 2 1 3 1 3 2 

 

TABLE III 

PROCESS PARAMETERS AND EXPERIMENTAL RESULTS. 

 
S 

(m/min) 

f 

(mm/rev) 

a 

(mm) 

Fz 

(N) 

Fx 

(N) 

Fy 

(N) 

1 115 0.15 1.5 314 172 536 

2 115 0.15 1 180 132 320 

3 115 0.15 0.5 58 66 136 

4 115 0.1 1.5 206 116 344 

5 115 0.1 1 100 84 184 

6 115 0.1 0.5 24 36 56 

7 115 0.06 1.5 180 90 256 

8 115 0.06 1 88 68 160 

9 115 0.06 0.5 32 44 138 

10 81 0.06 1.5 190 112 284 

11 81 0.06 1 116 54 184 

12 81 0.06 0.5 74 46 72 

13 81 0.15 1.5 330 184 536 

14 81 0.15 1 190 152 364 

15 81 0.15 0.5 64 86 152 

16 81 0.1 1.5 272 144 428 

17 81 0.1 1 164 112 272 

18 81 0.1 0.5 46 60 96 

19 57 0.1 1.5 298 152 452 

20 57 0.1 1 176 122 246 

21 57 0.1 0.5 54 62 112 

22 57 0.15 1.5 364 202 584 

23 57 0.15 1 226 170 376 

24 57 0.15 0.5 69 94 146 

25 57 0.06 1.5 218 84 260 

26 57 0.06 1 126 80 188 

27 57 0.06 0.5 38 44 68 

 

 
 

Fig. 1.  Longitudinal turning process [2].  
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component piezo-electric dynamometer (Kistler


 model 

9257). The output from the dynamometer is amplified 

through a charge amplifier (Kistler


 model 5015A). The 

three components of cutting forces namely the feed force 

(Fz), the radial thrust force (Fx) and the tangential cutting 

force (Fy) were monitored. The obtained results for the 

responses (Fz, Fx, Fy) are presented in Table III. 

Known for its capabilities on establishing neural network 

models, MATLAB
®
 with associate toolboxes [12] was used 

for coding the algorithm. 

IV. NEURAL NETWORK’S ARCHITECTURE 

Within the frame of the present modelling work an ANN 

was developed in order to predict the three cutting force 

components (Fz, Fx, Fy) during longitudinal turning of AISI 

D6 tool steel. The three main cutting variables (S, f, a) were 

used as input parameters of the ANN model; see Fig.2. 

The 27 experimental data samples (Table III), were 

separated into three groups, namely the training, the 

validation and the testing samples. Training samples are 

presented to the network during training and the network is 

adjusted according to its error. Validation samples are used 

to measure network generalization and to halt training when 

generalization stops improving. Testing samples have no 

effect on training and so provide an independent measure of 

network performance during and after training (confirmation 

runs); see [7, 13-15]. 

In general, a standard procedure for calculating the proper 

number of hidden layers and neurons does not exist. For 

complicated systems the theorem of Kolmogorov or the 

Widrow rule can be used for calculating the number of 

hidden neurons [9]. In this work, the feed-forward with 

back-propagation learning (FFBP) architecture has been 

selected to model the cutting forces. These types of networks 

have an input layer of X inputs, one or more hidden layers 

with several neurons and an output layer of Y outputs. In the 

selected ANN, the transfer function of the hidden layer is the 

hyperbolic tangent sigmoid, while for the output layer a 

linear transfer function was used. The input vector consists 

of the three process parameters of Table III. The output 

layer consists of the performance measures, namely the Fz, 

Fx, and Fy cutting forces. Natural logarithm had been 

performed on output data in order to improve the modeling 

procedure [19]; see also Fig. 2. Note, also, that cutting speed 

was divided by 100 for the same reason. 

According to ANN theory, FFBP-NNs with one hidden 

layer are the most appropriate to model mapping between 

process parameters and performance measures in 

engineering problems [16]. 

In the present work, five trials using FFBP-NNs with one 

hidden layer were tested having 5, 6, 7, 8, and 9 neurons 

each; see Fig. 2. This one that has seven neurons on the 

hidden layer gave the best performance as indicated from the 

results tabulated in Table IV. 

The one-hidden-layer seven-neurons FFBB-NN was 

trained using the Levenberg-Marquardt algorithm 

(TRAINLM) and mean square error (MSE) used as 

objective function. The data used were randomly divided 

into three subsets, namely the training, the validation and the 

testing samples. 

Back-propagation ANNs are prone to the overtraining 

TABLE IV 

BEST PERFORMANCE OF ANN ARCHITECTURE. 

