
 

 
Abstract—Home healthcare worker scheduling is a hard 

combinatorial problem concerned with the allocation of care 
tasks to healthcare givers at a minimal cost while considering 
healthcare service quality by striving to meet the time window 
restrictions specified by the patients. This paper proposes a 
group genetic algorithm (GGA) for addressing the scheduling 
problem. The approach utilizes the strengths of unique group 
genetic operators to effectively and efficiently address the 
group structure of the problem, providing good solutions 
within reasonable computation times. Computational results 
obtained show that the GGA approach is effective. 
 

Index Terms—Home healthcare, group genetic algorithm, 
Multi-objective optimization, Staff scheduling 
 

I. INTRODUCTION 

OME health care services provide health care to people  
in their community homes, in accordance with their 

specific health needs [1]. The overall goal is to provide 
satisfactory care and assistance to patients who need special 
care at their homes, that is, patients with physical or mental 
challenges, patients with terminal or acute illness, patients 
in need of post-operation or post-hospitalization treatment, 
as well as the elderly people with various healthcare needs 
[2] [3]. Healthcare professionals are essential for providing 
services such as therapy services, medical and social 
services, and house cleaning. The need for home care is 
accelerated by a number of factors of common occurrence in 
various communities all over the globe. These factors 
include ageing population, ever-increasing chronic 
pathologies, increasing innovative technologies, over and 
above pressures from governmental authorities for improved 
health care services. Communities continue to call for 
continuous improvement in healthcare service quality, 
which has become the central objective in most healthcare 
organizations [3]. Consequently, home health care services 
continue to increase in size leading to difficulties in staff 
scheduling as well as task assignment to specific healthcare 
professionals or care givers that have to visit the patients at 
their homes at specific time windows preferred by the 
patients. 

 
Manuscript received 23 March, 2013. 
Michael Mutingi is a doctoral student with the School of Mechanical 

and Industrial Engineering, University of Johannesburg, Johannesburg, 
Bunting Road Campus, P. O. Box 524, Auckland Park 2006, South Africa 
(phone: +27789578693; e-mail: mmutingi@gmail.com). 

Charles Mbohwa is with the Department of Quality and Operations 
Management, University of Johannesburg, Johannesburg, Bunting Road 
Campus, P. O. Box 524, Auckland Park 2006, South Africa (e-mail: 
cmbohwa@uj.ac.za). 

 
Without appropriate decision support tools, scheduling 

and task assignment of care givers is a complex and time-
consuming responsibility. Health care workers travel for 
some distance to deliver care to their assigned clients at 
their homes within a specified time window, and then return 
to their original workplace after finishing all their assigned 
visits. However, all the tasks assigned to the care giver have 
to be completed within the capacity limit of the care giver; 
for instance, most healthcare services limit the capacity of a 
single giver to about 8 hours per day [3]. The time window 
for each duty or activity is dependent on the specific needs 
of the client according to the pre-assessment of the client’s 
health condition. This implies that the time windows of 
critical tasks tend to be tighter than those of low-level 
criticality. In addition to these constraints, home care 
scheduling can be time-consuming, especially when taking 
into account the shift preferences of care givers [3] [4] [5]. 
Efficient and robust tools are essential for effective home 
care scheduling. 

In regards to the above highlighted issues, the purpose of 
this research is to present an efficient group genetic 
algorithm (GGA) for scheduling the dispatch of health care 
givers to clients, while considering time and capacity 
constraints. To this end, the specific objectives of this 
research are; 

(1) To describe the home care worker scheduling 
problem as an extension of the vehicle routing 
problem with time windows; 

(2) To develop a GGA approach for addressing the home 
care worker scheduling problem; 

(3) To carry out illustrative computational tests, so as to 
show the utility of the proposed GGA approach. 

