
 

 
Abstract— Sliding mode is an acknowledged nonlinear 

robust control method which suffers from chattering 
phenomenon, the destructive high-frequency oscillations in 
internal states and control signal. One of the suggested routines 
to reduce chattering is to replace the discontinuity switching 
term, in standard method formulation, with a saturation 
function. Considering the fact that saturation function, with 
fixed-gradient, reduces the performance; we utilize an 
adaptive-gradient saturation function to overcome this 
limitation. Reinforcement learning algorithm is employed to 
find the instantaneous optimal value for the gradient of 
saturation function, with the ultimate goal of chattering 
reduction. The proposed intelligent sliding mode controller is 
applied to the tracking problem of chaotic Lorenz plant 
whereas the agent is rewarded (punished) for lower (higher) 
chattering. Simulation results are reported for standard and 
intelligent sliding mode controllers. The efficient control signal 
density as well as lower tracking error was attained after the 
agent learned the dynamics of the complex chaotic plant. 
Incorporating reinforcement learning into robust nonlinear 
control theory shows a promising route to achieve better 
performance.  
 

Index Terms— Sliding mode control, Reinforcement 
learning, Chattering reduction, Controlling chaos.  

I. INTRODUCTION 

liding-mode control is a subset of variable structure 
control methods due to uneven interactions in different 
regions of state space. Although this variability 

enhances robustness with respect to parameter uncertainties 
and un-modelled dynamics, it causes the undesirable 
chattering problem. Chattering is the high frequency 
oscillations, present in all system states, which causes low 
control accuracy, high wear of mechanical parts and heat 
loss in power electrical circuits. To overcome this 
detrimental phenomenon, a number of different techniques 
have been proposed during the last decades [1-3]. In these 
early works, authors replaced the discontinuous term by 
smooth functions, which reduced the chattering to the extent 
possible, however it resulted in poor error performance. The 
realization of chattering reduction and error convergence 
was addressed in a class of nonlinear systems using internal 
model principle [4]. The use of higher order sliding mode 
controller by replacing the higher derivatives of the control 
signal was proposed in [5]. Using auxiliary observer loop to 
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lock the chattering in the internal loop was also proposed to 
reduce the chattering [6]. However this method mainly 
suffers from complex usage of observers and differential 
inequalities. Accordingly reduced-order observer for 
chattering reduction was proposed in [7]. A more recent 
study showed the effectiveness of low-pass filtering on 
control signal which can reduce chattering even in noisy 
environment [8].  

Reinforcement learning (RL) is a psychologically 
inspired machine learning method that is widely 
acknowledged in game theory, control theory and 
optimization problems. This method introduces a framework 
to address how an agent takes actions in an environment to 
maximize a particular reward function [9]. RL was 
identified computationally efficient in adaptive optimal 
control systems; that deals with finding the best solution to 
extremize a function of the controlled process [10]. In [11] 
authors derived optimal controllers based on different 
reinforcement learning methods for class of linear time-
invariant deterministic systems. The proposed algorithms 
were not based on any knowledge of the system dynamics 
and it only required system output feedback to converge to 
optimal solution. Incorporating RL into hybrid control 
architecture for solving online optimal tracking problem was 
studied in a partially-known linear time varying process 
[12]. The control law was dynamically scheduled between 
stabilizing nonlinear controller, to ensure stability, and RL 
agent, to provide optimal long-term performance. Results 
showed the tracking performance of the hybrid controller 
was improved over that of fixed structure controller.  
 Sliding mode control has been effectively investigated 
in control problem of high-complexity nonlinear processes 
including chaotic structures [13-4]. While this was practiced 
especially as state stabilization and regulation, less attention 
was paid to the more complex tracking problems. The 
Lorenz system is a benchmark complex nonlinear equation 
that occasionally exhibits strange chaotic behavior [15]. 
This process was recruited in this study to validate the 
proposed controller.  

The purpose of this contribution is to introduce an 
intelligent sliding mode controller by incorporating RL into 
the standard sliding mode control. Accordingly, the standard 
sliding mode control is overviewed and the integration of 
RL into this framework is explained. The discontinuous 
switching term in the standard sliding-mode formulation is 
replaced by an adaptive-gradient saturation function. The 
term adaptive refers to the fact of finding the best solution 
for the saturation function intelligently, so as to minimize 
the chattering amplitude. Using the exemplary chaotic 
Lorenz plant, the developed intelligent controller was 
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examined in the tracking problem, while the control 
objectives were to track an exemplary sinusoidal trajectory 
and also reduce the chattering. Simulation results are 
provided to enable comparison between different control 
scenarios in terms of chattering amplitude and tracking 
error.   

