
Abstract – In preliminary analysis of control charts, one may 

encounter multiple shifts and/or outliers especially with a large 

number of observations. The following paper addresses this 

problem. A statistical model for detecting and estimating 

multiple change points in a finite batch of retrospective (phase 

I) data is proposed based on Likelihood Ratio Test. We 

consider a univariate normal distribution with multiple step 

shifts occurred in predefined locations of process mean. A 

numerical example is performed to illustrate the efficiency of 

our method. Finally, performance comparisons, based on 

accuracy measures and precision measures, are explored 

through simulation studies. 

Index Terms— Change point, Control chart, Phase I. 

I. INTRODUCTION 

TATISTICAL Process Control (SPC) was introduced by 

Walter A. Shewhart in the 1920s as an attempt to present 

a powerful collection of statistical and also managerial 

techniques to monitor product quality and maintain process 

stability through the reduction of variability. Of all the SPC 

tools, Control Charts are the most popular on-line 

procedures assisting engineers to quickly detect the 

happening of assignable causes of process shifts by 

signaling out-of-control (OC) alarms [1]. Most of control 

charting methods and corresponding diagnostic tools deal, 

directly or indirectly, with prospective applications, also 

called phase II applications, where true in-control (IC) 

process parameters are accurately estimated or assumed to 

be known. In this stage, as each new reading (from one or 

more quality characteristics) obtains successively, the 

sample statistic is calculated and the SPC check, whether an 

OC condition has occurred or not, is re-applied [2]. 

However, every process monitoring has an early stage, 

namely phase I, in which a finite set of historical data is 

collected, when the process is thought to be IC, and 

analyzed all at once as a batch.  
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The main purpose of phase I analysis, also called 

retrospective or stage 1 analysis, is to simultaneously detect 

any special causes of variation, eliminate root causes of 

these problems, bring the process back to a state of 

statistical control, and estimate the IC process parameters 

[3]. In such actions, one may confront multiple shifts and/or 

outliers (single excursions resulted from momentary 

assignable causes) especially within a large number of 

observations.  

The general statement for change point problem is as 

follows. Suppose that statistical data are obtained as an 

output of a specific experiment, or are being accumulated 

during such experiment. In the first situation, the entire array 

of data (with fixed length) is analyzed with the purpose of 

building a mathematical model or estimating some 

parameters of interest. As a rule, prior to parameter 

estimation and model generation, one has to check the 

hypothesis of homogeneity of data acquired. If this 

hypothesis is rejected, then segments of homogeneity of data 

should be detected and parameter estimation should be 

performed in each segment separately. This is due to the fact 

that one cannot statistically estimate those parameters that 

have changed in data acquisition process. In the second case, 

data are received sequentially in such a way that forms an 

endless stream. So, any disturbance in the stochastic 

homogeneity of data being obtained might be an indication 

of specific event (failure, malfunction, etc.) and should be 

dealt with on-line to avoid possible losses and casualties [4]. 

The point at which disruption has been plugged into the data 

is called change point. In SPC framework the former case is 

related to preliminary applications whereas the latter 

pertained to phase II problems. 

There are some main classifications of change point 

problems found in the literature: (1) whether the type of 

change (step, trend, monotonic, sporadic) is known as a 

priori or not; (2) whether the number of changes (single or 

multiple) is known exactly a priori or not; (3) whether the 

assumption of independence of observations is contradicted 

or not; (4) the different volume of priori statistical 

information about underlying process which leads to 

parametric, semiparametric or nonparametric methods of 

change point detection, etc.. Studies carried out by [5, 6], 

and [7] are the initial attempts in the literature dealt with a 

posteriori change-point problem with one abrupt change at 

the unknown moment of density function, and sequential 

change-point detection respectively. [8], then proposed 

Bayesian and minimax procedures in order to solve the 

problem of optimal sequential change point detection. After 

that, the change point analysis is intensively investigated by 

[9], [10, 11], [12], and others and has been successfully 

applied in different fields including statistical process 

monitoring, statistical control theory, pattern recognition, 

signal processing, etc. In SPC context, most studies of 
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change-point problem devoted to ongoing (phase II) settings 