The GGA approach is designed to assign duties to care 
givers on a daily basis so as to minimize the total costs 
incurred in terms of distance travelled and the cost 
associated with the violation of time window specifications. 
The ultimate advantages of efficient home care scheduling 
are vast; these include the following: 
 travelling costs of home care workers are reduced 

significantly; 
 worker utilization is improved, which leads to reduced 

workforce needs; 
 improved care service, satisfying customer 

requirements with specified time windows; and, 
 reduced schedule construction time, freeing up 

manager’s time for strategic roles. 
Homecare worker scheduling is a hard combinatorial 

problem that demands the application of efficient and 
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effective solution methods such as expert systems, 
metaheuristics, other intelligent approaches, or a 
combination of these [3] [4] [5]. Therefore, GGA is a 
potential decision support tool in home healthcare 
operations, especially for scheduling homecare worker 
operations.  

The remainder of this paper is organized thus: The next 
section briefly describes the homecare worker scheduling 
problem. This is followed by a description of the proposed 
GGA methodology, showing the unique genetic operators 
implemented in this paper. An illustrative computational 
example is then provided. Results and discussions are then 
presented, based on the case example. Finally, conclusions 
and further research prospects are presented. 

 

II. PROBLEM DESCRIPTION 

The home healthcare worker scheduling problem with 
time windows (see Fig. 1) can be described as follows [3] 
[4] [5]: Consider a community healthcare centre with m care 
givers to visit n clients, where each care giver k (k = 
1,2,…,m) is supposed to complete serving client j (j = 
1,2…,n) within a given time window defined by earliest 
start time and latest start time, ej and lj, respectively. The 
context of the problem is analogous to the vehicle routing 
problem with time windows [6] [7].  The aim of the 
management is to minimize the total cost incurred by each 
care giver in travelling from the point of origin to the clients 
and back to the point of origin. Furthermore, if the care 
giver arrives at the client earlier than ej or later than lj, then a 
penalty cost is incurred in each case. Let aj denote the time 
when a care giver reaches client j, and ke and kl denote the 
unit penalty costs incurred when the care giver arrives too 
early or too late, respectively. This implies that the 
functions, max[0,ej – aj] and max[0,aj - lj] have to be 
minimized. The aim is to maximize client satisfaction by 
constructing schedules with minimum violation of the 
preferred time window constraint as specified by the client. 
On the other hand, the decision maker seeks to improve the 
schedule quality by developing the most equitable schedule 
allocations. Therefore, the individual workloads or worker 
capacity should, as much as possible, be kept within the 
limits of the workers preferences. 
 
 

 
 
Fig. 1  An illustrative of a home care worker schedule 
 

III. A GROUP GENETIC ALGORITHM APPROACH 

The GGA approach, originally proposed by Falkenauer 
[8] is a development of the basic genetic algorithm (GA) [9] 
[10], for addressing grouping problems. We present the 
proposed GGA procedure and its elements, including 
chromosome coding, initialization, and genetic operators. 
As shown in Fig. 2, the general structure of GGA is similar 
to the basic GA. However, the internal mechanisms of the 
coding scheme, and the implementation of the genetic 
operators is unique to GGA. 

 

 
 
Fig. 2  Basic group genetic algorithm structure 
 

A. GGA Coding Scheme 

The performance of GGA is strongly influenced by the 
structure of the genetic coding applied [11] [12]. We 
develop a unique coding scheme which exploits the group 
structure of the scheduling problem. In this vein, let C = [1, 
2, 3,…,n] be a chromosome representing a set of n clients to 
be visited by m care givers. The evaluation of C involves 
partitioning clients along C into m groups such that the 
cumulative cost incurred is minimized, and the cumulative 
load for each group does not exceed the care giver capacity 
limit. 
 

 
 
Fig. 2  Group genetic algorithm chromosome coding scheme 

 
Fig. 2 gives an example of a healthcare manpower system 

consisting of 3 workers and 6 clients; part (a) provides the 
network structure of the problem while part (b) illustrates 
the group structure of the chromosome consisting of two 
codes. Code 1 represents the assignment of care workers w1, 
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w2, and w3, to groups of clients {1,2}, {3,4,5}, and {6,7}, 
respectively. Code 1 is the actual group structure upon 
which the genetic operators act. Code 2 denotes the last 
position of each client group, that is, it records the position 
of the delimiter or frontier “|” which separates client groups. 
The total cost in terms of distance travelled is (12 + 8 + 9) + 
(12 + 9 + 6 + 8) + (20 + 20) = 104.  

