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Abstract—A large attention has been focused on the dynamic 

fault tree (DFT). Cut sequence is an algebraic approach to 
overcome the shortcomings of the traditional methods for DFT 
analysis. In the generation of cut sequences, temporal rules play 
a key role, and the complete temporal laws ensure any form of 
the DFT can be reduced to cut sequences. Recently, lots of 
temporal rules have been put forward, but none of them are 
proven to be complete. This paper provides concise, but 
complete temporal rules. At first, the algebraic framework for 
temporal rules was built. Secondly, we put forward seven 
temporal rules, which are proven to be valid. Then, 
binary-tree-based completeness validations for temporal rules 
were given. Finally, application demonstrates the efficiency of 
the proposed temporal rules. Complete temporal rules promote 
the establishment of an intact theoretical foundation for cut 
sequence approach.  
 

Index Terms—reliability, dynamic fault tree, cut sequence, 
temporal rules, completeness 
 

I. INTRODUCTION 

ault tree model is well accepted by reliability engineers 
and researchers for its advantages of compact structure 

and integrated analyzing methods. While traditional (static) 
fault trees cannot deal with the systems that characterize 
dynamic behaviors, such as sequential failure or redundancy. 
In the past few years, a large attention has been focused on 
the dynamic fault tree (DFT) [1]. By adding new gates to 
static fault tree, DFT aims to take into account dependencies 
among events (which typically exist in systems with spare 
components). 

Markov chains (MCs) and their extensions have proven to 
be a versatile tool for analyzing the DFT [1] [2]. However, 
the MC-based approaches are faced with two well-known 
problems: (1) ineffectiveness in solving large dynamic 
models, i.e. the number of states grows exponentially as the 
number of the basic events in the system increases; (2) lack of 
modeling power capabilities, i.e. the failure time distribution 
is limited to the exponential distribution.  
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The difficulty in (1) mainly comes from the existence of 
repeated events. A repeated event is defined as an event 
connected to several gates. To overcome the problem of (1), 
some researchers proposed methods to reduce the size of the 
MC by a modularization technique [3]. Static modules are 
analyzed by a binary decision diagram-based algorithm, and 
MCs are applied to the dynamic modules. However, in many 
cases, the size of a single module remains significant, and 
potentially leads to an unreasonable long computation times. 
Hence, the applicability of the modularization technique is 
not always evident. 

As a method to extend the modeling capability, i.e., as an 
alternative method to deal with the problem of (2), the 
algebraic approach of the DFT has been proposed. Liu et al. 
[4] proposed a method of DFT analysis called CSSA (Cut 
Sequence Set Algorithm). In CSSA, the DFT is reduced into 
a set of cut sequences called sequential failure expressions 
(SFEs), which are ordered lists of events connected by the 
sequential failure symbol. The CSS (Cut Sequence Set) is the 
collection of all SFEs that represent the fault tree. Therefore, 
the CSSA method avoids the use of MCs entirely. Another 
algebraic approach is proposed by Merle et al [5], they put 
forward the complete algebraic expression of the DFT via 
introducing new temporal operators in order to define the 
sequence dependence of the gates. By using the operators and 
the conventional Boolean operators, the occurrence time of a 
top event (TE) is represented as a sum of the product 
canonical form. The terms of this form correspond to the 
minimal cut sequence set of the DFT. 

Algebraic analysis of static fault trees consists of reducing 
any form of fault tree to its cut sets, which relies on a set of 
complete Boolean rules to function. In the generation of cut 
sequence of the DFT, Boolean rules are not sufficient for the 
DFT analysis. Therefore, more logical rules are needed, and 
we can apply to these temporal gates. These rules are named 
temporal rules. Complete temporal rules ensure any form of 
the DFT can be reduced to cut sequences. In Liu and Merle’s 
works, lots of temporal rules have been put forward, 
unfortunately, none of them told us their rules are complete.  

In this paper, we propose novel and concise temporal rules 
for generating cut sequences. In order to prove the temporal 
rules are complete, we firstly build up a rigorous algebraic 
framework for temporal rules, then we seek for the common 
form of algebraic expressions for the DFT, finally the 
temporal rules’ completeness proof is given. 