where the emphasis is on process monitoring with a clean 

set data obtained from retrospective analysis. In this 

application, the process is first assumed to be in-control and 

monitored by a specific control chart. Then a special cause, 

mainly sustained special cause, occurs at an unknown point 

in time, and later an OC condition is usually signaled by the 

chart. Afterward, the process is, usually, stopped and search 

for finding a change point is performed. Hence, the problem 

of multiple change points is rather meaningless in 

prospective applications (see e.g., [13], [14], [15], [16], and 

[17]). On the other hand, there exist a few papers 

considering change point(s) problem in phase I analysis of 

SPC. In this situation, [3] addresses multiple shifts and/or 

outliers with a rational subgroup of size one using clustering 

approach and shows that neither X-chart nor CUSUM chart 

can detect the existing of any disruptions when multiple 

shifts and/or outliers are present. In additions, [18] propose a 

dynamic programming model to find the exact change point 

locations in a hierarchical clustering approach, subject to the 

restriction that all segments have at least a specific 

observations.   

Due to the nature of process we study, there are many 

situations in which it is advisable to work with individual 

observations; for example the production rate is low or there 

is an automatic measurement system and every unit can be 

examined separately (see [1] for more details). The main 

purpose of this study is to address multiple change point 

problem in phase I application with individual observations. 

We propose a method based on Likelihood Ratio Test 

(LRT), which is able to detect multiple step shifts in a batch 

of i.i.d normal random variables, and also can estimate the 

correct location of change points. The strong and weak 

aspects of the method are further discussed in detail.  

The remaining of this paper is organized in the following 

order: In the next section, we elaborately clarify the problem 

and provide a basis for applying LRT approach to multiple 

change point’s problem with individual observations. In 

section 3, a comprehensive numerical example is presented 

to illustrate the validity of our method. Also, performances 

of the proposed method are assessed by simulation 

experiments based on accuracy measure and precision 

measure. Finally, in section 4, we present some conclusions 

and further research. 

 

II. METHODOLOGY 

There are some recommendations proposed for the 

problem of phase I analysis with individual measurements, 

most common of which is to use X and MR control chart 

([1] or [18]) or just constructing X chart ([19]). However, in 

this paper we use likelihood ratio test approach to address 

the problem. In this procedure, all potential segments of the 

historical (phase I) data set into two subgroups are 

considered and LRT statistics related to each segment are 

formed. When one or more computed LRT statistics exceeds 

a threshold value, an OC condition is indicated. Moreover, 

the segment corresponding to the maximum value of the 

statistic is specified as the most likely location of the 

change. As noted, the LRT method can be applied either to 

detect the change point or its location in a batch of random 

input variables. However, in order to use this method, one 

must first determine the appropriate probability distribution 

of underlying process. 

Suppose a batch of m historical independent observations, 

x1, x2,…, xm, from one or more univariate normal 

distributions all with same variance σ
2
. There are R shifts in 

the mean, and the shift locations are τr, r=1,…, R subject to 

0< τ1 <…< τR <m where τ0=0 and τR+1=m. Let ζt(0) 

represents the probability distribution function of  xt. So the 

model can be formulated as  

     ( )                                               (1) 

     We want to determine if the process from which the 

batch is obtained indicates an IC condition, which 

corresponds to R=0; and if not where the exact change 

point(s) are. 

Assume that the first change point occurred in the mean of 

independent Gaussian variables is located in the m1
th

 

observation such that m1<m and m1+ m2= m. The log of the 

likelihood function for the first m1 observations is  
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which are the Maximum Likelihood Estimators (MLE) for 

the first m1 observations. The maximized value for (2) is 
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Similarly, the maximized value of likelihood function for 

the remaining m2 observations is 
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Therefore, in the case that there are multiple change points 

within a preliminary data set, the maximum log-likelihood 

function for all observations is given as follows:  

1 2al l l                                                                           (6) 

On the other hand, if the process was IC then all m 

observations are identically distributed and the maximized 

value of likelihood function can be found as follows  

   2

0
ˆln 2 ln .

2 2 2

m m m
l                                    (7) 
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In case that la is substantially larger than l0 the process is 

considered to be OC. Minus two times the difference of the 

log-likelihood function 
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     (8)  

has asymptotically chi square distribution with two degrees 

of freedom. For large sample approximation see [20].  

In summary, the LRT method computes (8) for all 

possible values of m1 and introduces one as the mle for the 

change location which maximizes the (8), given that the 

maximized value exceeds a predefined threshold value. 

Clearly, a control chart can be set up by plotting the statistic 

(8) versus m1 signaling an OC condition if any value goes 

beyond an upper control limit. Moreover, the method can be 

applied to detect multiple shifts, especially with a large 

number of observations, by binary segmentation. If a change 

is detected, then the data will be divided at the most likely 

location for a single change, and the procedure is repeated to 

each new group. This continues until no subgroup shows 

evidence of any change. 