B. Initialization 

An initial population of the desired size, p, is randomly 
created by random assignments of clients to care givers. 
First, arrange the care duties in ascending order of their start 
times. In case of a tie, rank the duties according to their 
activity duration. For each care giver, assign a duty at a 
probability b, starting from the earliest. From the unassigned 
set of duties, assign duties beginning from the earliest. This 
procedure increases the likelihood of the initialization 
process to generate initial feasible solutions. 

C. Fitness Evaluation 

The fitness function evaluation calculation is done after 
the schedules have been constructed. Let a(i,j) represent a 
feasible trip, where the care giver departs from point of 
origin 0 and visits nodes i+1, i+2,…, j-1, and j, 
consecutively. Then, the cost of each trip, cij = is estimated 
in terms of the distance from the care giver’s point of origin 
to the first client, the distances between successive clients, 
the distance from the last client back to the care giver’s 
point of origin, and the penalty cost incurred due to 
violation of time window preferences; 
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Here, dij denotes the distances between successive clients i 
and j; v is the variable cost per unit distance travelled; ke and 
kl denote, respectively, the unit penalty costs when a care 
giver reaches the client too early or too late; ej and lj, are the 
earliest start time and latest start times preferred by client j; 
and aj denotes the actual time when a care giver reaches 
client j. 

The objective function of each schedule or chromosome 
is equivalent to the sum of the costs of all the trips in the 
schedule. Our GGA maps the objective function to a fitness 
function fk as follows,   
 

( ) max 0, ( ) ( )m
k kf t g t g t     (2) 

 
where, gk(t) is the objective function of chromosome k at 
time t; and gm is the maximum objective function in the 
current population.  

D. Selection 

The purpose of the selection operator is to select the best 
performing chromosomes into a mating pool, which is 
called temppop. A number of selection strategies have been 
suggested by Goldberg [9], including deterministic 
sampling, remainder stochastic sampling with replacement, 
remainder stochastic sampling without replacement, and 

stochastic tournament. In this study, we adopted the 
remainder stochastic sampling without replacement method. 
According to this strategy, each chromosome k is selected 
and stored in the mating pool according to its expected 
count ek, which is calculated according to the following 
expression; 
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where, fk is the fitness function of the kth chromosome.  

Each chromosome receives copies equal to the integer 
part of ek, that is, [ek], plus additional copies obtained with a 
success probability equal to the fractional part frac(ek) is 
treated as a success probability of obtaining additional 
copies of chromosome k into the mating pool. Thus, the best 
performing candidate solutions are selected into the mating 
pool with higher probability. 

E. Crossover 

Crossover is a mechanism thorough which selected 
chromosomes mate to produce new offspring, called 
selection pool. This enables GGA to explore unvisited 
regions in the solution space, which essentially provides the 
algorithm with explorative search abilities. Groups of genes 
in the selected chromosomes are exchanged at a probability 
pcross. First, randomly generate a crossover point c between 
1 and g, where g is the number of groups, that is, c = 
random (1,g). Second, swap all the groups on the right of 
the crossover point. Third, repair the offspring, if necessary. 
This process is repeated till the desired pool size, poolsize, 
is achieved. Fig. 3 illustrates the crossover mechanism using 
parent chromosomes P2 and P2. Upon crossover, offspring 
O1 and O2 are produced, which are necessarily repaired to 
produce O1′ and O2′. 
 