II. BACKGROUND 

A. Dynamic Fault Trees 

Static fault tree (SFT), only captures the combination of 
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events, and is inadequate to model today’s complex dynamic 
systems. DFT analysis is an extension of SFT analysis that 
allows the modeling of dynamic behavior (sequence of 
events and functional dependence between events). DFT 
takes into account not only the combination of failure events 
but also the order in which they occur. DFT defines special 
gates that capture a variety of failure sequence and functional 
dependence. The six dynamic gates are proposed; the priority 
AND (PAND) gate, the functional dependency (FDEP) gate, 
the hot spare (HSP) gate, the warm spare (WSP) gate, the 
cold spare (CSP) gate and the sequence enforcing (SEQ) 
gate. The PAND gate is used to represent the dependence of 
the event sequence. It is logically equivalent to an AND gate, 
for which input events must occur in a specific order for the 
output event to occur. The output of a PAND gate with two 
inputs depicted in fig. 1 (a) becomes true if and only if both 
events A and B have occurred and event A has occurred 
before event B. The FDEP gate in fig. 1 (b) has a single 
trigger input A, and one or more dependent basic events. The 
dependent events are functionally dependent on the trigger 
event. When the trigger event occurs, the dependent events B 
is forced to occur. The WSP gate generalizes the CSP gate 
and the HSP gate. Fig. 1 (c) shows a WSP gate with two 
warm spares. The event A is a primary input that is originally 
powered on, and the other inputs specify the components that 
are used as replacements for the primary unit. The failure 
rates of spare units are reduced by a factor α, called the 
dormancy factor in standby mode. If α = 0, the gate is a CSP 
gate. And if α = 1, it is regarded as an HSP gate. The WSP 
gate has one output that becomes true after all the input 
events occur. The SEQ gate in fig. 1 (d) forces events to 
occur in a particular order. The input events are constrained 
to occur in the left-to-right order. However, it was shown in 
[6] that the SEQ gate is expressible in terms of the CSP. As a 
consequence, dynamic gates can be limited to gates PAND, 
FDEP, and Spare, only. 

 

FDEP WSP SEQ

A B

A

B C A B A B

(a) (b) (c) (d)  
Fig. 1.  Dynamic gates. (a) PAND (b) FDEP (c) WSP (d) SEQ 

 

B. Cut Sequence 

The occurrence of the DFT’s TE depends not only the 
combinations of basic events, but also the basic events’ 
sequential failure, called cut sequence, and the set of cut 
sequence is accordingly named cut sequence set (CSS). The 
CSS depicts components’ dynamic behaviors causing the 
system’s failure, which is the focus and difficulty in the 
DFT’s research.  

In Liu’s CSSA approach, X→Y is a SFE in which X fails 
first and then Y fails. AND gates are converted into SFEs by 
enumerating all possible sequences, of which there are n! for 
a gate with n inputs; thus an AND gate with three inputs, e.g. 
X.Y.Z, would yield 6 SFEs: X→Y→Z, X→Z→Y, Y→X→Z, 
Y→Z→X, Z→Y→X, and Z→X→Y. PAND gates indicate a 
single SFE directly, e.g. X PAND Y is the same as X→Y. 

FDEP gates are represented as (E1 AND E2) OR E3, where 
E1, E2, and E3 are SFEs representing the trigger event, the 
triggered events, and any non-triggered events respectively. 
Finally, SPARE gates (WSP, CSP and HSP) are represented 
by specific SFEs that link the failure of the primary to the 
failure of the secondary. 

III. TEMPORAL RULES’ ALGEBRAIC FRAMEWORK  

A. Non-repairable Events 

The events of DFT are considered as non-repairable in this 
paper. It is also assumed that events occur instantaneously. 
To count on the temporal aspect of events, in accordance with 
Merle’s work, we consider events are piecewise right 
continuous on R+ ∪ {+∞}. Each of them is defined by its 
unique time of occurrence, noted t (A) for an event A. In this 
paper, we denote by BE the set of non-repairable events. 

