
 
 

Abstract— The problem of optimal motion generation is still a 
major focus of research in mobile robotics. Although many 
solutions have been proposed, it has always had to take into 
account new factors and constraints that may be related either to 
the environment (obstacles) or the robot itself. For a car-like 
vehicle, nonholonomic kinematic constraints force the robot to 
follow a trajectory imposed by the angle of its steering wheels. 
In this paper, we present an algorithm for motion planning in 
order to generate optimal movements for a nonholonomic mobile 
robot using a probabilistic network method (PRM) associated 
with two artificial intelligence techniques: the A * algorithm to 
search for the shortest path  and genetic algorithms for 
optimization. We used the Hierarchical Genetic Algorithms 
(AGH) that played on two criteria: collision and path length to 
calculate the optimal path without collision. One of the key points 
of our approach lies in the evaluation of the individuals; we used 
the principle of artificial potential field that has yielded 
interesting results in terms of quality and optimization of 
trajectories. 

Index Terms—path Motion planning; PRM; Hierarchical 
Genetic algorithms; robotics.  

I.  INTRODUCTION  
Since a few years an increasing interest is carried within the 
robotics community on planning optimal motion. The interest 
is born of the need to optimize the energy consumed by 
nonholonomic vehicles (e.g car-like vehicles), developing 
algorithms in this sense has a very important economic 
significance.  
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The problem of motion generation for non holonomic mobile 
robots can be divided into two sub-problems: the first is to 
find optimal paths, the second is to adapt these paths to be 
achievable by the robot taking into account the constraints 
related to the latter, these paths must satisfy  certain 
conditions: 
 

• They should be collision-free and minimum length 
• They must be smooth with minimum of bends 
• They must be achievable by the robot in monotonic 

time. 
Recently, random sampling has emerged as a powerful 
technique for planning in large configuration spaces [1][2].  
Random-sampling planners are classified into two categories: 
PRM (Probabilistic RoadMap) and RRT (Rapidly-Exploring 
Random Tree). 
In this article we will use the Hierarchical Genetic Algorithms 
(AGH) that will play on two criteria: collision and path length 
to calculate the optimal path without collision. One of the key 
points of our approach lies in the evaluation of the individuals; 
we used the principle of artificial potential field that has 
yielded interesting results in terms of quality and optimization 
of trajectories. 
Genetic algorithms (GA’s) are search strategies based on 
models of evolution [3]. They have been shown to be able to 
solve hard problems in tractable time. Here, we need a 
solution space composed of a set of nodes randomly generated 
in Cfree (free Configuration space). 
Section II describes briefly the PRM-based path planning. Section 
III lays the mathematical description of the kinematic model of 
the non holonomic robot. Section IV details our approach in using 
genetic algorithms to plan optimized paths. In section V, we 
report a series of actual runs. 
 

II. THE PRM APPROACH   
 

The principle of probabilistic networks PRM is simple; we 
construct a graph G = (N, V) and capture the connectedness of 
 ऍझࢋࢋ࢘ࢌ.  [4].The N nodes are free configurations generated 
randomly according to a uniform distribution. Arcs of G 
collected in the set V, are free collision paths connecting the N 
nodes, two by two. Most PRM methods have the same general 
structure; they are usually divided into two phases: a learning 
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A path tracking function allows to extract the different 
steering angles along the latter. First, this function will 
calculate two points of the steering (the beginning and end of 
the steering) for every three successive points of the path (Fig 
3) [7][8][12]. Then it will split the path that connects these 
three points in two subpaths, the first is a straight line from the 
first point to the start point and the second is the minimal 
radius arc ሺേ߶௠௔௫ሻ) which connects the two steering points. 
Figure 3 shows the operation of path following. 
 

 
Fig 3. The path following between three points 

 
During the following process, we will extract the different 
steering angles in each interval of time Δt (Fig 4) [13]. 
 

