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Motion Planning for Car-like Robots Using
Hierarchical Genetic Algorithms
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Abstract— The problem of optimal motion generation is still a
major focus of research in mobile robotics. Although many
solutions have been proposed, it has always had to take into
account new factors and constraints that may be related either to
the environment (obstacles) or the robot itself. For a car-like
vehicle, nonholonomic kinematic constraints force the robot to
follow a trajectory imposed by the angle of its steering wheels.
In this paper, we present an algorithm for motion planning in
order to generate optimal movements for a nonholonomic mobile
robot using a probabilistic network method (PRM) associated
with two artificial intelligence techniques: the A * algorithm to
search for the shortest path and genetic algorithms for
optimization. We used the Hierarchical Genetic Algorithms
(AGH) that played on two criteria: collision and path length to
calculate the optimal path without collision. One of the key points
of our approach lies in the evaluation of the individuals; we used
the principle of artificial potential field that has vyielded
interesting results in terms of quality and optimization of
trajectories.

Index Terms—path Motion planning; PRM; Hierarchical
Genetic algorithms; robotics.

1. INTRODUCTION

Since a few years an increasing interest is carried within the
robotics community on planning optimal motion. The interest
is born of the need to optimize the energy consumed by
nonholonomic vehicles (e.g car-like vehicles), developing
algorithms in this sense has a very important economic
significance.
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The problem of motion generation for non holonomic mobile
robots can be divided into two sub-problems: the first is to
find optimal paths, the second is to adapt these paths to be
achievable by the robot taking into account the constraints
related to the latter, these paths must satisfy  certain
conditions:

e They should be collision-free and minimum length

e  They must be smooth with minimum of bends

e They must be achievable by the robot in monotonic

time.

Recently, random sampling has emerged as a powerful
technique for planning in large configuration spaces [1][2].
Random-sampling planners are classified into two categories:
PRM (Probabilistic RoadMap) and RRT (Rapidly-Exploring
Random Tree).
In this article we will use the Hierarchical Genetic Algorithms
(AGH) that will play on two criteria: collision and path length
to calculate the optimal path without collision. One of the key
points of our approach lies in the evaluation of the individuals;
we used the principle of artificial potential field that has
yielded interesting results in terms of quality and optimization
of trajectories.
Genetic algorithms (GA’s) are search strategies based on
models of evolution [3]. They have been shown to be able to
solve hard problems in tractable time. Here, we need a
solution space composed of a set of nodes randomly generated
in Cge. (free Configuration space).
Section II describes briefly the PRM-based path planning. Section
III lays the mathematical description of the kinematic model of
the non holonomic robot. Section IV details our approach in using
genetic algorithms to plan optimized paths. In section V, we
report a series of actual runs.

II.  THE PRM APPROACH

The principle of probabilistic networks PRM is simple; we
construct a graph G = (N, V) and capture the connectedness of
CSfree. [4]. The N nodes are free configurations generated
randomly according to a uniform distribution. Arcs of G
collected in the set V, are free collision paths connecting the N
nodes, two by two. Most PRM methods have the same general
structure; they are usually divided into two phases: a learning
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phase and a research phase [1]. The learning phase consists of
the graph building with enough nodes to cover uniformly the
free configuration space CS8f.¢.. and this even in the most
difficult places of this area. It usually consists of two stages: a
stage of construction, and an another for expansion.

A. The Construction stage

In this step, we use a sampling strategy to randomly generate
new nodes in the free configuration space and insert them in
the graph G. Then we use a neighbor selection strategy to
select a set of neighboring nodes for each new generated node.
A collision detector can determine whether a node belongs or
not to the free space. It is also used to test whether a given
path is included or not in the free space.

B. The Expansion stage

This step improves the connectivity graph generated in the
construction stage. It will intervene especially in places where
G is disconnected while CS8ypre is not, which would
correspond in most times to narrow regions so it is useful in
exploring regions with narrow passages.

C. The parameters selection

To calculate the number N,.., we used a method based on
calculation of the ratio of the free surface on the total area of
the environment, given a sampling distance d,y;,.

This process is repeated K times then we calculate the average
of the ratios obtained for a better approximation, the number
Nmax Will be the full value of the ration of the free surface on
the disk surface which includes a square of side d;y,.

Npax = integer | Q X Surfac,f 1)
d?ninxf

Figure 1 shows an example with d,;;;=5 and N,,,,=250.

- Fig 1.The environment discrétisation
Ainin = 5, Npax = 250

To determine if a path between two nodes is a free path or not,
we used a binary process of collision detection.
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D. Search of the shortest path

To find the shortest path from the initial configuration to the
target configuration we used a three-step algorithm. In the
first step the A* algorithm [5] is applied to find the shortest
path in the network built previously; this path is a
concatenation of arcs included in the PRM network. Because
of the probabilistic nature of the PRM, the calculated path may
contain irregular parts. A shortening process is performed in a
second step to eliminate uneven parts of the computed path

(Fig 2).

