
 

  
Abstract—One important feature of redundancy analysis 

(RA) algorithms is repair rate. To estimate repair rate of 
various RA algorithms, software simulations of the algorithms 
on a number of memory fault maps representing real faulty 
memories are needed. In order to obtain realistic estimations, 
the fault distribution in maps has to resemble distributions 
observed in real chips as much as possible. In this paper, it is 
shown how fault distributions affect repair rate of some RA 
algorithms. Also, a universal fault map generator based on 
random and cluster-oriented approaches suitable for repair 
rate estimations of RA algorithms is proposed. 
 

Index Terms— embedded memory, fault distribution, 
memory fault map, redundancy analysis algorithm, repair rate 
 

I. INTRODUCTION 

CCORDING to Semico Research Corp. forecast [1], 
area occupied by embedded memories on systems-on-a-

chip (SoC) designs is slowly growing and will approach     
70 % in the next few years. SoCs are moving from logic 
dominant to memory dominant. Overall SoC yield is 
therefore dominated by memory yield. As we move deeper 
into nanometer technology, embedded memory density and 
capacity grows which results in higher susceptibility of 
memories to various defects causing memory cells to 
perform faulty. This in turn causes memory and SoC yield to 
decrease. Maintaining acceptable yield has become an 
important task. 

Built-in self-repair (BISR) techniques based on using 
redundancy are widely used to improve yield. Redundant 
rows and columns are added to the memory. Faulty memory 
cells are replaced by redundant ones. This replacement is 
done according to repair solution, which is basically a 
mapping between faulty cells and redundancies. One 
important part of BISR actually responsible for finding a 
repair solution for memories is redundancy analysis (RA) 
algorithm. Over past ten years, many BISR approaches and 
RA algorithms for various memory and redundancy 
architectures were proposed [2]-[6], [10]-[16]. One 
important feature of RA algorithms is repair rate. Repair rate 
is defined according to [4] as is stated by (1). 

Repair rate depends on the number of redundancies 
available on chip, which is a fixed value. More redundancies 
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means higher repair rates [2]-[4]. It also depends on 
effectiveness of RA algorithm. With fixed number of 
redundancies, the RA algorithm which has higher repair rate 
is more efficient (i.e. it can repair more memories with 
available redundancies). Other important features of RA 
algorithms are repair time and area overhead on chip needed 
to implement the algorithm. 

 

    (1) 
 

To estimate the repair rate of RA algorithms, typical 
approach is to develop a software simulation tool capable of 
generating fault memory maps (also termed memory maps or 
fault maps) and executing the RA algorithm. Memory maps 
model a real memory as a two dimensional array of cells 
arranged into rows and columns. Examples of memory maps 
can be found in section III. 

In general, faults can be distributed across the memory 
map in various ways. To obtain realistic estimates of repair 
rates of RA algorithms, simulations need to be performed on 
a certain (usually high) number of memory maps with fault 
distributions resembling distributions seen in real faulty 
memories as much as possible. Wafer maps with locations of 
defects were previously difficult to obtain, but new 
techniques were introduced as early as late 80’s [7]. These 
techniques showed that defects typically are clustered, not 
randomly distributed on wafer level. Many other studies 
(e.g. [8], [9]) confirm this observation. As there are many 
memory chips per wafer, this clustered distribution affects 
memory chips in such a way that some chips are fault free 
but others, located around the clusters have more faults (see 
Fig. 1). Fig. 1 depicts two examples of wafer maps with 
defect locations. The first example (a) assumes a very dense 
defect distribution whereas in the second example (b) the 
defect clusters occur mainly around the edges. 

To simulate such distributions as in Fig. 1, more 
sophisticated defect distributions than random have to be 
considered in simulation tools and yield models (e.g. [8], 
[9]). On memory level, however, software tools able to 
simulate fault clustering that corresponds to wafer level 
defect distributions such as in Fig. 1 are needed to estimate 
repair rates of RA algorithms. 

