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Abstract— In this paper, we describe the development of a 

two-point block method for solving pantograph-type functional 

differential equations. The block method, implemented in 

variable stepsize technique produces two approximations 

simultaneously using the same back values. The grid-point 

formulae for the variable steps are derived, calculated and 

stored at the start of the program for greater efficiency. The 

delay solutions for the unknown function and its derivative at 

earlier times are interpolated using the previous computed 

values. Stability regions for the block method are illustrated. 

Numerical results are given to demonstrate the accuracy and 

efficiency of the block method.    

 
Index Terms—Block method, functional differential 

equation, pantograph equation, polynomial interpolation, 

stability region 

 

I. INTRODUCTION 

UNCTIONAL differential equation of the form  

)))(()),((),(,()( xyxyxyxfxy                 (1) 

appears in many real life applications and has been 

investigated by many authors in recent years. The classical 

case is when   xx)( .  When the right hand side of (1) 

does not depend on the derivative of the unknown function 

y , the equation is known as delay differential equation. 

Otherwise, it is known as neutral delay differential equation. 

In this paper, we consider numerical solution for 

functional differential equation of the form: 
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where .10  q  Equation (2), known as the pantograph 

equation arises in many physical applications such as 

number theory,  electrodynamics, astrophysics, etc.. Detailed 

explanations can be found in [1] – [3]. Numerical solutions 

for (2) have been studied extensively, see for example [4] – 
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[7] and the references cited therein. These methods produce 

one approximation in a single integration step. Block 

methods, however produce more than one approximation in 

a step. Block methods have been used to solve wide range of 

ordinary differential equations as well as delay differential 

equations (see [8] – [11] and the references cited therein).  

In this paper, we solve (2) using a two-point block method 

in variable step. In a single integration step, two new 

approximates for the function y in (2) are obtained while 

keeping a constant stepsize, doubling or halving. The 

coefficients of the method need to be recalculate whenever 

the stepsize changes. In order to avoid the tedious 

calculation, the coefficients based on the stepsize ratio are 

calculated beforehand and stored at the start of the program.  

The organization of this paper is as follows. In section II, 

we briefly describe the development of the variable step 

block method. Stability region for the block method is 

discussed in section III. Numerical results for some 

pantograph equations are presented in section IV and finally 

section V is the conclusion.  

II. METHOD DEVELOPMENT 

Referring to (2), we seek a set of discrete solutions for the 

unknown function y  in the interval ],0[ T . The interval is 

divided into a sequence of mesh points   t

iix
0

 of different 

lengths, such that .0 10 Txxx t   Let the 

approximated solution for )( nxy be denoted as .ny  Suppose 

that the solutions have been obtained up to .nx  At the 

current step, two new solutions 1ny  and 2ny  at 1nx  and 

2nx  respectively are simultaneously approximated using 

the same back values by taking the same stepsize.  The 

points 1nx  and 2nx  are contained in the current block. The 

length of the current block is .2h  We refer to this particular 

block method as two-point one-block method. The block 

method is shown in Fig 1.  

Fig 1. Two-point one-block method 
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In Fig 1, the stepsize of the previous step is viewed in the 

multiple of the current stepsize. Thus, ,1 hxx nn   

hxx nn   12  and .121 rhxxxx nnnn    The value 

of r  is either 1, 2, or 
2

1
, depending upon the decision to 

change the stepsize. In this algorithm, we employ the 

strategy of having the stepsize to be constant, halved or 

doubled.  

The formulae for the block method can be written as the 

pair, 
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where ny  and nŷ  are the approximations to )( nqxy  and 

)( nqxy  respectively. For simplicity, from now on we refer 

to )ˆ,,,( nnnn yyyxf as .nf  The coefficient functions )(ri  

and )(* ri  will give the coefficients of the method when  r  

is either 1, 2, or 
2

1
. 