For any v � BE, an assignment over v is any mapping from 
v to {0, 1}. Assignments are extended inductively into 
mappings from Boolean formulae into {0, 1}. Let σ be an 
assignment, then 

1     
( )

0  ( )

otherwise
v

if t v



   

 

And 

( ) 1   ( ) 0    

( ) 0  ( )

I if t I

if t




 
     

 

B. Operators 

Any elements of BE can be composed thanks to a rewriting 
of classical Boolean operators. The temporal definition of 
Boolean operators OR (+) and AND (·), based on the 
assignments of a and b is 

( ) max{ ( ),  ( )}

(   ) min{ ( ),  ( )}

a b a b

a b a b

  
  

 
  

 

To model the sequence of occurrence of events, we 
introduce an operator PRIORITY (with symbol ≺), whose 
formal definition, based on the assignments of a and b, is 
(with a given time interval [0, T] ) 

1 0 ( ) ( )
( )

0             

t a t b T
a b

otherwise


  
 


  

It can be seen that the order of inputs to AND and OR gates 
is irrelevant. However, the dynamic gates, such as PAND, 
SPARE, and SEQ, depend on the order of their inputs. The 
PRIORITY is not a commutative operator. 

C. Behavior Model of Static and Dynamic Gates under the 
Framework 

This chapter presents the behavioral model of dynamic 
gates which has been built thanks to the 3 operators in order 
to determine the structure function of the DFT. The 
behavioral model of gates OR, AND, PAND, FDEP, and 
Spare is presented as follows. 

1) OR and AND gate 
The OR gate’s output event occurs if either of its inputs 
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occurs, assume its inputs events are A and B, a behavioral 
model of OR gate can hence be determined as 

A + B 

For the AND gate, if all of its inputs events occur, its 
output event occur, so the behavioral model AND gate with 
inputs events A and B is 

A · B 
2) PAND gate 

The PAND gate is a special case of the AND gate in which 
the output event occurs only if all input events occur in a 
specified ordered sequence. A behavioral model of PAND 
gate in fig. 1(a) can be modeled as 

A ≺ B 

3) FDEP gate 
The FDEP gate is a dynamic gate, but its behavioral model 

is equivalent to a static model, which has been demonstrated 
in many references. The behavioral model in fig. 1(b) is 

 B + A

 B + C





 

4) WSP gate 
The behavioral model of Spare gates will be presented in 

an increasing order of complexity. Let us consider a Spare 
gate with 2 input events, the primary event A and one spare 
event B, as shown in fig. 1(c). As stated in [7], the output 
event of the gate occurs when the primary and all spares have 
failed, so when A and B have failed If A and B fail according 
to sequences A≺B or B≺A. It is important to note that in 
sequence A≺B, B fails while in its active mode (denoted as 
Ba), whereas in sequence B≺A, B fails while in its dormant 
mode (denoted as Bd) [5]. The behavioral model of the WSP 
gate can be determined as 

A≺Ba + Bd≺A 

For the CSP gate, because B can only fail in its active 
mode, the behavioral model is 

A≺Ba 

A simper form is 

A≺B 

Some more complicated behavioral models in detail can be 
found in [5][8]. 

IV. PROPOSED TEMPORAL RULES 

Operators OR, AND and BEFORE satisfy the following 
temporal rules, for all a, b, c � BE: 

Rule 1 (R1).  (a≺b)≺c   a≺b≺c 
Rule 2 (R2).  a≺(b≺c)   a≺b≺c + b≺a≺c 
Rule 3 (R3).  a≺(b+c)   a≺b + a≺c 
Rule 4 (R4).  (a+b)≺c   a≺c + b≺c 
Rule 5 (R5).  a≺a   a 
Rule 6 (R6).  a≺b≺a   ∅ 
Rule 7 (R7).  a·b   a≺b + b≺a 
The symbol “ ” means it can be reduced from left to 

right, and right to left in the rule expression, while “ ” 
indicates that it can be only reduced from left to right, hence, 

we cannot say that a≺b + a≺c   a≺(b+c) , which is not a 
valid rule. 

The validities of the proposed temporal rules can be 
mathematically proved with the aid of temporal rules’ 
algebraic framework. If assignments of both sides of the rule 
are the same value, we reckon that the rule is valid. We will 
take Rule 1 for example. 

