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Each advance in information technology creates an

Abstract—The problem of adaptive stochastic airline seat opportunity for more comprehensive reservations control
inventory control lies at the heart of airline revenue gand greater integration with other important transportation
management. This problem concerns the allocation of the finite planning functions. It is common practice for airlines to sell

seat inventory to the stochastic customer demand that occurs a pool of identical seats at different prices according to
over time before the flight is scheduled to depart. The objective P p 9

is to find the right combination of customers of various fare d'ﬁeren_t_ booking classes to improve ‘révenues in a very
classes on the flight such that revenue is maximized. In this competitive market. In other words, airlines sell the same

paper, the u_nbiased static and_d_ynamic policies of stochastic seat at different prices according to different types of
airline seat inventory control (airline booking) are developed travelers (first class, business and economy) and other
under parametric uncertainty of underlying models, which are ., qitions. The question then arises whether to offer seats at

not necessarily alternative. For the sake of simplicity, but latively | . t . fi ith . b f
without loss of generality, we consider (for illustration) the case a relatively low price at a given time with a given number o

of nonstop flights with two fare classes. The system developed isS€als remaining or to wait for the possible arrival of a higher
able to recognize a situation characterized by the number of paying customer. Assigning seats in the same compartment

reservations made by customers of the above fare classes ato different fare classes of customers in order to improve
certain moment of time before departure. The proposed policies reyenues is a major problem of airline seat inventory
of the airline seat inventory control are based on the use of allocation. This problem has been considered in numerous

order statistics of cumulative customer demand, which have . . . )
such properties as bivariate dependence and conditional P2Pers. For details, the reader is referred to a review of yield

predictability. Dynamic adaptation of the system to airline Management, as well as perishable asseF revenue
customer demand is carried out via the bivariate dependence of management, by Weatherfoel al. [1], and a review of

order statistics of cumulative customer demand. Dynamic relevant mathematical models by Belobaba [2].
optimization of the airline seat allocation is carried out via the This paper deals with the airline seat allocation problem

conditional predictability of order statistics. The system makes o oystomers for different fare levels are booked into a
on-line decisions as to whether to accept or reject any customer . | h . f The followi
request using established decision rules based on order common seating pool In the aircraft. e following

statistics of the current cumulative customer demand. The assumptions are made: (1) single-leg flight: bookings are
computer simulation results are promising. made on the basis of a single departure and landing; no
allowance is made for the possibility that bookings may be

Index Terms—Airline booking, dynamic adaptation and part of larger trip itineraries, (2) independent demands: the
optimization, stochastic demand demands for different fare classes are stochastically
independent, (3) low before high demands: the lowest fare
reservations requests arrive first, followed by the next
PASSENGER reservation systems have evolved from lovipowest, etc., (4) no cancellations: cancellations, no-shows

level inventory control processes to major strategignd overbooking are not considered, (5) nested classes: any
information systems. Today, airlines and other transportati¢sre class can be booked into seats not taken by bookings in
companies view revenue management systems and relgigder fare classes, (6) fare classes: the business and
information technologies as critical determinants of futurgconomy fare classes are considered.
success. Indeed, expectations of revenue gains that ar@he first purpose of this paper is to present the innovative
possible with expanded revenue management capabilities gifgrmation technologies for constructing the unbiased static
now driving the acquisition of new information technologyand dynamic policies of the airline seat inventory allocation
on the basis of the ‘unbiasedness performance index’. The
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distribution, where only the functional form of theBrumelle & McGill [10], and Nechvadt al. [11].

distribution is specified, but some or all of its parameters are

unspecified. This idea allows one to use the technique ofll. AIRLINE BOOKING POLICIES KNOWN FROMPRACTICE
invariant embedding of sample statistics in a performance

index in order to eliminate the unknown parameters from the” tatic Airline Booking Policy under Certainty

problem [3-5]. The technique represents a simple andlt will be noted that (1) represents the static policy of
computationally attractive statistical method based on tlarline seat allocation (or airline booking) under complete
constructive use of the invariance principle in mathematicaiformation. IfF,, the probability distribution function of;
statistics. Unlike the Bayesian approach, an invariamith the paramete@ (in general, vector), is continuous and
embedding technique is independent of the choice of priosdrictly increasing, the definition (1) of is equivalent to

i.e., subjectivity of investigator is eliminated from the

problem. It allows one to find the improved invariant Uy = arg(Fp (W) =) (2)
statistical decision rules, which have smaller risk than any where

the well-known traditional statistical decision rules, and to y=c,lc, (3
use the previous and current sample data as completely as =