In this paper, we propose a universal fault memory map 
generator suitable for efficient estimation of repair rates of 
RA algorithms. It is based on random and cluster-oriented 
approaches.
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TABLE I 
ESTIMATION OF REPAIR RATE OF RA ALGORITHMS 

 year 
tool 

name 
avg. 
faults 

fault 
distribution(s) 

# fault 
maps 

fault map 
size(s) 

# redundancy 
single 

faults % 

[10] 2003 BRAVES - 
Poisson + 
Gamma 

1552 1024x64 
R 6-10 
C 2-6 

- 

[2] 2006 - 17 
random, adjustable 
% of 3 fault types 

- 1024x64 - adjustable 

[11] 2006 - 83 to 189 
random + 
Poisson 

500 1024x1024 
R 10-32 
C 10-32 

- 

[12] 2006 
eval. & verify 

platform 
max. 10 Poisson 500 4096x128 - 

0 % 
50 % 

[6] 2007 - 1-15 random 3000 1024x1024 
R 2-5 
C 2-5 

20-65 % 

[13] 2007 - 5-400 
fixed % of each 

of 15 types of faults 
18 

32x32 to 
8192x8192 

R 1-30 
C 1-30 

- 

[4] 2009 RepairSim 1-18 random 900000 1024x1024 
R 5 
C 5 

69,32 % 

[3] 2009 - 15 negative binomial - 1024x1024 
R 4-8 
C 4-8 

70 % 

[14] 2011 - 
7,8 
3,3 

Poisson 
Poisson 

- 
453 

256x32 
8192x64 

R 3-6 
C 3-9 

20-100 % 
70 % 

[15] 2011 - max. 10 random 500 
8192x64 
32768x64 

R 0-4 
C 0-4 

40-100 % 

[16] 2011 - - 
fixed % of each 

of 4 types of faults 
1000 

1024x128 
2048x64 

R 1-4 
C 1 

0-80 % 

[5] 2012 
eval. & verify 

platform 
max.10 Poisson 3 512x1024 

R 1-5 
C 1-3 

- 

 

 
 
Fig. 1.  Wafer level defect distribution examples. (a) [8], (b) [9]. 
 

II.  RELATED WORK 

The repair rates of RA algorithms are estimated in various 
ways. Usually, the authors implement their own software 
simulation tool capable of running the algorithm or in some 
cases more types of algorithms. Table I summarizes the 
various approaches for repair rate estimations found in 
literature. 

Faults injected into memory maps are usually of various 
types. Single faults are most common. Usually 50 % or more 
of all faults in generated memory maps are single faults. 
Single fault is the only fault on its row and column. It is 
sharing neither row nor column address with any other fault. 
Other commonly injected faults are row and column faults 
(more than one fault on a row or column), clustered faults 
with cluster radius of 3x3 cells up to larger clusters of 
various shapes and other special fault types (e.g. column 
twin-bit fault, two adjacent faulty cells in a column). The 
fault distributions in fault maps used for repair rate 
estimations are either generated randomly or based on some 
theoretical distributions. The average numbers of faults in 

maps are varied. In some cases, they are set low, but there 
are cases where they are set as high as 100 per MB or even 
more. Fault maps are usually of various dimensions (sizes) 
up to 64MB (8192x8192). Often the maps with rectangular 
sizes (for example 1024x64) are considered rather than 
square ones. The numbers of redundancies (R=rows 
C=columns in Table I) are either set to a fixed value or 
experiments are conducted with varying numbers (up to 32 
rows and columns per MB). 

III.  PROPOSED FAULT MAP GENERATOR 

The proposed fault map generator RNDCLUS is based on 
the random cluster generator approach proposed in [7], 
which is able to generate symmetric clusters of faults, using 
symmetric Gaussian distribution, on the wafer level. The 
clusters are centered in the centers of the fault maps. In next 
step, it randomly stretches, rotates and relocates the clusters. 
In last step, it adds additional clusters to the map that 
simulate scratches that occur during manufacturing process. 
We adopt this approach and use it on the memory fault map 
level. We however, omit the scratching simulation, but add 
an option to generate fault maps randomly when desired by 
the user. We now describe the fault map generation process 
of RNDCLUS. 

A. Random option and centered clusters 

Probability of faults occurring in memory cells is defined 
as follows [7]: 

   (2) 
where C is a constant and σ is the standard deviation. The 
values of P(x,y) range from 0 to 1. The address values of x 
and y both range from -1 to 1. They are related to actual 
memory addresses in a way that is explained in Fig. 2, which 
shows an example for a small 8x8 memory map. Probability 
matrix of values of P(x,y) in Fig. 2 was obtained from (2) 
using values C=1 and σ=0,6. 
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Fig. 3.  Examples of fault maps: (a) random, (b) centered cluster, (c), (d) randomized clusters. 