Recall that the stage 1 situation for individual NID 

random variables with known σ
2
 is the focus of this study. 

However, the true variance of a batch of historical 

observations is not known for almost all real cases and is 

difficult to be accurately estimated with individual 

observations. This problem becomes worse when multiple 

shifts and/or outliers are present. So it is of interest to build 

a robust estimator in this situation and compare it with 

typical ones based on the average of the moving ranges or 

sample standard deviation. Furthermore, one can consider 

multiple shifts in both mean and variance, separately or 

simultaneously, within a batch of retrospective data and 

customize LRT approach to be able to attribute a signal to a 

shift in mean only, variance only, or a combination.  

In the next section, we statistically compare the efficacy of 

our proposed methods using Monte Carlo simulation. 

 

III. NUMERICAL EXAMPLE 

In this section, we employ Monte Carlo simulation to 

effectively study the performance of the proposed method. 

Two commonly-used measures, accuracy and precision 

measures are provided to evaluate the efficiency of change 

point estimators. The former sizes how close an estimated 

value is to the real value whereas the later rates how close 

the estimated values are to each other.  

It is assumed that there are R step change(s) with different 

magnitudes of δ= 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 in the mean 

of a batch of m univariate normal random variables. On the 

grounds that it is desirable to have 20-25 samples of size 3-5 

for constructing a trial control chart of preliminary data [1], 

we set the value of m to be 200 in our study.  

Moreover, as stated in [1], there are various types of 

pattern which may be revealed in a specific control chart, 

fairly often in phase I, as results of some particular inputs. 

Interpretation of such patterns provides valuable diagnostic 

information on the process and also helps bring a process 

back to IC condition for prospective applications. In this 

study we assume that a Mixture pattern, which best serves 

our purpose, is fed into the batch as a result of two 

overlapping distributions generating the process output (see 

[1] for more details about common causes and effects of a 

Mixture pattern on control charts). 

Also, we consider, for multiple change point situation, 

uniformly spaced shifts alternating between two means. 

That is, a single shift occurs midway in the data, and two 

shifts would be located after one-third and two-thirds of the 

observations and so on. One may take into account random 

shift locations [22,23], but there is a potential risk in this 

condition; if the shifts position near the end of the batch or 

close to another shift, they may resemble outliers. To this 

end, presume Ω = {μj+1 | μj+1 = μj + δ * (-1)
j
 ; j = 0,1,…,R-1}                                                                                                                                                                                                                                                               

is the set of change values, μ0 is predetermined initial value, 

and δ is the magnitude of change. Without any loss of 

generality σ = 1 is used in the simulation. Ω is defined such 

that the difference in parameter mean for two consecutive 

groups is identical and equal to δ. For example, imagine that 

there are R=4 groups with different mean values and let μ0 = 

1 and δ = 3. In this case, sequence Ω is defined as Ω = {1, 4, 

1, 4}. So, there are five different groups: the first group 

consisting of the first observation to the 40
th

 observation, all 

are randomly generated from a NID (1, 1), the second group 

consisting of the 41
th

 observation to the 80
th

 observation, all 

are randomly generated from a NID (4, 1), and so on. 

Owing to the fact that the expected value of the statistic 

(8) is not consistent varying the value of m1 (in fact if m1 or 

m2 is small, the expected value is always larger than when 

both are the same), as recommended by [21], it is desirable 

to improve the test by diving each test statistic by its in-

control expected value. Then the threshold value(s) is 

determined using simulation to give the desired false-alarm 

probability [24,25]. Therefore, normalizing the statistic by 

its expected value gives the new test statistic 

1 2
1 2

1 2

( , )
( , )

( , )

lrt m m
Nlrt m m

E lrt m m  
                               (9) 

In this way the resulting expected value is the same for all 
values of m1. So we apply the improved test statistic (9) 

instead of (8) in our study.  

In order to estimate τr’s, 1000 replications are used in each 

simulation run. Here, we also design our method to be able 

to perform seven hypothesis tests and detect and estimate 

maximum seven change points.  An alternative model could 

be built to detect and estimate more or less shifts. 