Proof of Rule 1(R1):  (a≺b)≺c   a≺b≺c 
For this proof, we will firstly add the following definition: 

1 0 ( ) ( ) ( )
( )

0             

t a t b t c T
a b c

otherwise


   
 


   

1. Case 1: If any one of t(a), t(b), t(c) is not in time interval 
[0, T], by definition, the assignment of the left side of R1 is 0, 
so as the right side of R1. Hence, the assignment of the left 
side equals the right side of R1 in case 1, the following we 
consider all of t(a), t(b), t(c) are in time interval [0, T]. 

2. Case 2: 0≤t(a)≤t(b)≤t(c)≤T. By definition, σ(a≺b≺c) = 1, 
t(a≺b) = t(b), t(a≺b) ≤ t(c), σ((a≺b)≺c) = 1, so the 
assignments of both sides of R1 is 1. 

3. Case 3: 0≤t(a)≤t(c)≤t(b)≤T. By definition, t(a≺b) = t(b) , 
then t(c) ≤ t(a≺b), so σ((a≺b)≺c) = 0, and σ(a≺b≺c) = 0. The 
assignments of both sides of R1 is 0. 

4. For other cases, such as 0≤t(b)≤t(a)≤t(c)≤T, 
0≤t(b)≤t(c)≤t(a)≤T, 0≤t(c)≤t(a)≤t(b)≤T, 0≤t(c)≤t(b)≤t(a)≤T, 
it can be easily validated by definition that the assignments of 
both sides of R1 is 0. 

In conclusion, the assignments of both sides of R1 in any 
cases are the same. 

End of the proof of R1. 

V. COMPLETENESS VALIDATIONS FOR TEMPORAL RULES 

A. Irreducible Element: Disjunctive Priority Normal 
Form 

The completeness of temporal rules is to constructing a 
rules’ system that can deduce all formulae into irreducible 
forms, called disjunctive normal forms, which is the key 
point of theoretical foundation for generation of cut 
sequences. It can guarantee any forms of the DFT deduced 
into cut sequence form. Take a broad view of the current 
study, research results within this respect are not published. 

To solve this problem, we need firstly establish the 
judgment standard of completeness, the starting point lies in 
the definition of irreducible element in cut sequences. We 
extend the traditional disjunctive normal form with temporal 
factors, define: 

Def. 1  PNF (Priority Normal Form)  Variables in the 
formulae are connected only by operator PRIORITY. 

Def. 2  DPNF (Disjunctive PNF)  All priority normal 
forms are connected only by operator OR. 

The PNF and DPNF are cut sequence and cut sequence set 
respectively. 

B. Binary-tree-based Common Form of Formulae 

The following we need to prove all formulae can be 
deduced into DPNF. It is impossible to test all formulae, so it 
is particularly important to look for the common form of 
formulae. 
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Binary tree is an ordered tree that contains at most two sub 
trees for each node. Operators in this paper are all dualistic, 
so we can translate formulae into the binary tree form. The 
root node of a binary tree is the last operation symbol. We 
stipulate the operation order as (from high to low): 

·, ≺,	൅ 

Typical structures of the binary tree are shown in fig. 2, 
where op1, …, op4 represent operators between nodes. For 
that operators OR(+) and AND (·) are commutative, if op1, 
op3 ∈ {·, +}, fig. 2(a) is equivalent to fig. 2(b), which means 
a same type of formulae. Operator PRIORITY is not 
commutative, so if op1, op3 ∈ {≺}, fig. 2(a) is different 
from fig. 2(b).  

 

2op

1op

4op

3op

 
Fig. 2.  Typical structures of the binary tree 

 



 







 







 





 

 
Fig. 3.  Binary Trees that representing all formulae 

 
Hence, if op1 � {·,	൅}, then op2 � {·,	≺, ൅}; if op1 � {≺}, 

then op2 � {·,	 ≺, ൅,}; if op3 � {≺}, then op4 � {·,	 ≺, ൅}. 
Finally, we obtain 12 (= 6 + 3 + 3) binary trees, as shown in 
fig. 3. It can be easily checked that there are not repeated and 
isomorphic trees among those 12 trees. 
 