To generate actual fault maps, for each map location an 
auxiliary value of N(x,y) ranging from 0 to 1 is randomly 
generated. Then if N(x,y) < P(x,y) a fault is injected into the 
location given by corresponding values of x and y. The 
result is a symmetric cluster of faults centered in the center 
of the fault map. The value of σ sets the radius of the cluster 
and the value of C sets the fault density within the cluster. 
An example of a fault map with a symmetric cluster is shown 
in Fig. 3 (b). The fault clustering can be seen around the 
center as well as some other faults near the edges. An 
example of a fault map created with random option is shown 
in Fig. 3 (a) for comparison. The addresses of faults are 
generated randomly and range from 0 to dimension-1. 
Random option is used exclusively with centered cluster 
function (i.e. fault map either has a centered cluster or it is 
generated randomly – see section III.F). 
 

 
 
Fig. 2.  Values of P(x,y) for 8x8 memory. 

B. Relocated clusters 

Relocating the clusters of faults is done by generating 
random values xm and ym. Their values range from 0 to 
dimension-1. Then all faults are relocated to a new location 
given by summing their original location (row address y, 
column address x) with the values xm and ym: 

   (3) 

   (4) 
In case the new location is out of the bounds of the fault 
map, the approach [7] used the cropping technique and 
discarded the out-of-bounds faults. We however modify this 
behavior and treat the fault map as a surface of a sphere and 
the fault re-emerges on the other side of the fault map. This 
is done to avoid possible high fault count losses in memory 

maps. 

C. Shaped clusters 

Shaping of clusters is done by generating random values 
xs and ys. Their values range from 0,1 to 1 meaning that the 
cluster is stretched by a minimum of 0 % (when xs or ys=1) 
and up to 90 %  (when xs or ys=0,1). Next, all faults have 
their original location multiplied by the values of xs and ys: 

   (5) 

      (6) 
By executing previous procedure, the clusters would be not 
only stretched, but also slightly moved towards the upper left 
corner of the map since their actual row and column 
locations are decreased. Therefore, after the procedure, we 
compensate this by following modifications obtained with 
trial and error experiments: 

   (7) 

   (8) 

D. Rotated clusters 

Rotation of clusters is done by generating a random value 
of angle α ranging from 0 to 359. The clusters are rotated by 
this angle counterclockwise around the center of the map. If 
a fault is out of the bounds of the fault map, we again do not 
use the cropping technique, as stated in section III.B, and the 
fault re-emerges on the other side of the map. Since we use 
the non-standard left handed Cartesian coordinate system to 
assign location (addresses) to faults where the row address is 
increased downwards instead of upwards, it is first necessary 
to temporarily convert the addresses to standard right 
handed system. Next, the center of the coordinate system is 
“moved” to the center of the fault map by temporarily 
modifying the fault addresses. Without this step, the rotation 
would be done around the lower left corner of the fault map 
and not around the center. The actual rotation follows and all 
faults have their locations in the map recalculated according 
to these standard rotation equations: 

   (9) 

       (10) 
In the last two steps, two temporal changes made previously 
are reverted and addresses are reverted back to left handed 
coordinate system. 
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E. Randomized clusters with added random faults 

By combining the procedures from sections III.A – III.D, 
the resulting fault distribution can be randomized even more. 
Lastly, to add some more final randomization to resulting 
fault distributions, a small number of faults is added at 
random locations. This number is generated randomly and 
its value range from 0 to 5 meaning that a maximum of 5 
randomly located faults are added to the distributions 
obtained by procedures from sections III.A – III.D. Two 
examples of randomized clusters with added random faults 
are shown in Fig. 3 (c) and (d). For example, the fault map 
in Fig. 3 (c) was obtained from the fault map in Fig. 3 (b) by 
using values α=124, xs=0,28, ys=0,52, xm=8, ym=1 and 
number of randomly added faults was 3. The circled faults 
are the ones added randomly. 

The results from Fig. 3 (c) and (d) are very similar when 
compared to results in [17] and [18]. Both studies show 
random fault map examples similar to that in Fig. 3 (a) and 
clustered fault map examples similar to those in Fig. 3 (c) 
and (d). 

F. Parameters 

Based on the observations in section II, we have set the 
basic parameters of RNDCLUS according to Table II. It is 
able to generate a large number of square fault maps of sizes 
up to 1024x1024. Gauss distribution was chosen because it 
generates sufficient ‘starting’ clustering of faults and then by 
modifying it (sections III.A – III.D) we are able to achieve 
similar results to those reported in [17] and [18]. Therefore 
there is no need to use more complex theoretical 
distributions. The average number of faults for small 
memories (16x16) was set to 10. For large memories 
(1024x1024), it was first set to 15 as in [3]. Then we tried to 
set the parameters C and σ of generator so that the average 
number of faults in generated maps is 15, but were able to 
approximate it only to 17. For 512x512 memories, the 
approximation was also done and the average number of 
faults was 16. For other fault map sizes, the average number 
of faults obtained was 15. The approximations were done on 
a trial and error basis while setting the values of C and σ and 
running the simulations until desired average numbers were 
obtained. The resulting parameters C and σ for each fault 
map dimension are listed in Table III. All the example fault 
maps on Fig. 3 were created using the parameters from 
Table III for dimension 16. The procedures from sections 
III.A – III.D are used randomly with a certain probability 
given by values in Table IV, for each generated memory 
map. Most of these values are user adjustable. 