II. METHODS 

A. Sliding-Mode Control (SMC) 

Sliding-mode control, considered as a robust nonlinear 
control design, has the ability to overcome uncertainties 
caused by different sources. This objective is achieved by 
introduction of sliding manifold, Eq. (3), and fluctuating 
around it. The solution is divided into two phases: a 
reaching phase and sliding phase. During the reaching 
phase, the trajectories in phase space are steered to reach the 
sliding manifold in a finite time and during the sliding phase 
they’re confined to this invariant set approaching the origin 
[16].  

Without loss of generality we consider the following 
dynamical system: 
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where ηRp and ξRn-p and δi, i = 1, 2 represent uncertainty 
terms. Here the control objective is to stabilize the origin (η, 
ξ) = (0, 0) while the case can be extended to regulation or 
tracking problem with particular transformations. The first 
step is to find a feedback law in order to stabilize η states. 
This task is done by smooth function φ(η) as to stabilize the 
origin of Eq. (2) asymptotically, subject to φ(0) = 0. 
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and the following sliding manifold is constructed: 
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Now the control input is designed so as to reach in z, and 

stabilize the internal dynamics by means of ueq, Eq. (9), and 
keep it on the surface thereafter by means of v, Eq. (8), 
during the sliding phase. The control input, u in (10), is 
explicitly calculated by using standard Lyapunov scheme. 
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The introduction of signum function in Eq. (8) injects 

high frequency switching term into the formulation. 
However the system hardware clocks cannot keep up with 
discontinuities in practice and results in chattering problem. 
This “zig-zag” curved phenomenon is the cause of several 
factors such as low control accuracy, heat loss and high 
wear in mechanical instruments as well as instability.  

One of the suggested routines to reduce the chattering 
problem is to replace the discontinuity term with saturation 
function, Fig. 1.   
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Fig. 1. Saturation function to replace the switching term in standard sliding 

mode control formulation. 

 
The proper selection of  is a trade-off between control 

accuracy (N, N: large positive value) and chattering 
(0).  

This fact supports the use of methods to approximate  
adaptively and in response to the underlying system 
dynamics. Reinforcement learning algorithm is suggested to 
estimate the optimal value of  in an interactive fashion. 

B. Intelligent Controller 

Reinforcement learning (RL) is concerned with how an 
agent takes actions in order to maximize a reward function 
in an environment. In this framework, an agent learns to 
make optimal decisions based on the history of information, 
which was received by interaction with environment. A state 
signal that holds all relevant information to make the 
optimal decision is said to have Markov property. In this 
study, by using the properties of Markov decision process 
(MDP), we applied the Q-learning method to the optimal 
control problem of finding the slope for saturation function 
[17]. Q-learning is a fast adaptive subset of RL method [9]. 

In a Lipschitz continuous dynamical system, the current 
state is completely described by preceding state and the 
evolution law, i.e. the current state retains all relevant 
information to compute the next state using the evolution 
law. This also suggests the use of MDP properties in 
dynamical systems theory and associated problems.  
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RL algorithm is a way of mapping world states to 
actions, on purpose, so as to maximize the long term reward. 
This goal is achieved by means of learning through direct 
interaction with the world states. This method is described 
by a triple <s, a, r>, representing state, action and reward, in 
a finite state MDP. Through the learning period the agent 
makes decisions, takes actions and accordingly enters new 
states. Based on how optimal this new state is, with respect 
to the desired goal, the taken action would result in reward 
(or penalty). This reward signal provides a mean to train the 
agent throughout learning.  

In the first step, finite number of possible actions will be 
defined to the agent. During learning period, the process of 
action-selection depends on agent learning policy. This 
policy can be more exploratory at early stage of learning by 
giving uniform chance of selection to all actions. At the end 
of learning period, this policy should be shifted toward more 
exploitation in order to make use of the acquired 
knowledge. In -greedy learning policy, the agent will 
choose between the best action, according to the past 
experience, or other actions. Accordingly while the 
probability of choosing the best action is 1-, the probability 
of choosing other possible actions will be .  