 

C. Completeness Validation 

1) Convert binary trees to formulae 
Firstly, we need to obtain the algebraic expressions of 12 

binary trees, and it can be handled out with in-order-traversal 
strategy, the main process is: 

1. Visit left sub-tree, if the root node is not a leaf, and its 
operation order is posterior to its father node’s, then 
add a left parentheses before visiting, and add a right 
parentheses at the end of visiting. 

2. Visit right sub-tree, if the root node is not a leaf, and its 
operation order is posterior to its father node’s, then 
add a left parentheses before visiting, and add a right 
parentheses at the end of visiting. 

3. Visit any sub-trees, if the root node is not a leaf, and the 
connection symbols of root node and father node are 
all PRIORITY, then add a left parentheses before 
visiting, and add a right parentheses at the end of 
visiting. 

According to this process, we obtain the algebraic 
expressions, as listed in TABLE I. 

 
TABLE I 

ALGEBRAIC EXPRESSIONS OF BINARY TREES 

No. Expression 

(1) (a+b)·c 
(2) a·b·c 
(3) (a≺b)·c 
(4) a+b+c 

(5) a·b+c 
(6) a≺b+c 
(7) (a+b)	≺c 
(8) a·b≺c  
(9) (a≺b)	≺c 
(10) a≺ (b+c) 
(11) a≺b·c 
(12) a≺(b≺c) 

 
If the proposed temporal rules are complete, then any 

algebraic expressions in TABLE I can be deduced to DPNF. 
We check those expressions one by one, and the results are 
shown in TABLE II. 

Typically, we chose (11) to demonstrate the deduction 
process. 

To deduct: a≺b•c   a≺b≺c+b≺a≺c+a≺c≺b+c≺a≺b. 
If b=c, a=c, b=a, and b=a=c, it can be easily verified. We 

consider a ≠ b ≠ c. 
Employing R7, R3 and R2, we have: 
a≺b•c   a≺(b≺c+c≺b)   a≺(b≺c)+ a≺(c≺b)   

a≺b≺c + b≺a≺c + a≺c≺b + c≺a≺b . 
End of the deduction. 

 
The left expressions can be deducted in the similar way. 

From TABLE II, it can be concluded that the proposed 
temporal rules are complete for that they can deducted any 
formulae to DPNF, in another words, any form of the DFT 
can be converted into cut sequence set with the aid of 
temporal rules.  
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TABLE II 

DEDUCTION RESULTS OF ALGEBRAIC EXPRESSIONS 

No. Result DPNF? 
Rules 
Used 

(1) a≺c+c≺a+b≺c+c≺b Y BRs 
(2) a≺b≺c+a≺c≺b+b≺a≺c+b≺c≺a+c≺a≺b+c≺b≺a Y BRs, 

R1, 
R2, 
R7 

(3) a≺b≺c+c≺a≺b+a≺c≺b Y R1, 
R2, 
R7 

(4) dispense with deduction Y NONE
(5) a≺b+b≺a+c Y R7 
(6) dispense with deduction Y NONE
(7) a≺c+b≺c Y R4 
(8) a≺b≺c+b≺a≺c Y R4, 

R7 
(9) a≺b≺c Y R1 
(10) a≺b+a≺c Y R8 
(11) a≺b≺c+b≺a≺c+a≺c≺b+c≺a≺b Y BRs, 

R2, 
R3, 
R7 

(12) a≺b≺c+b≺a≺c Y R2 

Y= the result is a DPNF, BRs = Boolean Rules, R = rule 

 

VI. APPLICATIONS 

The Cardiac Assist System (CAS) [9] is designed to treat 
mechanical and electrical failures of the heart. The system 
can be divided into 4 modules: Trigger, CPU unit, motor 
section, and pumps. In this paper, we focus on the pumps 
unit.  