       Parents:        Offspring:          Repaired: 

P1: [ 5 2 | 4 3 1 | 6 ]     O1: [ 5 2 | 3 1 | 6 ]   O1′: [ 5 2 | 3 1 | 4 6 ] 

P2: [ 6 5 | 3 1 | 4 2 ]     O2: [ 6 5 | 4 3 1 | 4 2 ]  O2′: [ 6 5 | 4 3 1 | 2 ] 

 
Fig. 3 An illustration of the crossover operator and repair mechanism 

 
After crossover, some genes may appear in more than one 

group, while others may be missing. These offspring are 
repaired by (i) eliminating duplicated genes to the left and 
right of the crossover point, and (ii) inserting missing genes 
into the groups with the least loading. Here, group coding 
takes advantage of the group structure to generate new 
offspring. The mutation operation follows the crossover 
operator. 

F. Mutation 

Mutation is applied to every new chromosome using two 
mutation operators, namely, swap mutation and shift 
mutation. The swap mutation swaps genes between two 
groups in an individual chromosome, while the shift 
mutation works by shifting a randomly chosen frontier 
between two adjacent groups by one step, either to the right 
or to the left. In retrospect, the mutation operator essentially 
provides GGA with local search capability, a phenomenon 
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called intensification. However, the shift mutation is a more 
localized search operation than the swap mutation. Fig. 4 (a) 
and (b) provides an illustration of the swap and shift 
mutation mechanisms, respectively. 

 
Before mutation : [ 5 2 | 4 3 1 | 6 ]  [ 5 2 | 4 3 1 | 6 ] 

After mutation  : [ 5 2 | 6 3 1 | 4 ]  [ 5 2 | 4 3 | 1 6 ] 

(a)       (b) 
 
Fig. 4  An illustration of the swap and shift mutation operators 

G. Inversion and Diversification 

As iterations proceed, the population converges to a 
particular solution. However, population diversity has to be 
controlled in order to avoid premature convergence before 
an optimal solution is obtained, a process called genetic 
drift. Inversion is a genetic mechanism by which genes of a 
chromosome are rearranged in the reverse order, at a very 
low probability, for the purpose of improving the diversity 
of the population at each generation (iteration). The 
inversion operation can be illustrated based on the 
chromosome [1 2 | 4 | 3 5 6] as follows; 
 

Before inversion  : [ 1 2 | 4 | 3 5 6 ] 

After inversion  : [ 6 5 3 | 4 | 2 1 ] 

 
To check diversity, first, we define an entropic measure 

Hi for each client i; 
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Here, xij is the number of chromosomes in which client i is 
assigned position j in the current population; n is the number 
of clients. Therefore, diversity H can be defined according 
to the expression, 
 

1

n
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In this connection, inversion is applied whenever 

diversity falls below a threshold value, hd. The best 
performing candidates should always be preserved by 
comparing the diversified and undiversified populations and 
keeping a pre-specified number of the best three candidates 
in the population.  

H. GGA Overall Algorithm 

The overall GGA pseudo code incorporates the operators 
described in previous sections. The algorithm begins with 
the selection of suitable input genetic parameters. The 
selected input genetic parameters in this study were as 
follows: crossover probability (0.4), mutation probability 
(0.01), and inversion probability (0.05). An initial 
population, P(0),  is then generated randomly by random 
assignments of clients to care givers. The algorithm then 
proceeds into an iterative loop involving selection, group 
crossover, mutation, replacement strategy, inversion and 
diversification, population advancement, and termination 
condition test which allows successive iterations up until the 
number of iterations reaches a pre-specified maximum T. 

Fig. 6 outlines the overall structure of the proposed GGA 
approach and all the constituent genetic operators as 
described in the previous sections. 

 
BEGIN 

1. Input: GGA parameters; t = 0; 
2. Initialize population, P(0); 

REPEAT 
4. Selection: 

Evaluate P(t); 
Create temporal population, temppop(t); 

5. Group crossover: 
Select 2 chromosomes from temppop(t); 
Apply crossover operator; Repair if necessary; 

6. Mutation:  
Mutate P(t); 
Add offspring to newpop(t); 

7. Replacement strategy: 
Compare successively, spool(t) and oldpop(t) strings; 
Take the ones that fare better; 
Select the rest of the strings with probability 0.55; 

8. Diversification: 
Calculate population diversity H; 
IF (H < hd) THEN diversify till H ≥ hd; 
Evaluate P(t); 

9. New population:  
oldpop(t) = newpop(t); 
Advance population, t = t + 1 

UNTIL (t ≥ T) 
END 

 
Fig. 5  Pseudo-code for the overall GGA approach 

 
In the next section, we present an illustrative example, the 

computational results, together with the relevant 
discussions. 