The proposed method is as follows. Using 5,000 

independent simulations, we first calculate E[lrt(m1,m2)] 

array, when process is IC, for all possible values of m1 while 

m=200. Then we utilize statistic (9) and start generating a 

batch of historical data following change set Ω. At each run, 

seven potential test are conducted and at most 2
0
+2

1
+2

2
=7 

partitions are introduced as the estimates ( ˆ
r ) of true 

change points. Also, using 5000 simulations, the false alarm 

probabilities of 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, and 

0.01 correspond to threshold values 7.0089, 7.5745, 7.3684, 

8.3876, 8.1206, 8.0292, and 7.9153 respectively.   
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A. Performance Comparisons Based on Accuracy 

Measures  

 

Table 1 shows the estimates of change points and their 

related standard error (in the parentheses) where there are 

R=1, 2, 3, and 4 step shifts, with different shift sizes, in a 

batch of m=200 retrospective data. It is observed that the 

proposed LRT method works appropriately providing 

approximately unbiased estimates for true change locations 

in case of single change. For other cases, although there is a 

small biasness, particularly in intermediate change points, 

the magnitude of biasness is not very large to seriously 

affect groups. It is worth mentioning that for R=3 the 

method tends to underestimate midway shift and 

overestimate two other shifts. This tendency exists for R=4 

in a different manner; most of the time the first two changes 

are underestimated and the last ones are overestimated. For 

instance, when R=3 and δ=2, the estimates for true change 

points 50, 100, and 150 are 51.3, 98.7, and 151.6 

respectively. Again when R=4 and δ=3, the estimations for 

real change points 40, 80, 120, and 160 are 39.3, 79.2, 122, 

and 160.3 respectively. In Contrary, LRT method does 

always overestimate the true change locations for R=1 and 

R=2. In additions, the results of table 1 indicate, for almost 

every case, a progressive increase in accuracy of estimated 

change points with increment in shift size.  

B. Performance Comparisons Based on Precision 

Measures  

 

Regardless of the fact that the average of change points can 

be applied as a summarized comparison among estimators, 

to explicitly investigate the performances, the proximity of 

estimates to each other should be taken into consideration. 

An estimator with good performances in estimating location 

of changes may inherently have poor performances in terms 

of dispersion. In this situation, the estimator provides 

estimates that are close to the true location in average but far 

from each other. 

To pursue this goal, we construct confidence intervals for 

change points and their probabilities with different 

coverages from 0 to 25. The related results for the proposed 

method over a range of δ are illustrated in Table 2. It is 

shown that the method has totally acceptable precision 

performances even for small values of δ. For example, when 

there is a change of size 0.5 in the normal mean 31% of all 

estimates of τ1 show the true change value and half of all 

estimations are two units or less far from the real shift. As 

expected, the estimated probabilities of confidence intervals 

increase, for most of the time, as the size of change point 

increases. Besides, the method can guarantee to identify a 

location equal to or less than 15 units from the true location 

approximately in 90% of times for all possible change sizes.  

Finally we should point out although the proposed 

method performs appropriately subjected to multiple 

changes and is indeed superior to other conventional 

methods in terms of accuracy and precision measures; it is 

restricted by distributional assumptions. In other words, 

knowing the exact distribution of phase I data is the 

preliminary step in forming the LRT method, which rarely 

the case for real world problems. Besides, there are some 

situations in which the two heterogeneous input data do not 

follow the identical distribution. These obstacles can be 

modified by using nonparametric methods such as clustering 

method or by applying Generalized Likelihood Ratio Test 

(GLRT) for general distributions.  

IV. CONCLUSION 

In this paper, based on likelihood ratio test, we propose a 

model to address multiple step shifts in a mean of 

independent normal random variables obtained from phase I 

analysis of SPC. It is shown that the method functions 

suitably in terms of accuracy measure and precision measure 

over various ranges of shift sizes. Our approach can be 

generalized to include more general distributions, i.e. 

exponential family or normal family distributions, to detect 

more shift type, i.e. linear trend or sporadic change, and to 

simultaneously detect shifts in more than one moment of 

density function, which are planned for future studies. In 

spite of superiority of LRT method, it should be noted that 

this method requires the knowledge about the exact 

distribution of historical data set. This assumption makes the 

method restricted and degrades its practicability. Besides, in 

some cases, this data set may follow different distributions 

in which the observations between groups follow 

distributions with various functional forms. Thus, the LRT 

method should develop to a more generalized form that is 

flexible for such changes. For example, one can derive the 

LRT statistic of a general family of distributions such as 

Johnson family distributions or exponential family 

distributions that can conveniently fit with separate data 

sets. 
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