
 

 

Abstract—This research proposes a deterministic solution 

approach to a single objective, single period, multi-modal, 

multi-commodity, two-stage stochastic programming, disaster-

relief supply chain transportation and distribution problem 

minimizing the overall costs consisting of the expected first-

stage and second stage (recourse) transportation and the 

service level costs. Since a disaster creates randomness in 

resources such as arc capacities and supply/demand amounts, a 

finite set of disaster location and impact scenarios have been 

considered to model this uncertainty and vulnerability in the 

distribution network. Transportation decisions under 

uncertainty have been optimized by determining the mode-

commodity specific routing paths. The approach has been 

discussed and validated by established relations of stochastic 

programming value of stochastic solution (VSS) and expected 

value of perfect information (EVPI) derived from the new 

model, its wait-and-see, and expected value problem solutions. 

 
Index Terms— disaster-relief supply chain, recourse 

decision, stochastic linear programming, uncertainty in 

disaster management 

 

I. INTRODUCTION 

HE structural and operational design of disaster-relief 

supply chains are gaining more importance as its 

difference from commercial supply chains emerges better 

along with the past unfortunate experiences. The latest 

natural disaster event of Typhoon Haiyan hitting the 

Philippines in 2013 is the most recent proof of this assertion. 

Some of the most overwhelming observations were the lack 

of adequate logistics planning, shortages of relief items and 

uncertain transportation infrastructure changes [1]. 

 As a result of this problematic field, a common interest of 

Management Science (MS) and Operations Research (OR) 

applications has targeted disaster management, and 

researches especially focus on private sector disaster 

logistics [2]. Nevertheless, these researches are mostly 

fragmented and there are still some research questions to be 

addressed like relief item distribution and transportation 

planning [3]–[5]. 
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 This study addresses the problem of relief item and 

personnel transportation in the response phase of disaster 

aiming to present a new deterministic solution approach to 

the previous study of Barbarosoğlu and Arda [6]. They 

propose a two-stage (bi-level) stochastic programming 

framework for transportation planning in disaster response, 

modeling the resource mobilization system within a 

probabilistic (scenario-based), multi-commodity, and multi-

modal network flow problem to represent the randomness 

arising from the magnitude and impact of earthquake. 

 The paper is organized as follows: The following section 

discusses the description of the stochastic transportation and 

distribution problem with the scenarios considered. The 

third section addresses the formulation of the two-stage SP 

model presented by [6], and our deterministic equivalent 

solution which is a two-stage, single objective, single 

period, multi-modal, and multi-commodity model. In the 

fourth section, we benchmark computational results along 

with validations by established relations of stochastic 

programming (SP) like the value of stochastic solution 

(VSS) and the expected value of perfect information (EVPI) 

derived from our new model whereas we present our 

concluding remarks in the final section.  

II. STOCHASTIC TRANSPORTATION AND 

DISTRIBUTION PROBLEM AND SCENARIOS 

We accept disasters as uncertain, infrequent and high 

impacted events and try to fight with uncertainty looking for 

ways to decrease their impacts. Fighting with uncertainty is 

a double-blind process and stands on probabilistic 

estimations representing the randomness. Those 

probabilities can be formed from a finite set of scenarios, or 

continuous probability distributions. 

Reference [6] considers the earthquake problem in 

multistage, dividing them into two components of 

randomness, therefore producing two scenario types: the 

first one is the determination of the epicenter and magnitude 

which is called as Earthquake Scenarios (ES), and the 

second one is the impact scenarios (IS). They propose that 

accurate information about the epicenter and magnitude of 

an earthquake can be determined in the early post-event 

period with the help of signals acquired from rapid 

communication channels such as remote sensors, 

conventional and Doppler radar, and satellite imagery 

systems. Therefore, the degree of uncertainty can be 
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diminished to make the response planning and response can 

be initiated earlier based on adequate ESs, and ISs which are 

highly dependent to the related ES. 

As disasters are uncertain events in their nature, stochastic 

programming is needed to be able to make the closest 

decision to the optimum. The stochastic programming 

structure of the stochastic problem presented by [6] is shown 

in Figure 1. 
 

 
Fig. 1. Stochastic programming structure presented by Barbarosoğlu and 
Arda, 2004 [6]. 