Agent will be rewarded (or punished) by taking an action 
in a particular state, and entering to the new state. 
Consequently learning is done by weighting (or 
suppressing) actions at each state, as instructed by the 
reward signal. These action values will be written in Q-table 
and they will be updated as the agent visits different states, 
and takes different actions. Learning objective is to find a 
global policy π: SA to maximize the long term 
accumulated reward.  

The rule of adaptation, for the contents of Q-table, is 
expressed as in Eqs. (12-13) below: 
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While t is a notation of time, Q(st, at) is the value of the 

current action ‘at’ at the current state ‘st’. Temporal 
difference error (TD-error), is proportional to the update 
value that must be reinforced to the current <state, action> 
value, i.e. it is mean of weighting the current action based 
on the prediction of the best action value in the next step. 
rt+1 is an immediate reward, corresponding to the taken 
action, which is gained by entering to the new state st+1.  is 
learning rate, which determines to what degree the newly 
acquired value, for that specific cell in Q-table, should 
override the previous knowledge, 0<≤1. =0 does not let 
the agent learn, and =1 gives the highest importance to the 
most recent update.  is a discounting factor to the future 
rewards, 0≤<1. Choosing =0 makes the agent 
opportunistic by only considering current reward and 
=1leads to the long term high reward.  

Thus, the algorithm for this method can be written as 
follows: 
 
Initialize Q(s, a) arbitrarily 

 Initialize st 
 Repeat 
  Choose at from st using policy derived from Q(st, 

at) 
   (e.g., -greedy) 
  Take action at, observe rt+1 and enter st+1 
  Update Q(st, at) according to 12, 13 
  st ← st+1 
  Until st is terminal 

III. APPLICATION 

A. Chaotic Lorenz System  

One of the most common chaotic models is the Lorenz 
system which is the Fourier expansion of the Navier-Stokes 
equations along two spatial directions. The fluid stream and 
resulting temperature differences are rephrased in terms of 
three-variable dynamic non-linear equations [15]. 

The chaotic Lorenz system was selected as a plant while 
for the sake of generality the unmatched disturbance was 
taken to be additive to the plant.  
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where p, r and b are positive parameters representing 
Prandtl number, the Rayleigh number and a geometric factor 
(b = 8/3, p = 10, r = 28), d is selected as a white Gaussian 
matched disturbance, d(0,1).   

The process output was taken as the first state while the 
desired trajectory was considered as follows: 

 
)2sin(1.02 tyd                                                        (15) 

 
Both standard and intelligent sliding-mode controllers 

were applied to the chaotic plant. Equivalent chattering and 
tracking-error were quantified, as a control performance, 
and listed in Table I.   

B. Standard SMC 

Considering the following transformation the Lorenz 
system equations can be rewritten in regular form of Eq. (1) 
as: 

 
)(, 12211 xxpzxz                                                  (16)  

))1()(( 31213 xxxpxprpz   

 
As demonstrated in Fig. 2 and Fig. 5(a), SMC could 

afford the control objectives in case of tracking error 
whereas the chattering problem still exists.  

C. Intelligent SMC (ISMC)  

In order to reduce the undesired chattering phenomenon, 
the saturation function was chosen instead of the standard 
signum function in Eq. (22) and the Q-learning algorithm 
was applied. Accordingly the intelligent agent was supposed 
to estimate  in an adaptive optimal fashion.   
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In accordance with Q-learning notation, states were 
identified as a function of controller output, as defined in 
Eq. (10), and its derivatives, Eq. (17). Agent actions were 
defined as different  values. The long term learning 
objective was chattering reduction. The agent was given a 
choice of actions [0:3], which would result in consequent 
reward or penalty.  

 
ucucucst                                                       (17) 

 
c′′, c′ and c were chosen with respect to their counterpart’s 
amplitude, output derivatives, so as to give those equal 
effects. According to Eq. (17), the lower states represent 
lower chattering and the upper states correspond to higher 
amount of the unwanted phenomenon. The number of states 
and actions were defined prior to each simulation, as 
reported in Table I, and they were partitioned equally.  
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Fig. 2. SMC performance, (a). Output, dotted line, and the desired 
trajectory, solid line, (b). Root mean squared of tracking-error. 