B. Satic Airline Booking Policy under Uncertainty

In practice, under parametric uncertainty, i.e. when the

airline industry. A major problem of airline seat allocation is

to sell the same seat at different prices according to different Fo)=v, (5)
types of travelers (first class, business and economy) and ) _ )
other conditions in order to improve revenues. This probleff Usually used to construct the static policy given by
has been considered in numerous papers. Littlewood [6] was _ = _

X . L u, = arg(F; (w) = ), 6
the first to propose a solution method of the airline seat ! 9(Fp ) =) ©

allocation problem for a single-leg flight with two fareyhereg represents the maximum likelihood estimatoréof
classes. The idea of his scheme is to equate the margipﬁje performance index (5) is named as ‘maximum
revenues in each of the two fare classes. He suggests closigihood performance index. The static policy (6) based

down the low fare class when the certain revenue frog), (5) is named asstatic maximum likelihood airline
selling low fare seat is exceeded by the expected revenueoBBking policy’.

selling the same seat at the higher fare. That is, low fare o . .
booking requests should be accepted as long as C. Dynamic Airline Booking Policy
The static policy of airline booking optimal as long as
> > . - . . .

CZ‘Clpl{ it u]_}, (1) no change in the probability distributions of the customer
wherec, andc; are the high and low fare levels respectivelydémand is foreseen. However, information on the actual
Y, denotes the demand for the high fare (or business) cla4Stomer demand process can reduce the uncertainty
u; is the number of seats to protect for the high fare clagssociated Wlth th.e estimates of dgmand.. Hence, repetitive
and Pr{t;>u;} is the probability of selling more thag, Use of a static policy over the booking period, based on the
protected seats to high fare class customers. The smalf@@st recent demand and capacity information, is the general
value ofu, that satisfies the above condition is the number 3fay t0 proceed.

seats to protect for the high fare class, and is known as the
protection level of the high fare class customers. The'V: AIRLINE BOOKING POLICIES PROPOSED IN THEPAPER

concept of determining a prot_e ction Ievgl fOT the high fareA. Satic Airline Booking Policy under Uncertainty
class can also be seen as setting a booking limit, a maximum

number of bookings, for the low fare class. Both concepts 1 1S Policy is based on the performance index,
restrict the number .of bookings .for the low fare class in ELF(u)} =y, 7)
order to accept bookings for the high fare class.

It should be remarked that there is no protection level favhich takes into account (2) and the previous data of
the low fare (or economy) class; is the booking limit, or cumulative customer demand for the seats on a flight. It
number of seats available, for the low fare class; the low faalows one to construct the static unbiased airline booking
class is open as long as the number of bookings in this clgssicy given by
remains less than this limit. Thusjtu,) is the booking wnb) _ — :
limit or number of seats available for the high fare class at U =arg( B Fo(W) } = 1), (8)
time. The high fare class is open as long as the number (ﬂ
bookings in this and low classes remain less than this limit, V€€

Richter [7] gave a marginal analysis, which proved thdikelihood estimator off or sufficient statisticS for 6, i.e.,

(1) gives an optimal allocation (assuming certain continuityy =Ui(S). The performance index (7) is named as
conditions). Optimal policies for more than two classes havenbiasedness performance index’. The static policy (8),
been presented independently by Curry [8], Wollmer [9}vhich is based on (7), is named amtic unbiased airline

Il. STATE-OFTHE-ART AND PROGRESSBEYOND

ulzul(é), érepresents either the maximum

ISBN: 978-988-19251-0-7 WCE 2013
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

booking poligy’. . o . o Upe = Min(Ug, Uy = Y )- (12)
The relative bias of the static airline booking policy is
given by C. Dynamic Airline Booking Policy under Uncertainty
— Under the parametric uncertainty, the dynamic unbiased
r(uy) LB Fo(W) } =¥l o (9) airline booking policy is given by
y
B. Dynamic Airline Booking Policy under Certainty ui™ = argEy Gp Uy b JFy ) k= 12..m-1 (13)

In this section, we consider a flight for a single departure
date withm predefined reading dates at which the dynaminere s
policy is to be updated, i.e., the booking period beforikelihood estimator ofg or sufficient statisticS for &, i.e.,
departure is divided intm readings periods: (@3], (. 5, Uy = Uy (S). The number of unsold seats protected for the

