
 

  
Abstract—The problem of adaptive stochastic airline seat 

inventory control lies at the heart of airline revenue 
management. This problem concerns the allocation of the finite 
seat inventory to the stochastic customer demand that occurs 
over time before the flight is scheduled to depart. The objective 
is to find the right combination of customers of various fare 
classes on the flight such that revenue is maximized. In this 
paper, the unbiased static and dynamic policies of stochastic 
airline seat inventory control (airline booking) are developed 
under parametric uncertainty of underlying models, which are 
not necessarily alternative.  For the sake of simplicity, but 
without loss of generality, we consider (for illustration) the case 
of nonstop flights with two fare classes. The system developed is 
able to recognize a situation characterized by the number of 
reservations made by customers of the above fare classes at 
certain moment of time before departure. The proposed policies 
of the airline seat inventory control are based on the use of 
order statistics of cumulative customer demand, which have 
such properties as bivariate dependence and conditional 
predictability. Dynamic adaptation of the system to airline 
customer demand is carried out via the bivariate dependence of 
order statistics of cumulative customer demand. Dynamic 
optimization of the airline seat allocation is carried out via the 
conditional predictability of order statistics.  The system makes 
on-line decisions as to whether to accept or reject any customer 
request using established decision rules based on order 
statistics of the current cumulative customer demand. The 
computer simulation results are promising. 
 

Index Terms—Airline booking, dynamic adaptation and 
optimization, stochastic demand    

I. INTRODUCTION 

ASSENGER reservation systems have evolved from low 
level inventory control processes to major strategic 

information systems. Today, airlines and other transportation 
companies view revenue management systems and related 
information technologies as critical determinants of future 
success. Indeed, expectations of revenue gains that are 
possible with expanded revenue management capabilities are 
now driving the acquisition of new information technology. 
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Each advance in information technology creates an 
opportunity for more comprehensive reservations control 
and greater integration with other important transportation 
planning functions. It is common practice for airlines to sell 
a pool of identical seats at different prices according to 
different booking classes to improve revenues in a very 
competitive market. In other words, airlines sell the same 
seat at different prices according to different types of 
travelers (first class, business and economy) and other 
conditions. The question then arises whether to offer seats at 
a relatively low price at a given time with a given number of 
seats remaining or to wait for the possible arrival of a higher 
paying customer. Assigning seats in the same compartment 
to different fare classes of customers in order to improve 
revenues is a major problem of airline seat inventory 
allocation. This problem has been considered in numerous 
papers. For details, the reader is referred to a review of yield 
management, as well as perishable asset revenue 
management, by Weatherford et al. [1], and a review of 
relevant mathematical models by Belobaba [2].  

 This paper deals with the airline seat allocation problem 
when customers for different fare levels are booked into a 
common seating pool in the aircraft. The following 
assumptions are made: (1) single-leg flight: bookings are 
made on the basis of a single departure and landing; no 
allowance is made for the possibility that bookings may be 
part of larger trip itineraries, (2) independent demands: the 
demands for different fare classes are stochastically 
independent, (3) low before high demands: the lowest fare 
reservations requests arrive first, followed by the next 
lowest, etc., (4) no cancellations: cancellations, no-shows 
and overbooking are not considered, (5) nested classes: any 
fare class can be booked into seats not taken by bookings in 
lower fare classes, (6) fare classes: the business and 
economy fare classes are considered. 

The first purpose of this paper is to present the innovative 
information technologies for constructing the unbiased static 
and dynamic policies of the airline seat inventory allocation 
on the basis of the ‘unbiasedness performance index’. The 
static and dynamic policies (unbiased) are more efficient 
(from the point of view of airline revenue management) as 
compared with the policies, where the unknown parameters 
of the airline customer demand models are estimated and 
then treated as if they were the true values. At the initial 
stage of airline booking it may be used the static policy of 
seat inventory allocation, and at the fundamental stage may 
be used the dynamic policy. 

The second purpose of this paper is to introduce the idea 
of prediction of a future cumulative customer demand for the 
seats on a flight via the order statistics from the underlying 
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distribution, where only the functional form of the 
distribution is specified, but some or all of its parameters are 
unspecified. This idea allows one to use the technique of 
invariant embedding of sample statistics in a performance 
index in order to eliminate the unknown parameters from the 
problem [3-5]. The technique represents a simple and 
computationally attractive statistical method based on the 
constructive use of the invariance principle in mathematical 
statistics. Unlike the Bayesian approach, an invariant 
embedding technique is independent of the choice of priors, 
i.e., subjectivity of investigator is eliminated from the 
problem. It allows one to find the improved invariant 
statistical decision rules, which have smaller risk than any of 
the well-known traditional statistical decision rules, and to 
use the previous and current sample data as completely as 
possible.  

