GARCH Model with Jumps: Testing the Impact of News Intensity on Stock Volatility

Sergei P. Sidorov, Andrey Revutskiy, Alexey Faizliev, Eugene Korobov, Vladimir Balash

Abstract—The emphasis of the paper is on assessing the added value of using news analytics data in improving the explanatory power of the GARCH–Jump model. Based on empirical evidences for some of FTSE100 companies, the paper examines two GARCH models with jumps. First we consider the well-known GARCH model with jumps proposed in [1]. Then we introduce the GARCH-Jumps model augmented with news intensity and obtain some empirical results. The main assumption of the model is that jump intensity might change over time and that jump intensity depends linearly on the number of news (the news intensity). The comparison of the values of log likelihood supports the hypothesis of impact of news on jump intensity of volatility.

Index Terms—stock volatility modelling, GARCH models, news analytics.

I. INTRODUCTION

Empirical studies based on the log return time series data of some stocks showed that serial dependence is present in the data; volatility changes over time; distribution of the data is heavy-tailed, asymmetric and therefore not Gaussian. These facts show that a random walk with Gaussian increments is not a very realistic model for financial time series. The ARCH (Autoregressive Conditionally Heteroscedastic) model was introduced by Engle in 1982 [2]. In the model it is supposed that the conditional variance (squared volatility) is not constant over time and shows autoregressive structure. This model is a convenient way of modeling time-dependent conditional variance. Some years later, Bollerslev [3] generalized this model as the GARCH model (Generalized Autoregressive Conditional Heteroscedasticity). A distinctive feature of the modern financial series is the presence of jump dynamics of asset prices. One of the models describing this behavior is GARCH model with jumps was proposed in [1].

Recent studies on the volatility of stock returns have been dominated by time series models of conditional heteroscedasticity and have found strong support for ARCH-GARCH-type effects. However, ARCH-GARCH-type models do not provide a theoretical explanation of volatility or what, if any, the exact contributions of information flows are in the volatility-generating process.

Different measures of information arrivals were employed in variety of empirical studies in order to test the impact of the rate of information on the market volatility:

- macroeconomic news, in the paper [4];
- the number of daily newspaper headlines and earnings announcements, in the paper [5];
- the number of specific stock market announcements, in the paper [6].

In the papers [7], [8] volatility of log returns depends on the intensity of news flow on market directly. It is worth to be mentioned the works [9] and [10]. In the paper of [9] firm-specific announcements were used as a proxy for information flows. It was shown that there exists a positive and significant impact of the arrival rate of the selected news variable on the conditional variance of stock returns on the Australian Stock Exchange in a GARCH framework. They split all their press releases into different categories according to their subject. In the second of the papers the author examines impact of news releases on index volatility, while in our work we analyze the impact on stock volatility following study of [9]. However, we restrict our choice by some of the FTSE100 companies, while [9] considered some French companies.

In the papers [11] and [12] authors analyze the impact of extraneous sources of information (viz. news and trade volume) on stock volatility by considering some augmented Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models. Following the study of [13], it was supposed that trading volume can be considered as a proportional proxy for information arrivals to the market. Also it was considered the daily number of press releases on a stock (news intensity) as an alternative explanatory variable in the basic equation of GARCH model.

Based on empirical evidences for some of FTSE100 companies, this paper examines two GARCH models with jumps to evaluate the impact of news flow intensity on stock volatility. First it will be considered the well-known GARCH model with jumps proposed in [1]. Then we will introduce the GARCH-Jumps model augmented with news intensity and obtain some empirical results. The main assumption of the model is that jump intensity might change over time and that jump intensity depends linearly on the number of news. It is not clear whether news adds any value to a jump-GARCH model. However, the comparison of the values of log likelihood shows that the GARCH-Jumps model augmented with news intensity performs slightly better than "pure" GARCH or the GARCH model with Jumps. We restrict our choice by some of the FTSE100 companies. Our emphasis is on assessing the added value of using news intensity in improving the explanatory power of the GARCH–Jump model.
II. MODELS DESCRIPTION