.+ (Tma, ] determined by then reading datesr, ., ..., high fare class from the low fare class in the next at time
Im. These reading dates are indexed in increasing orderior to flight departure is the number of unsold seats, which
0<r<r< MK, where {1 7] denotes the reading periodis given by
immediately preceding departure, amg is at departure.
Typically, the reading periods that are closer to departure
cover much shorter periods of time than those further from
departure. For example, the reading period immediately V. MATHEMATICAL PRELIMINARIES
preceding departure may cover 1 day whereas the readingrheorem 1. Let X; < ... < X, be the firstk ordered
period 1-month from departure may cover 1 week. observations (order statistics) in a sample of sizieom a

Let us suppose that the cumulative passenger demand dehtinuous distribution with some probability density
the high fare class at théh reading date (time, 1<ksm) is  functionf,(x) and distribution functiorF, (x), where@is a
Yik representing théth order statistic from the underlying parameter (in general, vector). Then the joint probability
distribution with the probability distribution functio®s density function of; < ... < X, and thelth order statistic
(Y1), where @ is a parameter (in general, vector). In othef1 < k<|<m) is given by
words, Y represents the number of seats sold for the
customers of the high far_e class at kite reading date. We _ O Ko X X )= 0g &g e )3 (4 %), (15)
assume that the cumulative passenger demands for the fwﬂ’é
and low fare classes are stochastically independent. Eac
booking of a seat of thg high fare class generates average g, (x,...,x.) I_lfe()q)[l Fo(x)I™,  (16)
revenue ofc,. Each booking of a seat of the low fare class k)'
generates average revenuecpfwherec,<c;. Let u;, be an e
individual protection level for the high fare class at time (m-k)! {FQ(X,)—FH(XK)}

_ulk(é),érepresents either the maximum

ounb) _ i g o b
ulk(un ) = mm(uk,u]f" ) - Yik)- (14)

(the kth reading date). This many seats are protected for the 96 (X %) = (I-k=)i(m-D)1|  1-Fy(%)
high fare class from the low fare class. There is no

protection level for the low fare class; is the booking F = mH f
limit for the low fare class at timg; the low fare class is X[l— e(1>j)|: e(xk)} 1_|5:(X')
open as long as the number of bookings in this class remains 0(%) 0 (%)
less than this limit. Thusu{tuy) is the booking limit for

) : : , (m-k)y & 1-k-1
the high fare class at timg. The high fare class is open as = : ( _ j
long as the number of bookings in this and low classes (I=k=-Dim-DI = ]
remain less than this limit. The maximum number of seats ,
. . m-I+j
that may be booked by fare classes in the next at fime x (1) 1-Fy(x) fo(X)
prior to flight departure is the number of unsold sests 1-Fo(X) 1-Fyo(x)

Under the complete information, the dynamic airline
booking policyis given by _ (m-k)! mz"(m— I]

Uy = ar@ Uy Yy ¥y k= 12..m-1  (10) (F=k=Dim=Di=\ )

where I—k-1+]
_ o (—1yi| Fa(X) = Fa(Xc) fo(x)
Gy Uy 1Y )= 1= G (U | V), (11) = [ 1-Fy(x) } 1-Fp(xy) ()

Gy(Uy | yi) represents the conditional probabilityyepresents the conditional probability density functionXof
distribution function of thenth order statisticY;,, The givenX=x..

number of unsold seats protected for the high fare class fromProof. The joint density oK, < ... < X, andX; is given by
the low fare class in the next at tinmg prior to flight

departure is the number of unsold seatg, which is given Op & - X X)) =
by

m
(k=D (m-1)! |_1| o)
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X Fg(%) = Fo( X1 ™ f(x L= Fo(3)]™

=0p & X )g (X 1%)- (18)
It follows from (18) that
9o & |X1’---'Xk)=M=ga(X| [%), (19)

Xic)

O & e

i.e., the conditional distribution of, givenX;=x; for all i =
1, ..., k is the same as the conditional distributionXpf

Proof. We reduce (22) to
SEHIGRG
Pye| — — | ==
X B B
(m=-k)!

&Y -k -1
1_(I—k—1)!(m—l)!jz:;‘)( i ]

X

s[_

Xy

-’

m-I+1+ |

m— +1+]j
X

[exp(—w[v" —1])]

given only X, = X, which is given by (17). This ends the

proof. [
Corollary 1.1. The conditional probability distribution
function ofX, givenX,=x is

(m-K)!

P Xy <% [ X :xk}=1——(| “k—D)(m—1)!

xl_kz_l(l —k—l\ (—:D] "1_ l:9()(|):|m—|+l+j
i m-l+L+ | 1-F(x)

T(m-1 (-9’
z( j jl—k+j

=\

j=0

_ (m-k)!