II.  STATE-OF-THE-ART AND PROGRESS BEYOND 

Airline seat allocation is a very profitable tool in the 
airline industry. A major problem of airline seat allocation is 
to sell the same seat at different prices according to different 
types of travelers (first class, business and economy) and 
other conditions in order to improve revenues. This problem 
has been considered in numerous papers. Littlewood [6] was 
the first to propose a solution method of the airline seat 
allocation problem for a single-leg flight with two fare 
classes. The idea of his scheme is to equate the marginal 
revenues in each of the two fare classes. He suggests closing 
down the low fare class when the certain revenue from 
selling low fare seat is exceeded by the expected revenue of 
selling the same seat at the higher fare. That is, low fare 
booking requests should be accepted as long as 
 

{ }, Pr 1112 uYcc >≥  (1) 
 

where c1 and c2 are the high and low fare levels respectively, 
Y1 denotes the demand for the high fare (or business) class, 
u1 is the number of seats to protect for the high fare class 
and Pr{Y1>u1} is the probability of selling more than u1 
protected seats to high fare class customers. The smallest 
value of u1 that satisfies the above condition is the number of 
seats to protect for the high fare class, and is known as the 
protection level of the high fare class customers. The 
concept of determining a protection level for the high fare 
class can also be seen as setting a booking limit, a maximum 
number of bookings, for the low fare class. Both concepts 
restrict the number of bookings for the low fare class in 
order to accept bookings for the high fare class.   

It should be remarked that there is no protection level for 
the low fare (or economy) class; u2 is the booking limit, or 
number of seats available, for the low fare class; the low fare 
class is open as long as the number of bookings in this class 
remains less than this limit. Thus, (u1+u2) is the booking 
limit or number of seats available for the high fare class at 
time.  The high fare class is open as long as the number of 
bookings in this and low classes remain less than this limit.   

Richter [7] gave a marginal analysis, which proved that 
(1) gives an optimal allocation (assuming certain continuity 
conditions). Optimal policies for more than two classes have 
been presented independently by Curry [8], Wollmer [9], 

Brumelle & McGill [10], and Nechval et al. [11]. 

III.  AIRLINE BOOKING POLICIES KNOWN FROM PRACTICE  

A. Static Airline Booking Policy under Certainty 

It will be noted that (1) represents the static policy of 
airline seat allocation (or airline booking) under complete 
information. If Fθ , the probability distribution function of Y1 

with the parameter θ  (in general, vector), is continuous and 
strictly increasing, the definition (1) of u1 is equivalent to 
 

) )((arg 11 γθ == uFu
  

(2) 

where   
 ,/ 12 cc=γ  (3) 

 

 ).( 1 )( 11 uFuF θθ −=  (4) 

B. Static Airline Booking Policy under Uncertainty 

In practice, under parametric uncertainty, i.e. when the 
parameter θ  is unknown, the performance index, 
 

,)( 1 γθ =uF)   (5) 
 

is usually used to construct the static policy given by 
 

),)(( arg 11 γθ == uFu )

    
(6)

 
 

whereθ
)

represents the maximum likelihood estimator of θ. 
The performance index (5) is named as ‘maximum 
likelihood performance index’. The static policy (6) based 
on (5) is named as ‘static maximum likelihood airline 
booking policy’. 

C. Dynamic Airline Booking Policy 

The static policy of airline booking is optimal as long as 
no change in the probability distributions of the customer 
demand is foreseen. However, information on the actual 
customer demand process can reduce the uncertainty 
associated with the estimates of demand. Hence, repetitive 
use of a static policy over the booking period, based on the 
most recent demand and capacity information, is the general 
way to proceed. 

IV.  AIRLINE BOOKING POLICIES PROPOSED IN THE PAPER  

A. Static Airline Booking Policy under Uncertainty 

This policy is based on the performance index,  
 

 ,} )({ 1 γθθ =uFE  (7) 
 

which takes into account (2) and the previous data of 
cumulative customer demand Y1 for the seats on a flight. It 
allows one to construct the static unbiased airline booking 
policy given by 
 

 
),} )({(arg 1

)unb(
1 γθθ == uFEu

 
(8) 

 

where ),(11 θ
)

uu ≡ θ
)

represents either the maximum 

likelihood estimator of θ or sufficient statistic S for θ, i.e., 
).(11 Suu ≡  The performance index (7) is named as 