 

In a two-stage stochastic programming with simple 

recourse, most generally the parameters in the first-stage are 

not random, but second-stage’s. Decisions in the second-

stage, namely recourse variables, are determined after 

having observed the actual events in the first-stage. 

They define the random parameters of the first-stage over 

the probability space (Ω1, P1) and conditional probability 

space for the second-stage (Ω2|t, P2|t), where Ω1 = 

             is the sample space of the random quantities 

of the first-stage and Ω2 =                   
  is the sample 

space of the random quantities of the second-stage along 

with T = | Ω1 | and wt an ES in Ω1 for all t = 1, 2,…, T, such 

as St = | Ω2|t | and ws|t an IS in Ω2|t for all s = 1, 2,…, St. 

The probability of each ES is defined as       such 

that       
 
     , and the conditional probability of each 

IS defined as          such that          
  
     . 

On the contrary of general stochastic programming, they 

consider using random parameters both in the first and 

second-stages, and define arc capacity, supply and demand 

parameters as random vectors.  First-stage vectors of 

capacity and supply parameters are 

           
          

        , respectively, whereas 

             
            

           are the second-stage 

joint realizations of capacity and demand parameters. 

Although the structure in Figure 1 doesn’t represent a 

traditional two-stage stochastic programming because of the 

uncertainty existence in stage 1, they argue that if each ES is 

solved independently, the problem can be evaluated like  

T two-stage stochastic models pretending early information 

of first-stage is available and can diminish the uncertainty.  

III. PROBLEM DEFINITION 

A. Description of the Two-Stage Stochastic Programming 

Model for the Multi-Commodity, Multi-Modal Network 

Flow Problem (SP-MCM) 

Based on the fact that in an emergency situation, 

minimizing the loss of life and cost of survival activities 

while maximizing the efficiency of disaster relief and search 

and rescue operations is the upmost objective, Barbarosoğlu 

and Arda presents a pioneering study with their formulation 

taking into consideration the uncertainty of disaster [6]. 

They examine the survivability of connecting arcs, 

vulnerability of resources and estimation of demand within a 

resource mobilization of a multi-commodity, multi-modal, 

single-period and single-objective model context under 

different disaster scenarios randomizing supply, demand and 

arc capacities. The objective of their network flow problem 

is to transport multiple commodities from random 

capacitated supply nodes to demand nodes in order to satisfy 

their random requirements via multiple transportation modes 

with random capacities minimizing the supply chain cost. 

Assumptions: 

1) Each node may be a supply or demand node, or both 

having one or more type of K commodities. They can act 

also as transshipment nodes. 

2) No additional supplies are allowed in any stages. 

3) Pure transshipment nodes exist and are not allowed to 

store commodity. 

4) Arcs represent the V transportation modes between 

nodes with variable transportation cost defined as a 

linear function of quantity transported via that mode. 

5) Multiple sources and multiple destinations with multiple 

routes for each commodity exist.  

6) Inter-modal shifts are allowed on pre-determined nodes 

with a cost defined as a linear function of quantity 

shifted. Nodes allowing mode-shifting have appropriate 

physical facilities. 

7) Not each mode can transport each commodity. Mode-

commodity compatibility is defined, instead. 

8) The first-stage information of arc capacity and supply 

become deterministically known as soon as magnitude 

and epicenter of earthquakes are received. 

Flow variables consisting of (l, m) routes are defined as 

from supply node l to demand node m, using (i, j) arc for 

each commodity k via mode v, and represented by      
  . 

Instead of traditional flow amount output only, flow quantity 

information having commodity-mode compatibility and 

route selection is provided.  

It is expected that at the end of the first-stage, the initial 

supply amounts must be allocated from the supply nodes to 

other nodes before the realizations of the second-stage 

random variables of demand and arc capacities. Therefore, a 

state variable    
   is created for each node-commodity pair 

to communicate between stages, and the second-stage 

problem is handled according to the picture of the first-stage 

solution. Although initially, enough supply exists in the 

system to cover the demand, there is a possibility to obtain 

infeasible first-stage decisions. In the second-stage, excess 

and shortages are allowed incurring a penalty cost defined as 

a linear function of expected overhead/shortage quantity. 
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B. SP-MCM Formulation 