T (1 =k=D!(m-1)!

I-k+j

{Fe(m—ﬁ,(xk)} | (20)
1-Fy(%)

Corollary 1.2. Let X; < ... £ X, be the firstk order
statistics in a sample of sizm from the two-parameter
Weibull distribution with the probability density function

5 o-1 o
fg(x)=ﬁ(%j ex;{—(%j] (x>0), (21)

where 8 = (5,9), />0 and &0 are the scale and shape
parameters, respectively. Then the conditional probability

distribution function ofX, givenX,=x, is

Al = =) =1
I_k_ll—k—l\ &Y { X=X mH AL
120:( i )m—|+1+jLeX ﬁa' (22)

Theorem 2. If in (22) the scale parametg@ris unknown,
then the predictive probability distribution function Xf
based onx,d) is given by

P“{(;(_LT ) [xij} Bl D

-k=-D!(m-1)!
X"k‘l I-k-1) (-1’
]Z:;j( j Jm—l+1+j

-1

~ )
x lmiJ _jl(m—|+1+j)+(m—k+1+8)} . (23)
ol | WX
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=

il

=RV v (W =, (24)

whereV = X, / X is the ancillary statistic whose distribution
does not depend on the parameferSince X, does not

depend onv, W:(Xk/ﬁ)dis the pivotal quantity, whose
distribution is known and does not depend on the parameters
Fandd, we eliminate the parametg@ifrom the problem as

PE X <3 = [PAX X1 X, =%dga (%), (25)
0

where
m

(K-D)I(m=-K)! R (%)

Jo(%) =

x [1= Fy ()™ 4 6 ), %, 0 (0,00),

represents the probability density function of ktle order
statisticX,. Indeed, it follows from (26) that

ot 3]
o {35 JotL5) 5

(26)

k-1
m

96 (%) A% = (k=D(m=K)!

[1-e W< e Mk gy = g(w)dw. (27)
It follows from (24) and (27) that

PfVI<vy =TF’5{V" <VO|W = w} g(w)dw
0

o om RE(1-k-1) D]
=1 (I—k—l)!(m—l)!z( i ]m—|+1+j

j=0

k-1 -
{I‘I[(v"—l)(m—l+1+j)+<m—k+1+s)]] C)
s=0

Now (23) follows from (28). This ends the proof.

Corollary 2.1. If the parameted=1, i.e. we deal with
the exponential distribution, then the predictive probability
distribution function ofX; based orx is given by

WCE 2013
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et ot
Xy X (I -k=D)!(m-=)! = i )m=l+1+]

k-1 -
L

Theorem 3. Let X; < ... £ X¢ be the firstk ordered
observations from a sample of siza from the two-
parameter Weibull distribution (21). Then the
probability density function of the pivotal quantities

_\&
W2=£, W; = E , (30)
o B
conditonal on fixed zZ¥=z, .., z), where

Z, = K /[?f ,1=1..k are ancillary statistics, ank-2
of which form a functionally independent s8t,and Jdare

the estimators off and 4, based on the firsk ordered
observationsX;< ... <X) from a sample of sizem from the
two-parameter Weibull distribution (21), such th& and

joint

-1

® K K «
A2Y)=| | WE‘ZI'IZW{Z#’Z +(m—k)ai”2J dws | (36)
0 1=1 i=1
K k
|
Wo (k=1)

f 200y =Li=t
Wy [w,,z™) X0

k
x ean— w2 {ZZ“Q +(m-Kk)Z? DWM“ , Wy 0 (O,). (37)
i=1

Proof. The joint density oK < ... < X, is given by
m hé(ﬁjd_l
(m-k)!i{ B\ B

Ao} o

Using B and & (the maximum likelihood estimators ¢f

fo G, %) =

W; are the pivotal quantities (in particular, the maximuni?nd ¢ obtained from solution of (31) and (32)) and the

likelihood estimators o8 andd,

Ko i 1/0
B=[{Zm"+(m—k)x€}/kj
i=1
and

3=[(ka ing i | 3¢ +<rrrk>>€]_ {kﬁn{ (32)

(31)

respectively, lead to the pivotal quantitied/, and Ws) is
given by

k
fwpwg ] 29) = 9" )wg ™ [] 22wl
=1

xex{—wg“'{ ; z" +(m—k)z“f’2D
i1

k
= 9" (200)nk2 |—| Z"2 e D
1=1

k
x exr{— Wj?2 {z z"2 +(m-k)z.? DWZW:V,,v2 -
i=1

= f (@, |209)F (g |w,,20), we(0, ®), ws0(0, ), (33)

where

o k K k °
7 @) :[ [roows2[] 4“”{24“”2 +(m—k)zx”2] sz]
0 =1 i=1

(34)
is the normalizing constant,
-k
k Kk
fwy | 249) =925 AW{Z 2" +(m- k)szZJ ,
=1 i=1
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invariant embedding technique [3-5], we transform (38) as
follows:

Soom K
fp 6 o) 0B O = []%"
=1

(m-k)!.