The pumps unit is comprised of two cold spares, each 
having a primary pump (PUMP_1 and PUMP_2), and 
sharing a common spare pump (Backup_PUMP). In order for 
the pumps unit to fail, all three pumps need to fail and CSP_1 
needs to fail before (or at the same time as) CSP_2. The DFT 
which models the potential failure of the pumps unit of CAS 
is shown in Fig. 4 
 

 
Fig. 4.  The DFT of pumps unit of CAS 

 
The behavioral model of PAND gate presented in Section 

III allows expressing PUMPS as 

PMMPS = CSP1 ≺ CSP2 

According to the behavioral model of Spare gate 

CSP1 = P1 ≺ BP + P2 ≺ P1 

CSP2 = P2 ≺ BP + P1≺ P2 

CSP1 ≺ CSP2 can now be expressed as 

 

Steps Deduction Results Rules used 

0 (P1 ≺ BP + P2 ≺ P1) ≺ (P2 ≺ BP + P1≺ 
P2) 

 

1 (P1 ≺ BP ) ≺ (P2 ≺ BP + P1≺ P2) + (P2 ≺ 
P1 ) ≺ (P2 ≺ BP + P1≺ P2) 

R4 

2 (P1≺BP)≺(P2≺BP) + 
(P1≺BP)≺(P1≺P2) + (P2≺P1) ≺ 
(P2≺BP) + (P2≺P1)≺(P1≺P2) 

R3 

3 (P1≺BP)≺P2≺BP + P2≺(P1≺BP)≺BP + 
(P1≺BP)≺P1≺P2 + P1≺(P1≺BP)≺P2 + 
(P2≺P1)≺P2≺BP + P2≺(P2≺P1)≺BP + 
(P2≺P1)≺P1≺P2 + P1≺(P2≺P1)≺P2 

R2 

4 P1≺BP≺P2≺BP + (P2≺P1≺BP + 
P1≺P2≺BP) ≺BP + P1≺BP≺P1≺P2 + 
(P1≺P1≺BP + P1≺P1≺BP) ≺P2 + 
P2≺P1≺P2≺BP + (P2≺P2≺P1 + 
P2≺P2≺P1) ≺BP + P2≺P2≺P1≺P2 + 
(P1≺P2≺P1 + P2≺P1≺P1) ≺P2 

R1 R2 R4 

5 ∅ + (P2≺P1≺BP + P1≺P2≺BP) ≺BP + ∅ 
+ (P1≺BP)≺P2 + ∅ + (∅ + P2≺P1)≺BP + 
∅+ (∅+ P2≺P1)≺P2 

R5 R6 

6 P2≺P1≺BP≺BP + P1≺P2≺BP≺BP + 
P1≺BP≺P2 + P2≺P1≺BP + P2≺P1≺P2 

R4 R1 

7 P2≺P1≺BP + P1≺P2≺BP + P1≺BP≺P2 R5 R6 

 
From algebraic view, in the deducting, we make use of R3, 

R3 is not a rigorous, equivalent rule (it can be only utilized 
from left to right), and it will bring conflicts in logic. 
Therefore, a check should be manipulated, which recurs to a 
physical meanings’ validation. From the real meanings, if P1 
fails at first, BP will be used, and then if P2 fails secondly, 
there is no spares left, so output of CSP2 will occur, after BP 
fails, output of CSP1 occurs after CSP2, and the output of 
PUMPS won’t occur, which is not coincident with the 
physical meanings. Hence P1≺P2≺BP should be canceled. 
Finally, with application of the proposed temporal rules, we 
obtain two cut sequences 

P2≺P1≺BP, P1≺BP≺P2 

For instance, the algebraic term P2≺P1≺BP indicates that 
P2, P1 and BP must fail in this order, which is a dynamic 
failure mode. 

Merle’s method provides the same cut sequences for the 
DFT, but its reduction process is more complex, for that its 
temporal rules are not concise; what’s more, it seems its 
temporal rules are complete, but it doesn’t give algebraic 
proof and explains. Merle’s method contains over 80 
temporal rules, the proposed temporal rules in this paper 
contain only 7 terms, which has canceled many redundant 
rules, but ensures the completeness. Besides, Liu’s CSSA 
provides similar temporal rules, but there is a lack of validity 
and completeness proof under a rigorous algebraic 
framework. 
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VII. CONCLUSION 

Temporal rules are key theoretic foundation in generating 
cut sequences in DFT analysis. This paper put forward 
several novel temporal rules, rigorous proofs and case’s 
application demonstrate the proposed temporal rules are 
valid and complete. In the future, we will resolve algorithms 
that would allow to automatically extract the cut sequences 
from the DFT. 
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