The deterministic and random data definition as well as 

the decision variables used in [6] are defined in Table 1: 

Objective function in the pre-event phase: 

      
                                

   

 (1) 

Under the ES   , a node-arc formulation of the first-stage 

problem and objective function: 

          

              
       

        

      
   

               

         
             

                          

(2) 

subject to: 

        
        

            

    
        

       
          

(3) 

       
        

   
   

      
 

        
        

   
   

      
 

   

                     and         

(4) 

      
         

   
   

      
        

   
   

     
             

         

           
                  and         

(5) 

        
        

             
 

   
        

            and     

(6) 

        
        

              
 

   
        

           and     

(7) 

     
           

           
                      

(8) 

    
          ,     

           

           
                 

(9) 

Expected recourse function used in objective function (2): 

                
                      

          

  

   

                     
(10) 

The second-stage problem for a specific scenario       

                    

              
       

          

      
   

              

         
               

                  
         

     
           

(11) 

subject to: 

        
          

           

    
          

       
          

(12) 

TABLE I 

SP-MCM DATA AND VARIABLE DEFINITIONS 

Notation Definition  

Deterministic Data 

         

   set of nodes 

   set of arcs 

   set of commodities 

   set of modes 

   set of earthquake scenarios with state variable ES    

   set of impact scenarios with state variable IS    

    
   set of available modes for commodity   over           

     set of origin nodes for commodity   

     set of destination nodes for commodity   

            

    inventory holding cost 

    shortage cost 

     fixed cost of mode-shifting one unit of each commodity 

   
    cost of carrying one unit of commodity   from node   

to node   by mode   

Random Data 

   
      random supply amount of commodity   from node   in 

stage one 

  
         a realization of    

     

    
      random capacity of mode   of           in stage one 

   
         a realization of     

     

    
      random capacity of mode   of           in stage two 

   
           a realization of     

     

   
      random demand of commodity   at node   in stage two 

  
           a realization of    

     

Decision Variables 

  
         internal supply amount of commodity   at node   in 

stage two resulting from the decisions made in stage 

one according to ES   (state variable) 

     
          amount of commodity   over           by mode   

from source node   to destination node   in stage one 

in ES    

     
            amount of commodity   over           by mode   

from source node   to destination node   in stage two 

in ground motion scenario      

    
          amount of commodity   in path       shifted from any 

other mode to mode   at node   in stage one in ES    

    
            amount of commodity   in path       shifted from any 

other mode to mode   at node   in stage two in ground 

motion scenario      

    
          amount of commodity   in path       shifted from 

mode   to another mode at node   in stage one in ES    

    
            amount of commodity   in path       shifted from 

mode   to another mode at node   in stage two in 

ground motion scenario      

  
           excess amount of commodity   in demand node   in 

ground motion scenario      

  
           shortage amount of commodity   in demand node   in 

ground motion scenario      
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                    and         

(13) 

      
           

   
   

      
          

   
   

     
               

           

           
                 and         

(14) 

        
          

             
 

   
        

           and     

(15) 

        
          

             
 

   
         

   
            

          

           and     

(16) 

     
             

           
                     

(17) 

    
            ,     

             

           
                

(18) 

  
               

            

         
(19) 

 

Objective function (2) and (11) consist of the 

minimization of the transportation, mode-shifting, service 

level and recourse costs of the first-stage and second-stage, 

respectively. Objective function (2) includes the expected 

recourse cost defined with (10) whereas objective function 

(11) includes the penalty costs for inventory holding and 

shortages in the second-stage. Pair of constraints (3) & (12), 

(4) & (13), and (5) & (14) are the capacity, flow 

conservation, and mode-shift control constraints for the first 

and second stages, respectively. Constraints (6) & (7) 

together provide the initial supplies are either shipped to 

other nodes or reserved.   
        state variable stores the 

resulting first-stage supply situation to be used in the 

second-stage. Expected recourse cost function (10) is 

determined by solving the second stage problem for each 

conditional scenario of      , using the   
        state 

variable determined in stage-one and the joint realizations of 

random parameters              
            

            

Similar to the constraints (6) & (7), constraints (15) & (16) 

allow the determined and transmitted supply amounts with 

the help of state variable   
        to be reserved in 

inventory or distributed whereas shortage and excess 

amounts are also determined. Finally, constraints (8), (9), 

(17), (18) and (19) form the non-negativity constraints. 