‘unbiasedness performance index’. The static policy (8), 
which is based on (7), is named as ‘static unbiased airline 
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booking policy’. 
The relative bias of the static airline booking policy is 

given by 
 

 %.100
|} )({|

)( 1
1 γ

γθθ −= uFE
ur  (9) 

B. Dynamic Airline Booking Policy under Certainty  

 In this section, we consider a flight for a single departure 
date with m predefined reading dates at which the dynamic 
policy is to be updated, i.e., the booking period before 
departure is divided into m readings periods: (0, τ1], (τ1, τ2], 
…, (τm-1, τm]  determined by the m reading dates: τ1, τ2, …, 
τm. These reading dates are indexed in increasing order: 
0<τ1<τ2< ⋅⋅⋅ <τm, where (τm-1, τm] denotes the reading period 
immediately preceding departure, and τm is at departure. 
Typically, the reading periods that are closer to departure 
cover much shorter periods of time than those further from 
departure. For example, the reading period immediately 
preceding departure may cover 1 day whereas the reading 
period 1-month from departure may cover 1 week. 

Let us suppose that the cumulative passenger demand for 
the high fare class at the kth reading date (time τk, 1≤k≤m)  is 
Y1k representing the kth order statistic from the underlying 
distribution with the probability distribution function Gθ 

(y1k), where θ is a parameter (in general, vector). In other 
words, Y1k represents the number of seats sold for the 
customers of the high fare class at the kth reading date. We 
assume that the cumulative passenger demands for the high 
and low fare classes are stochastically independent. Each 
booking of a seat of the high fare class generates average 
revenue of c1. Each booking of a seat of the low fare class 
generates average revenue of c2, where c2<c1. Let u1k be an 
individual protection level for the high fare class at time τk 
(the kth reading date). This many seats are protected for the 
high fare class from the low fare class. There is no 
protection level for the low fare class; u2k is the booking 
limit for the low fare class at time τk; the low fare class is 
open as long as the number of bookings in this class remains 
less than this limit. Thus, (u1k+u2k) is the booking limit for 
the high fare class at time τk.  The high fare class is open as 
long as the number of bookings in this and low classes 
remain less than this limit. The maximum number of seats 
that may be booked by fare classes in the next at time τk 

prior to flight departure is the number of unsold seats o

ku . 

Under the complete information, the dynamic airline 
booking policy is given by 
 

 
,1 ..., ,2 ,1   ), )|((arg 111 −=== mkyuGu kkk γθ  

(10) 
 

where 
 

    
),|( 1 )|( 1111 kkkk yuGyuG θθ −=

 
(11) 

 

)|( 11 kk yuGθ  represents the conditional probability 

distribution function of the mth order statistic Y1m. The 
number of unsold seats protected for the high fare class from 
the low fare class in the next at time τk prior to flight 

departure is the number of unsold seats, o

ku1 , which is given 

by 

 ). ,min( 111 kkkk yuuu −= oo  (12) 

C. Dynamic Airline Booking Policy under Uncertainty  

Under the parametric uncertainty, the dynamic unbiased 
airline booking policy is given by 

 

,1 ..., ,2 ,1   ), )}|({(arg 11
)unb(

1 −=== mkyuGEu kkk γθθ  
(13) 

 

where ),(11 θ
)

kk uu ≡ θ
)

represents either the maximum 

likelihood estimator of θ or sufficient statistic S for θ, i.e., 
).(11 Suu kk ≡  The number of unsold seats protected for the 

high fare class from the low fare class in the next at time τk 
prior to flight departure is the number of unsold seats, which 
is given by 
 

  ). ,min( 1
)unb(

1
)unb(

1 kkkk yuuu −= oo  (14) 

V. MATHEMATICAL PRELIMINARIES  

Theorem 1. Let X1 ≤ ... ≤ Xk be the first k ordered 
observations (order statistics) in a sample of size m from a 
continuous distribution with some probability density 
function fθ (x) and distribution function Fθ (x), where θ is a 
parameter (in general, vector). Then the joint probability 
density function of X1 ≤ ... ≤ Xk and the lth order statistics Xl 
(1 ≤ k < l ≤ m) is given by 
 

 ),|() ..., ,() , ..., ,( 11 klklk xxgxxgxxxg θθθ =  (15) 

where 

) ,...,( 1 kxxgθ ,)](1)[(
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(17) 

 

represents the conditional probability density function of Xl 
given Xk=xk. 