 
TABLE II 

BASIC PARAMETERS 

fault map 
size 

avg. 
faults 

# fault 
maps 

fault 
distribution 

16x16 10 

1-100000 Gauss 
+ random 

32x32 – 
256x256 

15 

512x512 16 
1024x1024 17 1-10000 

 

TABLE III 
PARAMETERS C AND σ 

dim. 16 32 64 128 256 512 1024 

C 1 0,4 0,05 0,05 0,05 0,05 0,05 
σ 0,15 0,1 0,018 0,009 0,0045 0,0023 0,0012 

 
TABLE IV 

ADVANCED PARAMETERS 

parameter range description 

cluster_chance 0-1 
A prob. there is a cluster in fault map. If 
there is not, random option is invoked. 

cluster_reloc 0-1 
A probability that if there is a cluster in 
fault map, it will be randomly relocated. 

cluster_shp 0-1 
A probability that if there is a cluster in 
fault map, it will be randomly shaped. 

cluster_rot 0-1 
A probability that if there is a cluster in 
fault map, it will be randomly rotated. 

rndcnt_max 0-5 
Sets the max. of randomly added faults 
in case there is a cluster in fault map. 

rndcnt_max_nc - 

Sets the max. of randomly added faults 
in case there is not a cluster in fault 

map. These values are fixed to 
2*(avg. faults) column from Table II. 

G. Function 

The functional flow of RNDCLUS is shown in Fig. 4. 
Output is stored into text file containing generated fault 
maps in the form of a list of fault location addresses. 

IV.  EXPERIMENTAL RESULTS 

We now show how various fault distribution types can 
affect estimation of repair rate of RA algorithms. The 
modified essential spare pivoting (MESP) algorithm [3] was 
selected for implementation because it is targeted specially 
on cluster faults. It targets the block-based redundancy 
architecture with divided word and bit line techniques. 
Memory is divided into several quadrants of same size and 
redundancies are divided into several blocks of same size. 

We estimate the repair rate of MESP on small (dim. 16), 
medium (dim. 128) and large (dim. 1024) memories. 
Maximum number of generated maps from Table II was 
selected. The number of quadrants of MESP is assumed to 
be 16. RNDCLUS generator is used in 6 various 
configurations shown in Table V. 

We have selected these configurations to answer the 
following questions: 

1. Is repair rate of MESP higher when dealing with 
clustered faults than with random faults, as is expected 
[3]? We observe the differences in repair rate between 
configuration RND and others. 

2. How is repair rate of MESP affected by the percentage 
of clustered faults? We observe repair rate while 
decreasing parameter cluster_chance from 0,75 to 0,5 
and then to 0,33. 

3. How is repair rate of MESP affected by the number of 
randomly added faults? We observe repair rate while 
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Fig. 4.  Flow diagram of RNDCLUS. 
 

TABLE V 
CONFIGURATIONS OF RNDCLUS 

configuration type random cluster-oriented 

configuration name RND C 0,75 C 0,5 C 0,33 add3 noadd C 0,75 C 0,5 
cluster_chance 0 0,75 0,50 0,33 0,75 0,75 0,75 0,50 
cluster_reloc - 0,75 0,75 0,75 0,75 0,75 0,75 0,75 
cluster_shp - 0,50 0,50 0,50 0,50 0,50 0,50 0,50 
cluster_rot - 0,75 0,75 0,75 0,75 0,75 0,75 0,75 
rndcnt_max - 5 5 5 3 0 5 5 

 

decreasing parameter rndcnt_max from 5 to 3 and then 
to 0. 

4. Will repair rate of MESP estimated by RNDCLUS be 
similar to repair rate reported in [3]? If not, what are 
the possible causes and what can be done to obtain 
more similar results? 