 
ANN Architecture 

3x5x3 3x6x3 3x7x3 3x8x3 3x9x3 

Training 0.996 0.997 0.998 0.999 0.999 

Validation 0.828 0.929 0.978 0.855 0.498 

Test 0.936 0.936 0.912 0.969 0.746 

All 0.941 0.968 0.974 0.954 0.771 

Best val. perf. 0.207 0.049 0.024 0.092 0.411 

epoch 21 6 10 5 4 

 

 
 

Fig. 3.  Performance and training state. 

 

 
 

Fig. 2. The selected ANN architecture (feed-forward with back-

propagation learning). 
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problem that could limit their generalization capability [17]. 

Overtraining usually occurs in ANNs with many degrees of 

freedom [18]; after a number of learning loops, in which the 

performance of the training data set increases, while the 

performance of the validation data set decreases. 

Mean Squared Error (MSE) is the average squared 

difference between network output values and target values. 

Lower values are better. Zero means no error. The best 

validation performance is equal to 0.0244 at epoch 10; see 

Fig. 3. 

Another performance measure for the network efficiency 

is the regression (R); see Fig. 4. Regression values measure 

the correlation between output values and targets. The 

acquired results show a good correlation between output 

values and targets during training (R=0.998), validation 

(R=0.978) and testing procedure (R=0.912). 

The mathematical relation of the input parameters to the 

output parameter is presented in the following formula: 























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


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, 211tan2purelin =y  (1) 

where: 

y: is the output value. 

S: is the number of hidden neurons. 

X: is the number of inputs. 

w1: is the vector of weights between the input and the 

hidden layer. The size of w1 is SX and w1i,j is the weight 

of the i neuron for the j input.  

w2: is the vector of weights from the hidden layer to the 

output. The size of w2 is S1 and w2i is the weight of the i 

neuron to the output value. 

b1: is the vector of biases of the neurons in the hidden 

layer. The size of b1 is S1 and b1i is the bias of the i 

neuron. 

b2: is the bias of the output neuron. 

purelin: is the linear transfer function and purelin(x) = x 

tansig: is the hyperbolic tangent sigmoid function and 

tansig(x) = 
 

1
1

2
2


  xe

 

 

The weights and biases of Eq. 1 were calculated during 

the learning phase of the ANN, using the experimental data 

available (Table III). 

The trained ANN model can be used for the optimization 

of the cutting parameters during longitudinal turning of an 

AISI D6 tool steel. This can be done by testing the behavior 

of the response variables (three cutting force components) 

when varying the values of cutting speed (S), feed rate (f), 

and depth of cut (a). 

 

 

 

 

 

 

Fig. 5.  Surface response of cutting force Fy for depth of cut, a= (0.5, 1; 

1.5) mm and Kr=55o. 

 

 
 

Fig. 4.  Regression plots. 
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An example is presented in Fig. 5 where the surface 

response of cutting force Fy is plotted in relation with 

cutting speed and feed rate for three different values of depth 

of cut, a (0.5, 1, and 1.5 mm). It can be concluded that when 

the feed rate or the depth of cut is increased, the Fy is 

increased, too. It can be also concluded that the increase of 

the cutting speed affects the least, the cutting force Fy. 

These results are in accordance with the theory of metal 

cutting [2]. 

V. NEURAL NETWORK’S IMPLEMENTATION 

A FFBP-NN model was built to estimate the three cutting 

forces (Fz, Fx, and Fy) response according to the cutting 

speed (S), feed rate (f), and depth of cut (a) during the 

longitudinal turning of AISI D6 tool steel specimens. 

 

The performance of the network was found to be efficient 

providing very good correlation between outputs and targets 

during training (R=0.999), validation (R=0.953) and testing 

procedure (R=0.914). 

Multi-parameter investigation of the process according to 

other quality indicators will be studied and analyzed in a 

future work. 

VI. CONCLUSIONS 

Cutting force calculation and modeling are major 

concerns in metal cutting theory. The accurate determination 

of cutting forces is essential for process performance and for 

developing machinability criteria. For the modeling of the 

cutting forces in longitudinal turning of AISI D6 tool steel 

grade various artificial neural networks were developed and 

tested. The suggested neural networks were trained with 

experimental data acquired from actual experiments with the 

neural network toolbox of Matlab®. The best performance 

was obtained from the ANN with FFBP architecture, one 

hidden layer and seven neurons on the hidden layer. 

The results obtained indicate that the proposed modeling 

approach could be effectively used to predict the three 

component cutting force system during turning of AISI D6 

tool steel, thus supporting decision making during process 

planning and providing a possible way to avoid time- and 

money-consuming experiments. 
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