Fig 2. Paths before (red) and after (green) shortening.

E. Path smoothing

For car-like vehicles the problem of planning feasible motion
can’t be addressed the aspects considered so far. This is due to
the existence of a link between some special configuration
parameters and velocity of the vehicle making the generation
of a feasible movement even more difficult [6]. The obtained
paths during the searching stage can be long and irregular
because of the probabilistic character of the PRM, therefore to
be executed by the robot, paths must be smoothed and
optimized.

A shortcutting process is used for path optimization by
eliminating uneven parts [8].

III. THE NON HOLONOMIC ROBOT

For a car-like vehicle we can write:

G(q,q9t)=0 2

G=—x{)sin0(t) +y(t)cosO(t) =0 3)

A configuration q of the robot is defined by the 4-uple

q= [x' v, 0, ¢] de R? x [0'27T [ X [_¢max'¢max] where x

and y define the position of the reference point M, 6 is the

orientation of the vehicle in the frame F(0,,J") and ¢ the
steering angle .

The discretization of the kinematic model can be written as
follows [6][7]:

Vier = Vi + At % sin(6; + tang At ) 4)
(641 =6, + At% tan .

{ Xy = X+ At % cos(6; + tang At)
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A path tracking function allows to extract the different
steering angles along the latter. First, this function will
calculate two points of the steering (the beginning and end of
the steering) for every three successive points of the path (Fig
3) [71[8][12]. Then it will split the path that connects these
three points in two subpaths, the first is a straight line from the
first point to the start point and the second is the minimal
radius arc (+¢,,4)) Which connects the two steering points.
Figure 3 shows the operation of path following.

|

Fig 3. The path following between three points

During the following process, we will extract the different
steering angles in each interval of time At (Fig 4) [13].

Fig 4. execution of the path by a nonholonomic robot

IV. OPTIMIZING BY GENETIC ALGORITHMS

During the execution of the trajectory, the robot may be in
collision with the obstacles (fig 4) even if it is not the case, the
calculated path is not necessarily the best, we must seek a
sequence of steering angles corresponding to a collision free
shortest path. To do this, we will use the Hierarchical Genetic
Algorithms (HGA) [9] that will perform on two criteria;
collision and path length to calculate optimal path without
collision.

To generate the initial population we must repeat all previous
steps from the construction of the PRM to the following path
and that in order to have more possible paths connecting the
two positions start and goal [10]. Fig 5 shows ten paths
obtained by the PRM method executed ten times.
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Fig 5. Ten Paths obtained by PRM executed ten times

Each individual has two chromosomes, the first contains genes
carrying angle values ¢; extracted during the follow up of
each path and the second contains the angle Ostart of the
startup configuration.
The size of the first chromosome differs from one individual
to another depending on the way it extracts its genes (steering
angle).
The size of the first chromosome differs from one individual
to another depending on the path in which it extracts its genes
(steering angle). To overcome this problem we added to the
first chromosome of each individual a certain number of genes
(initialized to zero) until its size is equal to the size of the
largest chromosome then we assigned to each parameters gene
a control gene g; which will disable the parameters gene if it is
an added gene (g; = 0) or activate it if not (g; = 1).

The structure of an individual can be represented by

figure 6.
/ Parameter gene
A Y kA [
AR (8 A I N

Control gene

Fig 6. An individual structure

A. The fitness function

The evaluation of each individual is performed as follows:

We calculate a reference path by applying to one of the paths
calculated previously the procedure of shortening and
discretization (with a very small stepsize) enough times to get
the shortest path that connects start and goal configurations.
Then we define a potential v; of a configuration q; which is
proportional to the distance to obstacles and the reference path
when the robot is at the configuration g; thus the reference
path will exert attractive field on the solution while the
obstacles will exert a repulsive field [11] and the evaluation of
each gene should be proportional to the resultant of these two
fields and also to the number of active parameters genes
(g; = 1) which is proportional to the length of the associated
path. The potential v; of a configuration g; can be expressed
by:

Kg K

! _ K ; _
v, = n ((dz+1)2 (dri)z) if dry<d, )
7)1 _Ka .
n (dg+1)2 if dry> d,
K, and K, are positive constants
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d; : is the distance between the configuration g; and the
reference path.

dr; : is the distance between the configuration g; and the
nearest obstacle.

d, : is the influence distance of the obstacles.

n is the number of active parameters genes.