) o305 -l Jwver

M ot 1 kol e w (k-1)
S [ ] 2w
(m-K)! r! 2 r! 3

i=1

k
x ex;{— W;2 {z z"2 +(m-k)z? DW2W§V2 “w,dwg. (39)

Normalizing (39), we obtain (33). This ends the proaf.
Theorem 4. If in (8) both parameterss and o are
unknown, then the predictive probability distribution

function of X, based on(x,,d) and conditional on fixed®
is given by

(EIER R
X, X (I -k -1)!(m-1)!

f "k'l(' -k-lJ (1)’
= j)m=l+1+]
-1

] 6 V\Q
xlﬁ H%H —l -1+ 1+ ekes) || f (v [209)dw.
s0

(40)
Proof. We reduce (23) to

P51 (X /xk)g[%j < (% /xk)(ng = P{v2Vv2 < vgvz}
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L m kA — k=1 (_1)j k=12..m-1 47
STk m-Dr g mel L
ulok(unb) = min(u;,u]ﬁ‘”b) = Yik)- (48)

k-1 -1
X(r(l[(vﬁé = D(m-I +1+j)+(m—k+1+s)]] , (41)

L VI,

In this paper, we develop a new frequentist approach to
improve predictive statistical decisions for airline seat
distribution does not depend on the paramefeérand & allocation problems. The methodology, which is developed
Since the pivotal quantitj,, whose distribution is given by in this paper for the use in the airline industry under
(35), does not depend af, it follows from (41) and (35) parametric uncertainty of airline customer demand models,

CONCLUSION AND DIRECTIONS FORFUTURE RESEARCH

where V2=(X|/Xk)5 is the ancillary statistic whose

that may be found to be useful in other industries such as hotels,
2 car rental companies, shipping companies, etc. While the
K _ W K
P{VZSVZ [2 )}‘IP{sz SVZVZ}f(Wz 1290w, (42)  getails of problems considered in the paper can change
0 significantly from one industry to the next, the focus is

where the unknown parametefsand o are eliminated from always on making better demand decisionsand not
the problem. Now (40) follows from (42). This ends thénanually with guess work and intuitior but rather

proof. [

scientifically with models and technology, all implemented

with disciplined processes and systems.

VI. ILLUSTRATIVE EXAMPLE OF AIRLINE BOOKING POLICIES
Let Xy, ..

independent observations of the cumulative customarise

The methodology described here can be extended in
., X, be the random sample of the previouseveral different directions to handle various problems that

in practice. We have illustrated the proposed

demand for the high fare class, which follow the exponentiatethodology for scale distributiofsuch as the exponential

distribution with the probability density function (219=(),

distribution). Application to other distributions could follow

where the parametg? is unknown. Then the static policiesdirectly.

of airline booking under parametric uncertainty are given as
follows.

The static maximum likelihood airline booking policy  [1]
follows from (6):
(ml) _ ~-S/n
ui™ =Iny=>'", (43)
ny . - _ , (2]
where S= Zi:lxi is the sufficient statistic fof, with
(3l
V=SIB~f(V)=— v exptv), v20,  (44)
r(n)
and the relative bias, [4]

= (,(mDyq _ ~1/ny-1_
™) =! Ee{Fg(LiL/ )} y|10%=|(1+lnyy) Y1005,

(45)
If, say, n=1 and j=0.4, thenr,, ({™ )= 30%. Thus, in
this example the static maximum likelihood airline booking
policy has the relative bias equal to 30%. It follows that the
protection level for customers of the high fare class will bg;
determined incorrectly. This may lead to serious loss.
The static unbiased airline booking policy follows from

(8):

(5]

(71

u =y -gs, (46)

[8]
where the relative bias(u"" )= 0.

The dynamic unbiased airline booking policy follows
from (13) and (29):

m &Y m-k-1) (-1’
(m-k-1)! Z( ' )ﬁ

j=0 J

» -1
x[ﬁ{[%—])(l+j)+(m—k+1+s)ﬂ =y

s=0 k

(9]
[10]

ul™ = ar [11]
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