The first formula in (3) is obtained by integrating (2) from 

nx  to 1nx  while replacing the function f with the 

polynomial P where )(xP is given by  
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 Similarly, the second formula in (3) is obtained by 

integrating (2) from nx  to 2nx  while replacing the function 

f with the polynomial .P  The value of ny  is obtained by 

the interpolation function such as, 
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provided that  .1  ,  ,1  jjnxqxx jnj  We 

approximate the value of  nŷ  by interpolating the values of  

f , that is, 
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 The formulae in (3) are implicit, thus a set of predictors 

are derived similarly using the same number of back values. 

The corrector formulae in (3) are iterated until convergence. 

For greater efficiency while achieving the required 

accuracy, the algorithm is implemented in variable stepsize 

scheme. The stepsize is changed based on the local error that 

is controlled at the second point. A step is considered 

successful if the local error is less than a specified tolerance. 

If the current step is successful, we consider either doubling 

or keeping the same stepsize. If the same stepsize had been 

used for at least two blocks, we double the next stepsize. 

Otherwise, the next stepsize is kept the same. If the current 

step fails, the next stepsize is reduced by half. For repeated 

failures, a restart with the most optimal stepsize with one 

back value is required. For variable step algorithms, the 

coefficients of the methods need to be recalculated whenever 

a stepsize changes. The recalculation cost of these 

coefficients is avoided by calculating the coefficients 

beforehand and storing them at the start of the program. 

With our stepsize changing strategy, we store the 

coefficients )(ri  and )(* ri  for r is 1, 2 and .
2

1
 

III. REGION OF ABSOLUTE STABILITY  

In the development of a numerical method, it is of 

practical importance to study the behavior of the global 

error. The numerical solution ny  is expected to behave as 

the exact solution )( nxy does as nx approaches infinity. In 

this section, we present the result of stability analysis of the 

two-point one-block method when they are applied to the 

neutral delay differential equations with real coefficients. 

 For the sake of simplicity and without the lost of 

generality, we consider the equation 
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where ,,, Rcba    is the delay term such as mh , h is a 

constant stepsize such that nhxxn  0  and .Zm  If 
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F  Then, the block method (3) can be written 

in matrix form such as, 
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that contains the coefficients )(ri  and ).(* ri  Applying 

method (5) to (4), we get 
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where haH 1  and .2 hbH   Rearranging, we have 
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where 0A  is the null matrix. Characteristic polynomial for 
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(6) is given by );,,( 21 cHHCm  where mC  is the 

determinant of  
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The numerical solution (6) is asymptotically stable if and 

only if for all ,m all zeros of the characteristic polynomial 

(7) lie within the open unit disk in the plane.  The stability 

region is defined as follows: 

 

Definition 1: For a fixed stepsize ,h  Rba , , and for any, 

but fixed ,c  the region S in the 21 - HH  plane is called the 

stability region of the method if for any ,),( 21 SHH  the 

numerical solution of (4) vanishes as nx  approaches 

infinity. 

 

 In Fig 2, the stability regions for 1m  and 5.0c  are 

illustrated. We use the boundary locus technique as 

described in [12] and [13].  The regions are sketched for  

,1r ,2r and .
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Fig 2. Stability region for the block method 

 

Referring to Fig 2, the stability regions are closed region 

bounded by the corresponding boundary curves. It is 

observed that the stability region shrinks as the stepsize 

increases. 

IV. NUMERICAL RESULTS 

In this section, we present some numerical examples in 

order to illustrate the accuracy and efficiency of the block 

method. The examples taken and cited from [7] are as 

follows: 
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The exact solution is .)( xxexy   

 

Numerical results for Example 1 – Example 6 are given in 

Table I – Table VIII. The following abbreviations are used 

in the tables, TOL – the chosen tolerance, STEP – the total 

number of steps taken, FS – the number of failed steps, 

AVERR – the average error, and MAXE – the maximum 

error. The notation 7.02683E-01 means .1002683.7 1  
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Table I: Numerical Results for Example 1 