The evaluation of an individual is therefore the sum of the
potentials v; of its active parameters genes.

The fitness function can be expressed as follows:

f=2k19i X (6)
B. Selection

The selection of individuals is performed using the elitist
method where the individuals are sorted in descending order
according to the evaluation of each individual. The most
successful individuals (who have a high valuation) are
selected to participate to the next generation.

C. Reproduction of individuals

The best solutions are combined to give rise to new
individuals who are added to the previous set of individuals,
this step can be carried out by two processes: crossover and
mutation.

D. Crossover

We made a draw with replacement of two individuals who
will undergo two types of crosses: the first is a barycentric
cross carried out on the genes of parameters with a weight
taken randomly in the interval [0 1]. The second is a classical
crossover (exchange of genes) performed on control genes,
Figure 7 describes the principle of the used crossover.

[RUILA I

¢1 ¢; ¢r @ &-mﬂ " beryeeniric crossover g g'ﬂ 4R g;l 1
o8 Bl | I le I_

classical crassover ¢f ¢! » ¢r‘ ¢.¢ &mrr

& |8 S E

figure 7. The used crossover principle

Where :
{ 0" =a@d' +(1—-a)p
0" stare = X O'sare + (1 - a)estart

We repeat the crossing until a sufficient number of individuals
who will create the new population.

)

E. Mutation

In the process of mutation, we used a uniform mutation by

adding a gaussian noise with a vey small variance (of the order

f %) to the genes of the first chromosome with a

probability of about 20%.
For a steering angle @ the mutation process can be expressed
as follows:

0'=0+N(0,%m) ®)

25
The angle @ is obtained after mutation is accepted @ €
[—Dmax Dmax |- We repeat the selection operators crossover
and mutation to obtain the shortest feasible path.
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V. RESULTS

In this section we present some results obtained under Matlab
environment (v.R2009a). Like all heuristic algorithms, our
algorithm can take a long time to converge to the optimal
solution, as it can quickly converge, this depends on several
parameters, the first is the initial population which in turn
depends on the probabilistic roadmap planner PRM (N yax, Amin
...), also the discretization [ and M the number of times the
shortening and discretization procedure is applied (Figure
5.16):

The solution can converge quickly if the initial population
contains a path very close to optimal.
The choice of the evaluation function parameters (K. Kr, d)
plays a very important role in the convergence of the solution,
in fact more Ka, Kr and d0 increase, the solution approaches
the reference path and moves away from obstacles.(Figure
5.16). We present two tests obtained on two different
environments with two different start and goal configurations
(Figures 7.a, 7.b, 8.2 and 8.b).

Environment 1

(] 1] @ B -1} 0 10

Fig 7.a. Trajectory after 10 generationsFig 7.b. Trajectory after 200 generations

Environment 2

0

. . . o 2 &0 60 L 100 L]
Fig 8.a. Trajectory after 10 generations Fig 8.b. Trajectory after 300 generations

The evolution of the trajectories obtained for the two
environments is given in Tables 1 and 2.

Table 1
Generation 10 20 50 100 200
Evaluation -180.42  -192.41 -220.71 -250.07  -330.35
Trajectory length 170 170 170 169 163
Collision yes no no no no
Table 2
Generation 10 20 50 100 300
Evaluation -531.24  -664.82 -776.07  -963.33  6997.46
Trajectory length 242 240 240 240 240
Collision yes no no no no
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In the first environment, we note that the algorithm has
converged to the optimal solution after 200 generations, and
the evolution of the solution is sensitive from one generation
to another, while the evolution of the solution in the second
environment is very slow from the 50th generation to
generation 300. This is usually due to the initial population or
the distribution of obstacles that may contain narrow passages.
It is difficult to define a stop condition of the algorithm
because the solution can stagnate until the mutation operator
improves the solution and this can be after any number of
generations, so we repeat the genetic operators enough time to
have the best solution.

VL

In this article, we focused on the problem of generating
optimal motion for a nonholonomic mobile robot which
operates in a 2D environment, where obstacles are assumed to
be fixed and polygonal. For this type of robot, a free path is
not necessarily a feasible path because of the non holonomic
constraints that impose a velocity tangent to the trajectory.

We proceeded in three steps, we first calculated free paths
without taking into account the constraints of non-holonomy
of the robot, using the method of probabilistic roadmap
planner PRM associated with a search algorithm for the
shortest path (A star) , these paths are then improved by using
shortening and discretization algorithms.

In the second step we calculated the commands required to
follow these paths, we finally used the HGA algorithms
associated to the artificial potential field principle to generate
the adequate controls for optimized motion between a start and
a goal configuration. The results showed the advantages of
genetic algorithms in motion optimization.

CONCLUSION
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