
 
Abstract—Coordinate Rotation Digital Computer 

(CORDIC) algorithm is an established method in complex 
arithmetic function discovery using shift and add operations. 
An absolute Scaling-free CORDIC algorithm for cosine and 
sine function computation function has been implemented. A 
combination of third order approximation Taylor series and 
leading-one-bit detection algorithm has been adopted in this 
implementation. Seven (7) iterations were required for a 16-
bits iterative architecture implementation of the proposed 
algorithm. The synthesis result shows that the algorithm is 
suitable for high-speed computational applications.  

 
Index Terms— Cosine/sine, FPGA, Scaling-free CORDIC 

algorithm  

I. INTRODUCTION 

Effective hardware design is critical in circuit 
implementation practice. The CORDIC algorithm perfectly 
fits the statement. It offers an efficient and economic 
hardware implementation operation by exclusively compute 
addition and shift operations. CORDIC was introduced by 
Volder [1] in 1959. CORDIC is an iterative algorithm to 
compute trigonometric and hyperbolic functions. CORDIC 
has been used regularly in matrix computations [2], signal 
processing and image processing [3-5], communication [6], 
robotics and graphics [7], [8], neural network [9], [10] and 
motor control drive [11], [12].  

The improvement of CORDIC algorithm has been a 
popular study. A lot of development has been established in 
the area of algorithm design and development of 
architectures especially for high-performance and low-cost 
hardware solutions. Pipelined and parallel CORDIC have 
been recommended for high throughput computations. 

One of the first improvement that has been made was a 
redundant CORDIC which was proposed by Ercegovac and 
Lang [13]. 
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Many difference methods have been proposed for the 
Radix-2 with constant scale factor using signed digit (SD) 
arithmetic such as double rotation method, correcting 
rotation method [14], branching method [15], double step 
branching method [16], and Differential CORDIC [17]. 
Carry save (CS) arithmetic has been used in radix-2 
CORDIC such as low latency redundant [18] and high speed 
bit level pipelined [19]. The speed of CORDIC algorithm 
can be improved by reducing the number of iterations, 
therefore architectures using radix-4 micro-rotations have 
been developed and reported in the literature by Antelo et al 
and Lakshmi [20], [21]. However, it requires higher 
computational time for each iteration and involves larger 
hardware compared to the radix-2 CORDIC. 

Researches in conventional CORDIC improvements 
continued in two different directions [22], namely high 
speed performance and scaling factor implementation. The 
main focus was to have high speed computation with least 
iterations. The scaling-free by Maharatna et al [23] need 
multiplication by constant scale-factor and consume more 
area. The enhanced scale-free CORDIC in Jaimeet al [24] 
integrates few conventional CORDIC iterations with 
conventional scaling-free CORDIC iterations for a 
competent pipelined CORDIC implementation with 
improved range of convergence (RoC). However, 
combination of two different types of CORDIC iterations 
degrades the performance. Virtually modified scaling-free 
algorithm [23] extends the range of convergence over the 
entire coordinate space and introduces an adaptive scale 
factor. The scaling-free CORDIC algorithm by Agrawal et 
al [25] is completely eliminates the scale factor. 

II. METHODOLOGY ARCHITECTURE 

Scaling-free CORDIC was initially aimed to design a 
scale-free coordinate CORDIC using Taylor series [26]. The 
scaling-free was first attempted to completely dispose of the 
scale factor. The sin and cosine were approximated to [25]: 
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Taylor series expansion allowed the rotation only in one 

direction compared to conventional CORDIC [27]. The 
Taylor series of sine and cosine terms defined as:   
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For hardware implementation of the series in equation (3) 

needs to be approximately implying a compromise in 
accuracy. The suggested algorithm [25] used third order 
expansion and approximate 3! to 22. By this approximation 
the rest of the Taylor series can be implemented by using 
shift and add operation. The MSE error in sine and cosine 
values resulted from the approximation of the factorial was 
0.0168% which is insignificant and does not affect the 
accuracy of the system performance [25]. 

Design of CORDIC processor is divided in two main 
parts, the Arithmetic Calculation Modules and Shift 
Calculation Modules.  