C. Modified Deterministic Equivalent of SP-MCM 

Problem (MDESP-MCM) 

SP-MCM is found to be computationally difficult to solve 

with a solution matrix of 874 605 columns and 255 491 

rows for each ES, although the sample problem size is very 

small with 5 supply nodes, 6 demand nodes and 3 pure 

transshipment nodes. Multi-mode usage is practically 

omitted by allowing one transportation mode on each arc, 

and instead of multi-commodity, one commodity is handled 

in the sample problem with 72 finite scenarios. Besides, 

although the problem’s nature is accepted as multiple T two-

stage stochastic recourse problems, the probabilities of ES 

are ignored, and each ES are solved individually by omitting 

the uncertainty they can contribute to the problem. 

Therefore, with the provided problem formulation and set 

definition, and according to the computational results, SP-

MCM is not practical with an average of 15-17 minutes of 

solving time for each ES. Although computer configuration 

may also be a factor in this solution performance, we present 

a new modified solution approach by overcoming the above 

mentioned drawbacks. It is the Modified Deterministic 

Equivalent of Stochastic Programming Minimum Cost 

Model (MDESP-MCM). 

In our formulation, we use the same problem data and 

definition presented in Table I, with an addition of a new set 

of transshipment nodes for commodity  , notated as     . 

We allow asymmetric flow on the contrary of SP-MCM and 

instead of omitting ES probabilities and solving the problem 

as separate T two-stage stochastic programming problems, 

we assign probabilities to each ES, defined as       such 

that       
 
     . This approach provides us to solve the 

whole bunch of scenario-based problems at once 

considering all expectations in one large problem.  

If we consider the pre-event phase objective function (1), 

we see that it is the expectation of the early-response phase 

objective function (2) consisting of the response phase 

expected recourse cost (10). As it is known that our problem 

has finite scenarios, in this discrete case; we can calculate 

the expectation of random variable, building an integrated 

objective function. If X is a discrete random variable having 

a probability mass function p(x), then the expected value of 

X is defined by                     [7]. Starting from 

the objective function in the pre-event phase (1), and 

substituting the expected recourse function (10) in the first-

stage objective function (2) with the second stage objective 

function (11), we can write a large LP that forms a new 

deterministic integrated objective function [8]: 

      
            

                    
       

        

      
   

                  

         
             

            

                          
       

          

      
   

                    

         
               

                  
         

     
           

(20) 
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We minimize the overall expected cost with the objective 

function (20). Practically, it presents the expected value of 

the expected recourse function.  

In MDESP-MCM, we define a new balance constraint 

(21) to assure that the initial supply amount of the system at 

the pre-event phase is re-allocated completely at the end of 

the first-stage, and the total of the state variable   
  equals to 

the total of system supply to represent the situation at the 

beginning of the second-stage. 

        
        

         
    

         
        

         
    

   
          

        

                      and         

(21) 

In order to make the problem size smaller than SP-MCM, 

we define an additional set of         to all constraints. 

Non-negativity constraints stay the same and we also change 

the defined set of i for constraints (5) and (14) related with 

the transportation mode shifting from     to     .  

IV. COMPUTATIONAL RESULTS 

As the SP-MCM model is validated by using the actual 

data from August 1999, Magnitude (M) 7.4, the Marmara 

earthquake in Turkey, we also implement this data to our 

model and focus on the Avcilar region to show the 

application of MDESP-MCM.  

It is consisted of six demand nodes (D1 to D6), three pure 

transshipment nodes (N1 to N3), and five supply nodes (S1 

to S5) connected with arcs representing two different types 

of transportation modes, namely by truck and by helicopter. 

Supply data which are generated using the actual response 

and service plans developed by local authorities and 

expected demand data can be found in [6]. The supply data 

is assumed to be fixed in all ESs. One type of commodity is 

handled through the model. Mode-shifting is allowed at 

three supply nodes (S1, S4, and S5) having both helicopter 

landing facility and road connections. Transportation cost is 

a linear cost function of distance assuming as air transport is 

twice expensive than land transport. As the website link for 

transportation costs and arc capacities given in [6] is broken, 

a contact with the authors is established and thanks to their 

courtesy, almost all required data to replicate the 

computation is reached. This data can be reached from the 

corresponding author of this study. Mode shifting and 

shortage costs are defined as 35 and 50 per unit, 

respectively. Overage cost is ignored. The model MDESP-

MCM is solved for eight ESs and nine ISs. As ESs 

probabilities are not provided in [6], they are generated from 

[9] assigning an average probability of 65% for earthquakes 

above M = 7 the coming 30 years and presented in Table II. 