 
With respect the definition of sates, the reward function 

was defined, as Eq. (18), so as to increase in the lower 
states, where the amplitude and frequency of the control 
input were less significant.  
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The agent average reward over the living period and root 

mean squared of Q-table variation, the TD-error, which is 
the learning index are illustrated in Fig. 4 as well. In this 
simulation, learning rate and discounting factor were chosen 
as =0.1 and =0.9999. Also In -greedy policy,  was 
decreased monotonically toward the end of learning period, 
so that agent exploits the acquired knowledge the most at 
the end. 

IV. RESULTS & CONCLUSION 

Standard sliding mode control (SMC) and modified SMC 
(MSMC), which is formulated by fixed-gradient saturation 
function, were computationally simulated along with 
intelligent SMC. Outcomes were collected under equivalent 

simulation parameters. The controllers were able to solve 
the tracking problem starting from random bounded initial 
conditions. The depicted long time running period was not 
necessary for the collected outcomes and it was selected to 
show the relative robustness and efficiency of the developed 
controller. 
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Fig. 3. Intelligent SMC (agent 3) performance, (a). Output, dotted line, and 
the desired trajectory, solid line, (b). Root mean squared of tracking-error. 

 
The problem was considered like the benchmark maze in 

reinforcement learning area where the agent was supposed 
to find a goal but in a dynamic environment. The RL agent 
performance is demonstrated in Figure 4. In this framework, 
the slope ( in Eq. 11) of saturation function was estimated 
instantaneously by means of Q-learning algorithm. Fig. 4(a) 
demonstrates the total accumulated reward which follows an 
increasing trend up to almost fifth of the agent’s lifespan. 
The TD-error, in Eq. (12) and Fig. 4(b), is an indication of 
the reinforced signal to the agent. The asymptotic value of 
TD-error reflects the dynamic content of the chaotic plant 
that agent was unable to identify and cope with.  
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Fig. 4. Agent 3 learning process, (a). Accumulated reward, (b). Root mean 
squared of TD-error. 

 
In order to provide a quantitative comparison across 

different controllers, the root mean squared (RMS) 
performance criterion was introduced: 
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Table I demonstrates the performance index of different 
controllers by integrating the RMS of tracking error (e) and 
the switching term (v), as in Eq. (8), which represents the 
chattering amplitude.  

In development of the intelligent controller, variety of 
conditions were investigated based on the number of 
actions, states and the learning periods, as listed in Table I. 
Accordingly augmenting the Q-table dimension, which 
results in increased number of possible states and actions, 
improves the outcome performance but also exponentially 
increases the computational cost and convergence time.  
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Fig. 5. Control inputs, (a). Classic Sliding Mode Controller, (b). Intelligent 

Sliding Mode Controller (agent 3). 

 
As shown in Fig. 3 and Fig. 5, ISMC could afford the 

control objectives. The intelligent sliding mode controller 
was able to find an optimal solution for the control signal, 
and making it more realistic for practical purposes. While 
the sliding regime is keeping the variables on the sliding 
surface, the RL agent is trying to reduce the chattering. In 
fact the results show that not only the optimization 
algorithm is able to reduce the unwanted chattering problem 
but also this combination is able to decrease the tracking 
error and improve the outcome performance.  

This contribution enhances the existing results in 
reducing the chattering phenomenon in the sliding mode 
control framework. This approach is reliable not only in 
chattering reduction of sliding mode control for 
conventional scenario of nonlinear systems, but also it is 
applicable to chaotic nonlinear problem whereby it is more 
challenging to reduce the chattering. The reported outcome 
shows promising potential in incorporating the 

reinforcement learning algorithm into the classical robust 
control methods to achieve improved performance. 
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TABLE I 
RMS VALUES OF TRACKING-ERROR AND THE SWITCHING TERM, FOR 

THE LAST 100 SEC OF SMC VS. ISMC 

Method 
action, state, 

learning period (s) 
RMS(e) RMS(v) 

SMC ---- 1.9965e-07 1.4617e+03 
MSMC  = 0.01 1.1427e-06 1.4498e0+3 
ISMC 50, 20, 2e3 3.0208e-08 23.9221 

ISMC a 100, 20, 1e4 2.6671e-08 17.5595 
ISMC 250, 25, 15e3 3.1201e-08 24.8481 
aAgent 3. 
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