IV. ILLUSTRATIVE EXAMPLE AND RESULTS 

A. Illustrative Example 

For the purpose of illustration, we adapt a problem 
instance presented in [6] [7]; Assume that there are eight 
healthcare tasks, with their respective execution time ti, time 
windows [ej,lj] as shown in Table  I.  The distance dij from 
origin 0 to each task point and between all other adjacent 
task points are provided in Tables II. We further assume that 
the unit travel cost is 1, and the penalty cost for violating 
any time window preference is ke = kl = 50. 
 

 
TABLE I 

TASK DURATIONS AND TIME WINDOWS 
Task 1 2 3 4 5 6 7 8 
ti 1 2 1 3 2 2.5 3 0.8 

[ej,lj] [1,4] [4,6] [1,2] [4,7] [3,5.5] [5,8] [5,8] [1.5,4]

 
 

TABLE II 
DISTANCE BETWEEN TASK POINTS 

dij 0 1 2 3 4 5 6 7 8 
0 0 40 60 75 90 200 100 160 80 
1 40 0 65 40 100 50 75 110 100 
2 60 65 0 75 100 100 75 75 75 
3 75 40 75 0 100 50 90 90 150 
4 90 100 100 100 0 100 75 75 100 
5 200 50 100 50 100 0 70 90 75 
6 100 75 75 90 75 70 0 70 100 
7 160 110 75 90 75 90 70 0 100 
8 80 100 75 150 100 75 100 100 0 
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B. Results and Discussions 

The computational results for the problem are presented 
in Table III. The solution presented corresponds to the best 
known result; with a total travel cost for the solution is 910. 
Our proposed GGA approach was able to obtain the best 
known solution, which demonstrates the effectiveness of the 
GGA metaheuristic method. 

 
TABLE III 

GGA SOLUTION 
Homecare worker Route/Path 
1  0 → 8 → 5 → 7 → 0 
2  0 → 3  → 1 → 2 → 0 
3  0  → 6  → 4 → 0  

Total Cost  910 
 
Table IV shows the comparative analysis of the results 

obtained. Comparison was done against the results 
previously obtained using competitive algorithms, that is, 
basic GA, particle swarm optimization (PSO), parallel PSO, 
and hybrid PSO. The average computation time for GGA 
was 3.5, which is less than other algorithms. Moreover, the 
search success rate for GGA 98%, which is higher than 
other algorithms: 46% for PSO, 24% for basic GA, 72% for 
parallel PSO, and 97% for Hybrid PSO, as shown in Table 
IV. Therefore, the proposed method is effective and 
efficient in solving homecare worker scheduling problem. 
 

 
TABLE IV 

COMPARATIVE RESULTS 
Approach Cost Search Success Rate 

(%) 
Average Search 

Time(s) 
GA 993.6 24 11.0 
PSO 940.5 46 6.00 
Parallel PSO 923.8 72 4.00 
Hybrid PSO 914.0 97 4.00 
GGA 910.0 98 3.50 

V. CONCLUSION AND FURTHER RESEARCH 

Home healthcare worker scheduling is a complex 
problem concerned with meeting the needs of patients at 
their homes at specific preferred time windows. We 
proposed a group genetic algorithm approach for solving 
typical problems, providing an illustrative example. The 
results demonstrated that, compared to other related 
approaches, GGA is an efficient and effective algorithm for 
addressing the home-based care problem. The approach is a 
potential tool for developing decision support systems for 
managers in healthcare systems concerned with home-based 
care community services. In our further research, we intend 
to apply the proposed algorithm to a typical home-based 
care centre in South Africa. 
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