For conditional ISs scenarios, probabilities and impact rates 

given in [6] are used rearranging the order of the related 

impacts as healthy data couldn’t be reached. The new case is 

presented in Table III. The second-stage demands and arc 

capacities are calculated according to the percentage factors 

given in these scenarios. 

Under these conditions, it is expected that the best case is 

IS 1, as it has the highest capacity and the lowest demand 

increase, whereas IS 9 is the worst. 

The MDESP-MCM model is coded and solved using 

GAMS/CPLEX as a single linear program. The computation 

provided in this study consists of 63 073 rows and 917 113 

columns, and the optimal results reported below are 

obtained in about 11 seconds (3 946 iterations) by using 

GAMS on Core 2 Duo 2.5 Ghz 3GB RAM. For 

benchmarking and validation purposes, the Wait-and-See 

(WS) and the expected result of expected value (EEV) 

problem are also obtained. Unsatisfied demand (UD) and 

regarding service level costs (SLC), first-stage transportation 

costs (FSTC), second-stage transportation costs (SSTC), 

transportation costs including FSTC and SSTC, and original 

costs (OC) consisting of FSTC, SSTC and SLC are 

calculated, separately. 

Under the assumption of perfect information is available, 

WS problem has been solved and the expected value of 

perfect information (EVPI = MDESP-MCM – WS), which 

is defined as the maximum amount a decision maker would 

pay, is calculated. WS solution is expected to provide the 

lowest objective value due to its nature, but considering the 

perfect information is mostly impossible, is found 

impractical. Therefore, we use it to validate our solutions 

and see whether the trend of cost parameter fit to our model 

or not. The trend of WS results can be seen in Figure 2. 

 
Fig. 2. Wait-and-See Results of MDESP-MCM 

We observe that first-stage costs remain constant and 

second-stage costs decrease towards the worst case. This is 

intuitively expected. Besides, the service level costs have an 

increasing trend causing original costs to increase. This is 

because shortages increase as IS gets worse, and again 

intuitively reasonable. Cost trends are in rhyme with SP-

MCM, except the stability of the FSTC. However, that was a 

drawback mentioned in [6], and with our solution, it is 

handled successfully. We will look for the same cost trends 

in our model MDESP-MCM. Similarly, expected results of 

the EEV problem, from which we expect higher objective 

function values, are calculated to measure the value of 
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TABLE II 
PROBABILITIES FOR EARTHQUAKE SCENARIOS (ES) 

Scenarios                         

      0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.65 

 

TABLE III 
IMPACT FACTORS 

IS % Actual Capacity  % Actual Demand 

1 90 130 

2 80 140 

3 70 150 
4 60 160 

5 50 170 

6 40 180 
7 30 190 

8 20 200 

9 10 210 
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stochastic solution (VSS = EEV – MDESP-MCM). In this 

case, after solving the two-stage problem using the expected 

values of the random variables of the stage 

two         
           

      , we obtain the state 

variable   
       , and optimize the MDESP-MCM again. 

The results of MDESP-MCM are provided in Table IV, 

whereas overall average of the optimum original costs and 

transportation costs comparisons, and regarding EVPI and 

VSS values of MDESP-MCM, WS and EEV results are 

provided in Table V. Higher EVPI and VSS values 

strengthen the need of MDESP-MCM more. 

From Table IV, we observe that the cost trends are in 

rhyme with the WS results and the results presented in [6]. 

Unsatisfied demand has an increasing rate from the best-

case scenario to the worst case. First-stage costs remain 

constant; second-stage costs decrease gradually as aimed in 

the concept of the two-stage SP.  