TOL STEP FS AVERR MAXE 

210  20 0 7.02683E-01 9.68012E-05 

410  27 0 4.15905E-07 9.05425E-07 

610  35 0 3.09498E-07 4.21310E-07 

810  48 0 9.55941E-09 1.28084E-08 

1010  75 0 7.68855E-11 9.88663E-11 

 

 

Table II: Numerical Results for Example 2 

TOL STEP FS AVERR MAXE 

210  21 0 9.76063E-08 1.17093E-07 

410  27 0 4.95202E-09 1.27731E-07 

610  35 0 1.06955E-09 1.21167E-08 

810  50 0 3.12606E-11 1.43148E-10 

1010  79 0 5.60297E-13 1.51457E-12 

 

 

Table III: Numerical Results for Example 3, 2.0q  

TOL STEP FS AVERR MAXE 

210  20 0 1.54360E-05 1.91824E-05 

410  27 0 1.15315E-07 5.14934E-07 

610  35 0 6.83967E-08 8.52745E-08 

810  47 0 2.03160E-09 2.57931E-09 

1010  74 0 1.50180E-11 2.00260E-11 

 

 

Table IV: Numerical Results for Example 3, 8.0q  

TOL STEP FS AVERR MAXE 

210  20 0 1.57507E-07 2.30455E-06 

410  27 0 2.90818E-08 4.90683E-07 

610  35 0 4.03006E-10 3.90288E-09 

810  48 0 2.46267E-11 1.51318E-10 

1010  74 0 3.09422E-13 1.74260E-12 

 

 

Table V: Numerical Results for Example 4, ,1a   

                      ,5.0b  1.0q  

TOL STEP FS AVERR MAXE 

210
 20 0 1.61996E-06 1.15114E-05 

410
 27 0 1.08039E-07 1.15418E-06 

610
 35 0 8.23406E-09 1.15448E-07 

810
 48 0 5.74175E-10 1.15451E-08 

1010
 79 0 4.12730E-11 1.15451E-09 

 

 

Table VI: Numerical Results for Example 4, ,1a   

                      ,5.0b  5.0q  

TOL STEP FS AVERR MAXE 

210  20 0 6.25587E-06 4.77895E-05 

410  27 0 4.53165E-07 4.78257E-06 

610  35 0 3.48942E-08 4.78294E-07 

810  50 0 2.91205E-09 4.78298E-08 

1010  79 0 1.83823E-10 4.78299E-09 

 

 

Table VII: Numerical Results for Example 5 

TOL STEP FS AVERR MAXE 

210  20 0 7.31358E-04 1.83509E-03 

410  27 0 1.88577E-05 2.92294E-05 

610  71 0 9.02824E-06 2.12659E-05 

810  166 2 1.14939E-06 2.13569E-06 

1010  236 4 4.56047E-08 5.25142E-08 

 

 

Table VIII: Numerical Results for Example 6 

TOL STEP FS AVERR MAXE 

210  70 0 1.22749E-02 4.54860E-02 

410  97 0 3.92866E-04 1.14032E-03 

610  118 0 1.61615E-06 4.86641E-06 

810  173 0 2.72657E-07 4.87304E-07 

1010  300 3 1.72160E-08 3.97650E-08 

 

From Table 1 – Table VIII, it is observed that for the 

given tolerances, the two-point block method achieves 

the desired accuracy. When the tolerance becomes 

smaller, the total number of steps increases. In order to 

achieve the desired accuracy, smaller stepsizes are taken, 

thus resulting in the increase number of total steps taken.   

V. CONCLUSION  

In this paper, we have discussed the development of a 

two-point block method for solving pantograph-type 

functional differential equations. The block method 

produces two approximate solutions in a single integration 

step by using the same back values. The algorithm is 

implemented in variable stepsize technique where the 

coefficients for the various stepsizes are stored at the 

beginning of the program for greater efficiency. Stability 

regions for a general linear test equation are obtained for a 

fixed, but variable stepsizes. The numerical results indicate 

that the two-point block method achieves the desired 

accuracy as efficiently as possible.    
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