Table VI shows the repair rate of MESP using all 6 
RNDCLUS configurations from Table V. The number of 
redundancies ranged from 3 row and column blocks (3/3) to 
12 row and column blocks (12/12). In the last column of the 
table, the resulting repair rate obtained by RNDCLUS with 
the results reported in [3] is compared where available. 
However, results for RNDCLUS were obtained for average 
number of faults equal to 17 whereas results in [3] are for 
average number of faults equal to 15. Also, it is unknown 
how the numbers of faults were generated for each memory 
map (Were they generated equally or using some 
distribution?) and what was the total number of generated 
fault maps. By analyzing the results in Table VI, the 
aforementioned questions can be answered: 

1. Yes. In small memories this becomes evident when the 
number of redundancies reaches 4 and for medium and 
large memories when it reaches 7. 

2. Repair rate slightly increases when the numbers of 
redundancies are small and it begins to decrease with 
increasing the number of redundancies. This is an 
expected result since the larger the map, the thinner are 
the generated clusters and the percentage of single 
faults increases which in turn has negative impact on 
repair rate. 

3. Repair rate increases greatly with all sizes of memories 
with decreasing the number of added random faults. 
This suggests that the initial value of rndcnt_max equal 
to 5 was set too high. 

4. Yes, in most cases. Repair rates are similar to those 
reported in [3] when cluster-oriented distributions are 
considered. They are slightly lower with most of the 
RNDCLUS configurations. This may be caused by 
higher average fault count than in [3]. In case random 
option is used, the repair rate is significantly lower for 
any number of redundant blocks. 

V. CONCLUSIONS AND FUTURE WORK 

The goal of this work is to offer the most exact 
estimations of repair rates of RA algorithms which can only 
be done if simulations are performed on memory fault maps 
with fault distributions that resemble fault distributions in 
real memory arrays as closely as possible. But to obtain such 
information from industry is not an easy task and one can 
only rely on other published approaches. 

Various known approaches to repair rate estimation 
problem were reviewed and based on that, a universal, user-
adjustable fault map generator RNDCLUS was proposed. 
According to experimental results, it is suitable for 
estimation of repair rate of RA algorithms. By setting the 
values of various parameters of RNDCLUS, one can modify 
the output and is able to select whether the distributions are 
more random or more cluster-oriented. 

Experiments have shown some interesting results as well 
as proving some expected results. They also proved that the 
repair rate of RA algorithms is very heavily dependent on 
fault distributions in fault memory maps. It is worth further 
studying, with different algorithms and sets of parameters to 
obtain more results. Future research work will be invested to 
further study this on other algorithms as well as to further 
improving the proposed generator with features such as 
adding new distributions or new cluster-generating 
approaches i.e. more than one cluster per map, random 
cluster sizing, random cluster positioning in small quadrants 
of memory maps and so on. 
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TABLE VI 

Repair rate % of MESP with different configurations of RNDCLUS 

dim. 
# 

redundancy 
RND C 0,75 C 0,5 C 0,33 add3 noadd [3] 

16 

3/3 32,91 26,60 28,88 30,28 34,59 52,53 - 
4/4 45,22 52,90 50,43 49,02 64,28 77,33 - 
5/5 58,10 76,66 70,49 66,51 83,44 87,79 - 
6/6 71,77 89,71 83,74 79,98 91,70 92,43 - 
7/7 85,75 95,81 92,52 90,40 96,02 96,10 - 
8/8 96,33 98,82 98,04 97,53 98,90 98,86 - 

128 

3/3 20,27 5,46 10,41 13,75 5,71 6,96 - 
4/4 26,93 9,70 15,44 19,34 11,03 16,47 - 
5/5 33,87 18,84 23,97 27,25 22,88 34,34 - 
6/6 40,88 34,03 36,31 37,88 41,39 55,44 - 
7/7 47,81 52,72 51,42 49,94 61,22 72,81 - 
8/8 54,81 69,69 64,75 61,26 76,29 83,26 - 
9/9 61,91 81,89 75,33 70,59 85,56 88,60 - 

10/10 69,07 88,91 82,40 77,81 90,42 91,54 - 

1024 

3/3 18,28 4,57 9,25 11,38 4,57 5,80 - 
4/4 24,47 7,39 13,22 16,22 8,24 12,38 - 
5/5 30,36 14,36 20,09 22,46 18,02 28,37 - 
6/6 36,35 27,68 30,73 31,36 34,77 49,32 - 
7/7 42,10 45,77 44,29 42,69 55,35 67,45 - 
8/8 47,96 63,10 58,14 54,13 71,60 78,85 65,50 
9/9 53,91 76,29 68,79 63,42 82,10 85,06 83,00 

10/10 59,62 84,45 76,09 70,36 87,54 88,25 93,00 
11/11 65,49 88,97 80,69 75,88 90,68 90,09 96,00 
12/12 71,36 91,55 84,41 80,18 92,58 91,75 98,00 
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