 
Fig 4. execution of the path by a nonholonomic robot  

 

IV. OPTIMIZING BY GENETIC ALGORITHMS  
During the execution of the trajectory, the robot may be in 
collision with the obstacles (fig 4) even if it is not the case, the 
calculated path is not necessarily the best, we must seek a 
sequence of steering angles corresponding to a collision free 
shortest path. To do this, we will use the Hierarchical Genetic 
Algorithms (HGA) [9] that will perform on two criteria; 
collision and path length to calculate optimal path without 
collision.  
To generate the initial population we must repeat all previous 
steps from the construction of the PRM to the following path 
and that in order to have more possible paths connecting the 
two positions start and goal [10].  Fig 5 shows ten paths 
obtained by the PRM method executed ten times. 
 

 
Fig 5. Ten Paths obtained by PRM executed ten times 

 
Each individual has two chromosomes, the first contains genes 
carrying angle values  ߶௜  extracted during the follow up of 
each path and the second contains the angle θstart of the 
startup configuration. 
The size of the first chromosome differs from one individual 
to another depending on the way it extracts its genes (steering 
angle). 
The size of the first chromosome differs from one individual 
to another depending on the path in which it extracts its genes 
(steering angle). To overcome this problem we added to the 
first chromosome of each individual a certain number of genes 
(initialized to zero) until its size is equal to the size of the 
largest chromosome then we assigned to each parameters gene 
a control gene ݃௜ which will disable the parameters gene if it is 
an added gene ( ௜݃ ൌ 0) or activate it if not ( ௜݃ ൌ 1). 

The structure of an individual can be represented by 
figure 6.  

 
Fig 6. An individual structure 

 

A. The fitness function 
The evaluation of each individual is performed as follows: 
We calculate a reference path by applying to one of the paths 
calculated previously the procedure of shortening and 
discretization (with a very small stepsize) enough times to get 
the shortest path that connects start and goal configurations. 
Then we define a potential  ݒ௜  of a configuration ݍ௜ which is 
proportional to the distance to obstacles and the reference path 
when the robot is at the configuration   ݍ௜ thus the reference 
path will exert attractive field on the solution while the 
obstacles will exert a repulsive field [11] and the evaluation of 
each gene should be proportional to the resultant of these two 
fields and also to the number of active parameters genes 
( ௜݃ ൌ 1) which is proportional to the length of the associated 
path. The potential   ݒ௜ of a configuration  ݍ௜ can be expressed 
by: 

௜ݒ   ൌ ቐ
 ଵ
௡

 ሺ ௄ೌ
ሺௗ೔ାଵሻమ െ ௄ೝ

ሺௗ௥೔ሻమሻ          ݂݅     ݀ݎ௜ ൑ ݀଴   
ଵ
௡

 ௄ೌ
ሺௗೌାଵሻమ ௜ݎ݀      ݂݅                               ൐   ݀଴

       (5) 
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݀௜  : is the distance between the configuration ݍ௜  and the 
reference path. 
௜ݎ݀   : is the distance between the configuration ݍ௜  and the 
nearest obstacle.      
݀଴ : is the influence distance of the obstacles. 
n is the number of active parameters genes. 
The evaluation of an individual is therefore the sum of the 
potentials  ݒ௜ of its active parameters genes. 
The fitness function can be expressed as follows: 
 

݂ ൌ ∑ ௜݃  ൈ ௜ݒ
௡
௜ୀଵ                                    (6) 

B. Selection 
The selection of individuals is performed using the elitist 
method where the individuals are sorted in descending order 
according to the evaluation of each individual. The most 
successful individuals (who have a high valuation) are 
selected to participate to the next generation. 

C. Reproduction of individuals 
The best solutions are combined to give rise to new 
individuals who are added to the previous set of individuals, 
this step can be carried out by two processes: crossover and 
mutation. 

D. Crossover 
We made a draw with replacement of two individuals who 
will undergo two types of crosses: the first is a barycentric 
cross carried out on the genes of parameters with a weight 
taken randomly in the interval [0 1]. The second is a classical 
crossover (exchange of genes) performed on control genes, 
Figure 7 describes the principle of the used crossover. 
 

 
figure 7. The used crossover principle 

Where :     

൜ ′′׎     ൌ ′׎ ߙ ൅ ሺ1 െ                   ׎ሻߙ
௦௧௔௥௧′′ߠ  ൌ ௦௧௔௥௧′ߠ ߙ ൅ ሺ1 െ ௦௧௔௥௧ߠሻߙ

                                      ሺ7ሻ                                   ሺ5.4ሻ  

We repeat the crossing until a sufficient number of individuals 
who will create the new population. 