 

A. Arithmetic Calculation Modules 

 
The expansion of the third order Taylor series 

approximation proposed by Agrawal et. al.  [25], is as in 
equation (4): 
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Assuming αi = 2-si and approximation of factorial, the 

above equation can be simplified to  
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The arithmetic calculation modules were used in 

implementing the above equation as shown in Fig. 1. 16-bits 
register is used at the end of the module for synchronization 
purpose. This module was implemented by using fixed point 
format. 16-bits used for the xi and yi input. The value of si 
obtained from the shift calculation module. The output of 
this module will be used as input to the next clock cycle, and 
the iteration continues until the counter is reset to zero.  

 

B. Shift calculation module 

The fixed point format of the elementary angle (αs) has 
one bit set and represented by αsi = 2-si. The first one bit 
number of any input string counting from the Most 
Significant Bit (MSB), M is used for further calculation of 
shift iteration (si), for a fix word-length (N). si of the 
elementary angle was given by 

 

MNsi           (6) 

 
In this research the word-length is fixed to 16. The 

module’s input is the angle to be rotated, theta (θi). The 
operation begins to get the first 1 bit from the MSB (M). 
Fig. 1 is illustrating the shift module algorithm flow: 

 
 
 

 
Fig. 1: Flowchart for generating micro-rotation sequence. 
 
 
 
The elementary angle (α) is corresponding to the basic 

shift (s). Basic shift was the first elementary angle for 
rotation α. The expression for the basic shift is as stated in 
equation (7): 
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Where b is the wordlength and n is the total number of 

iterations. Total number of iteration for third order Taylor 
series is 7, as discussed in [25] and the basic shift for 16-bits 
word length is 2.854 ≈ 2. 

 In shift calculation module, multiple iteration of shift is 
performed. Shift calculation module is used to get the shift 
index (si) parameter.  

 

III. RESULT AND DISCUSSION 

The architecture was developed by using Verilog 
hardware description language in Quartus II Altera. All 
modules were developed as described in the previous 
section. Fig. 2 illustrates the simulation result of the scaling-
free CORDIC calculation. The input theta is 0.61radian 
(35o). In 16-bit fix-point format, 0.61radian is equal to 
9C61. The values of si can be calculated as shown in Table 
1. si node in Fig. 2 representing the simulated si values. 
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TABLE I 
SEQUENCE OF SI VALUES 

No of iteration Input  θ (radian) M Si=N-M Output θi+1                               

1 9C61 15 2 9C61-4000 =5C61 

2 5C61 14 16-14=2 
0101 1100 0110 0001 [5C61] 
0001 1100 0110 0001  [1C61] 

3 1C61 12 16-12=4 0000 1100 0110 0001 [0C61] 

4 0C61 11 16-11=5 0000 0100 0110 0001 [0461] 

5 0461 10 16-10=6 0000 0000 0110 0001 [0061] 

6 0061 6 16-6=10 0000 0000 0010 0001 [0021] 

7 0021 5 16-5=11 0000 0000 0000 0001 [0001] 

 
 

 
Fig. 2: Simulation result of scaling-free CORDIC 

 
Fig. 2 shows the simulation result of the implemented 

scaling-free CORDIC. From this figure the calculation 
output of cos35o is 3467H which shown as node x_final and 
sin 35o is 24C0H as in node y_final. These values need to be 
converted back in order to get the real value which is equal 
to 0.819336 for cos35o and 0.573425 for sin 35o. From the 
numerical calculation the value of cos35o and sin35o is 
0.819152 and 0.573576. The accuracy of the calculation is 
estimated to be 99.97% for both. From the result, it shows 
that the scaling-free CORDIC is a reliable calculation for 
cosine and sine functions which can be implemented in 
FPGA by only using add and shift functions. 

IV. CONCLUSION 

Scaling-free CORDIC algorithm provides an iterative 
calculation using only add and shift function for cosine and 
sine function calculation in FPGA. The elimination of 
redundant iterations using leading-one-bit technique 
improves the number of iteration compared to conventional 
CORDIC.  Less iteration offers faster computation and 
optimal efficiency. The implementation of this scaling-free 
CORDIC will improved the performance of the application 
in term of efficiency and stability. 
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