When we check the overall results, we see that the 

transportation costs and original costs values are fluctuating 

around an average, which can be explained with the scenario 

probability assignments. The MDESP-MCM, WS and EEV 

results of transportation costs and original costs are 

consistent with Birge and Louveaux [10] stating the proofs 

that WS ≤ SP ≤ EEV, EVPI ≥ 0, and VSS ≥ 0, although the 

TC values of [6] are not in all cases. We also implement this 

benchmarking on the UD amounts of the three solution 

approaches. In this analysis, we see that UD amount of EEV 

is slightly lower than MDESP-MCM in all ISs. This 

indicates that demand satisfaction is slightly overestimated. 

V. CONCLUSION 

Based on the latest state-of-the-art studies on the OR/MS 

disaster relief item transportation and distribution planning 

studies and to the best of our knowledge, MDESP-MCM is 

the first deterministic, bi-level, single-period, single-

objective, multi-modal and multi-commodity study and 

opens a channel of future research areas for multi-period, 

multi-objective studies in this field. In terms of performance 

measures, our approach finds the optimal solution in about 

one over ninety of [6] solution time and using tighter 

solution matrix. Therefore, MDESP-MCM eliminates the 

complexity of stochastic programming implementation on 

large size problems. If reasonable and accurate ISs are 

estimated, our approach can be used as an effective tool to 

make broader relief item distribution planning.  
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2 1 3099 1143763 923793 6 1 3099 1143763 923793 

 
2 6046 1143763 957346 

 
2 6046 1143763 957346 

 
3 10665 1143763 963529 

 
3 10665 1143763 931526 

 
4 19666 1143763 928295 

 
4 18341 1143763 935820 

 
5 26567 1143763 917828 

 
5 25067 1143763 918484 

 
6 33708 1143763 845393 

 
6 34908 1143763 886956 

 
7 45464 1143763 743519 

 
7 45464 1143763 745601 

 
8 56260 1143763 559865 

 
8 56860 1143763 592910 

 
9 71910 1143763 300038 

 
9 72248 1143763 324263 

          
3 1 3099 1143763 923793 7 1 399 1143763 929158 

 
2 6046 1143763 957346 

 
2 3821 1143763 969326 

 
3 12765 1143763 942248 

 
3 12765 1143763 942248 

 
4 19666 1143763 932457 

 
4 19666 1143763 918837 

 
5 25067 1143763 914978 

 
5 26567 1143763 917828 

 
6 33708 1143763 861424 

 
6 34908 1143763 886956 

 
7 44564 1143763 682106 

 
7 45464 1143763 702513 

 
8 56860 1143763 589648 

 
8 56860 1143763 589648 

 
9 72210 1143763 324469 

 
9 72248 1143763 324263 

          
4 1 3099 1143856 923793 8 1 399 1143763 911480 

 
2 6046 1143856 957346 

 
2 3821 1143763 971601 

 
3 12765 1143856 942248 

 
3 12765 1143763 942248 

 
4 19666 1143856 932457 

 
4 19666 1143763 927120 

 
5 25067 1143856 874856 

 
5 26567 1143763 917828 

 
6 34908 1143856 884181 

 
6 34908 1143763 886956 

 
7 44564 1143856 697788 

 
7 45464 1143763 745601 

 
8 56860 1143856 589648 

 
8 56860 1143763 589648 

 
9 72210 1143856 324469 

 
9 72210 1143763 324469 

 TABLE V 
MDESP-MCM OVERALL RESULTS 

 
MDESP WS EEV 

ES OC TC OC TC OC TC 

1 3457438 1935302 3355759 1888623 3556248 2070223 

2 3455855 1937052 3355759 1888623 3566460 2060435 

3 3457950 1935814 3355759 1888623 3574159 2053689 
4 3464524 1935721 3355759 1888623 3572133 2061108 

5 3461840 1939496 3355759 1888623 3589159 2067023 

6 3460601 1945618 3355759 1888623 3587035 2074690 
7 3456610 1941626 3355759 1888623 3565821 2066810 

8 3460421 1945646 3355759 1888623 3585970 2072168 

 OC TC 

ES EVPI VSS EVPI VSS 

1 101679 98810 46679 134921 
2 100095 110606 48429 123383 

3 102191 116208 47191 117875 

4 108765 107608 47098 125386 
5 106081 127319 50873 127527 

6 104842 126433 56995 129072 

7 100850 109212 53003 125184 
8 104661 125550 57022 126522 
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