E. Mutation 
In the process of mutation, we used a uniform mutation by 
adding a gaussian noise with a vey small variance (of the order 
of  ׎೘ೌೣ

ଶହ
) to the genes of the first chromosome with a 

probability of about 20%. 
For a steering angle ׎ the mutation process can be expressed 
as follows: 

′׎ ൌ ׎ ൅ ܰ ቀ0, ೘ೌೣ׎
ଶହ

ቁ                               (8) 
The angle ׎  is obtained after mutation is accepted   ׎′ א
ሾെ׎௠௔௫    ׎௠௔௫ ሿ. We repeat the selection operators crossover 
and mutation to obtain the shortest feasible path. 
 

V. RESULTS 
In this section we present some results obtained under Matlab 
environment (v.R2009a). Like all heuristic algorithms, our 
algorithm can take a long time to converge to the optimal 
solution, as it can quickly converge, this depends on several 
parameters, the first is the initial population which in turn 
depends on the probabilistic roadmap planner PRM (ܰmax, ݀min 
...), also the discretization ݈ and ܯ the number of times the 
shortening and discretization procedure is applied (Figure 
5.16): 
The solution can converge quickly if the initial population 
contains a path very close to optimal. 
The choice of the evaluation function parameters (ܭa 0݀ ,ݎܭ) 
plays a very important role in the convergence of the solution, 
in fact more ܭa, ݎܭ and ݀0 increase, the solution approaches 
the reference path and moves away from obstacles.(Figure 
5.16). We present two tests obtained on two different 
environments with two different start and goal configurations 
(Figures 7.a , 7.b, 8.a and 8.b). 
 
Environment 1 

 
 
 
 
Environment 2 

 
 
The evolution of the trajectories obtained for the two 
environments is given in Tables 1 and 2. 
 
Table 1 

Generation 10 20 50 100 200
Evaluation -180,42 -192,41 -220,71 -250,07 -330,35

Trajectory length 170 170 170 169 163
Collision yes no no no no

 
Table 2 

Generation 10 20 50 100 300
Evaluation -531.24 ‐664.82 ‐776.07 ‐963.33 6997.46

Trajectory length 242 240 240 240 240
Collision yes no no no no

 

Fig 7.a. Trajectory after 10 generations Fig 7.b. Trajectory after 200 generations 

Fig 8.a. Trajectory after 10 generations Fig 8.b. Trajectory after 300 generations 

Proceedings of the World Congress on Engineering 2013 Vol II, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



In the first environment, we note that the algorithm has 
converged to the optimal solution after 200 generations, and 
the evolution of the solution is sensitive from one generation 
to another, while the evolution of the solution in the second 
environment is very slow from the 50th generation to 
generation 300. This is usually due to the initial population or 
the distribution of obstacles that may contain narrow passages. 
It is difficult to define a stop condition of the algorithm 
because the solution can stagnate until the mutation operator 
improves the solution and this can be after any number of 
generations, so we repeat the genetic operators enough time to 
have the best solution. 
 

VI. CONCLUSION 
In this article, we focused on the problem of generating 
optimal motion for a nonholonomic mobile robot which 
operates in a 2D environment, where obstacles are assumed to 
be fixed and polygonal. For this type of robot, a free path is 
not necessarily a feasible path because of the non holonomic 
constraints that impose a velocity tangent to the trajectory. 
We proceeded in three steps, we first calculated free paths 
without taking into account the constraints of non-holonomy 
of the robot, using the method of probabilistic roadmap 
planner PRM associated with a search algorithm for the 
shortest path (A star) , these paths are then improved by using 
shortening and discretization algorithms. 
In the second step we calculated the commands required to 
follow these paths, we finally used the HGA algorithms 
associated to the artificial potential field principle to generate 
the adequate controls for optimized motion between a start and 
a goal configuration. The results showed the advantages of 
genetic algorithms in motion optimization. 
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