Proof. The joint density of X1 ≤ ... ≤ Xk and Xl is given by 
 

) , ..., ,( 1 lk xxxgθ ∏
=−−−

=
k

i
ixf

lmkl

m

1

)(
)!()!1(

!
θ

 

Proceedings of the World Congress on Engineering 2013 Vol I, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



 

lm
ll

kl
kl xFxfxFxF −−− −−× )](1)[()]()([ 1

θθθθ  

 
   ).|() ..., ,( 1 klk xxgxxg θθ=   (18)

  

It follows from (18) that 
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i.e., the conditional distribution of Xl, given Xi = xi for all i = 
1, …, k, is the same as the conditional distribution of Xl , 
given only Xk = xk, which is given by (17). This ends the 
proof.   � 

Corollary 1.1. The conditional probability distribution 
function of Xl given Xk=xk is 
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Corollary 1.2. Let X1 ≤ ... ≤ Xk be the first k order 
statistics in a sample of size m from the two-parameter 
Weibull distribution with the probability density function 
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where θ = (β,δ), β>0 and δ>0 are the scale and shape 
parameters, respectively. Then the conditional probability 
distribution function of Xl given Xk=xk is 
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Theorem 2. If in (22) the scale parameter β is unknown, 
then the predictive probability distribution function of Xl 
based on (xk,δ ) is given by 
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Proof. We reduce (22) to 
 





















=
















≤








δδδδ

θ ββ
kk

k

l

k

l xX

x

x

X

X
P

 

 

∑
−−

=







 −−
−−−

−−=
1

0

1

)!()!1(

)!(
1

kl

j j

kl

lmkl

km

 
 

[ ] jlmj

vw
jlm

++−
−−

++−
−×

1 
])1[ exp(

1

)1( δ  

 

{ }, | wWvVP =≤= δδ
δ  (24) 

 
where V = Xl / Xk  is the ancillary statistic whose distribution 
does not depend on the parameter β. Since Xk does not 

depend on V, δβ )/( kXW = is the pivotal quantity, whose 

distribution is known and does not depend on the parameters 
β and δ,  we eliminate the parameter β from the problem as 
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represents the probability density function of the kth order 
statistic Xk. Indeed, it follows from (26) that 
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It follows from (24) and (27) that 
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Now (23) follows from (28). This ends the proof.   � 
Corollary 2.1. If  the  parameter δ =1,  i.e.  we deal with 

the exponential distribution, then the predictive probability 
distribution function of Xl based on xk is given by 
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Theorem 3. Let X1 ≤ ... ≤ Xk be the first k ordered 
observations from a sample of size m from the two-
parameter Weibull distribution (21). Then the joint 
probability density function of the pivotal quantities 
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 Proof. The joint density of X1 ≤ ... ≤ Xk is given by 
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Normalizing (39), we obtain (33). This ends the proof.   � 
Theorem 4. If in (8) both parameters β and δ are 

unknown, then the predictive probability distribution 
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distribution does not depend on the parameters β and δ. 
Since the pivotal quantity W2, whose distribution is given by 
(35), does not depend on V2, it follows from (41) and (35) 
that 
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where the unknown parameters β and δ are eliminated from 
the problem. Now (40) follows from (42). This ends the 

proof.   � 

VI.  ILLUSTRATIVE EXAMPLE OF AIRLINE BOOKING POLICIES  

Let X1, …, Xn be the random sample of the previous 
independent observations of the cumulative customer 
demand for the high fare class, which follow the exponential 
distribution with the probability density function (21) (δ=1), 
where the parameter β is unknown. Then the static policies 
of airline booking under parametric uncertainty are given as 
follows. 

The static maximum likelihood airline booking policy 
follows from (6): 
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If, say, n=1 and γ=0.4, then %.30)( )ml(
1rb =ur  Thus, in 

this example the static maximum likelihood airline booking 
policy has the relative bias equal to 30%. It follows that the 
protection level for customers of the high fare class will be 
determined incorrectly. This may lead to serious loss. 

The static unbiased airline booking policy follows from 
(8): 
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The dynamic unbiased airline booking policy follows 
from (13) and (29):  
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VII.  CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH 

In this paper, we develop a new frequentist approach to 
improve predictive statistical decisions for airline seat 
allocation problems. The methodology, which is developed 
in this paper for the use in the airline industry under 
parametric uncertainty of airline customer demand models, 
may be found to be useful in other industries such as hotels, 
car rental companies, shipping companies, etc. While the 
details of problems considered in the paper can change 
significantly from one industry to the next, the focus is 
always on making better demand decisions − and not 
manually with guess work and intuition − but rather 
scientifically with models and technology, all implemented 
with disciplined processes and systems. 

The methodology described here can be extended in 
several different directions to handle various problems that 
arise in practice. We have illustrated the proposed 
methodology for scale distributions (such as the exponential 
distribution). Application to other distributions could follow 
directly.  
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