Let X_t be the log return of a particular stock or the market portfolio from time $t - 1$ to time t. Let I_{t-1} denote the past information set containing the realized values of all relevant variables up to time $t - 1$. Suppose investors know the information in I_{t-1} when they make their investment decision at time $t - 1$. Then the relevant expected return μ_t to the investors is the conditional expected value of X_t, given I_{t-1}, i.e.

$$\mu_t = E(X_t | I_{t-1}).$$

The relevant expected volatility σ_t^2 to the investors is conditional variance of X_t, given I_{t-1}, i.e.

$$\sigma_t^2 = Var(X_t | I_{t-1}).$$

Then

$$\epsilon_t = X_t - \mu_t$$

is the unexpected return at time t.

A. GARCH model

We recall ([3]) that a process (ϵ_t) is said to be the generalized autoregressive conditionally heteroscedastic or GARCH(1,1) process if $\epsilon_t = \sigma_t \epsilon_{t-1}, t \in \mathbb{Z}$, where (σ_t) is a nonnegative process such that

$$\sigma_t^2 = \omega + \alpha \sigma_{t-1}^2 + \beta \epsilon_{t-1}^2,$$

and (ϵ_t) is a sequence of i.i.d. random variables such that $\epsilon_t \sim N(0,1)$.

In the model, α reflects the influence of random deviations in the previous period on σ_t, whereas β measures the part of the realized variance in the previous period that is carried over into the current period. The sizes of the parameters α and β determine the short-run dynamics of the resulting volatility time series, i.e. the sum $\alpha + \beta$ of these parameters reflects the degree of persistence. Large ARCH error coefficients α mean that volatility reacts intensely to market movements, while large GARCH lag coefficients β indicate that shocks to volatility persist over time.

B. GARCH model with Jumps

GARCH–Jumps model with constant jump intensity was proposed and studied in [1]. In GARCH–Jumps model it is supposed that news process have two separate components (normal and unusual news), which cause two types of innovation (smooth and jump-like innovations):

$$\epsilon_t = \epsilon_{1,t} + \epsilon_{2,t}. \quad (2)$$

These two news innovations have a different impact on return volatility. It is assumed that the first component $\epsilon_{1,t}$ reflects the impact of unobservable normal news innovations, while the second one $\epsilon_{2,t}$ is caused by unusual news events.

The first term in (2) reflects the impact of normal news to volatility:

$$\epsilon_{1,t} = \sigma_{1,t} \epsilon_{1,t-1}, t \in \mathbb{Z}, \quad (3)$$

where $(\epsilon_{1,t})$ is a sequence of i.i.d. random variables such that $\epsilon_{1,t} \sim N(0,1)$, $(\sigma_{1,t})$ is a nonnegative GARCH(1,1) process such that

$$\sigma_{1,t}^2 = \alpha_0 + \alpha_1 \epsilon_{1,t-1}^2 + \beta_1 \sigma_{1,t-1}^2 \quad (4)$$

and $\alpha_0, \alpha_1, \beta_1 > 0$. Note that $\mathbb{E}(\epsilon_{1,t} | I_{t-1}) = 0$.

The second term in (2) is a jump innovation with $\mathbb{E}(\epsilon_{2,t} | I_{t-1}) = 0$. The component $\epsilon_{2,t}$ is a result of unexpected events and is responsible for jumps in volatility.

The distribution of jumps is assumed to be Poisson distribution. Let λ be intensity parameter of Poisson distribution. Denote n_t a number of jumps occurring between time $t - 1$ and t. Then conditional density of n_t is

$$P(n_t = j | I_{t-1}) = \frac{\exp(-\lambda \lambda^t)}{j!}, \quad j = 0, 1, \ldots \quad (5)$$

In this paper we suppose that the intensity parameter λ is constant over time.

The development of GARCH–Jumps model of [1] can be found in the papers [14] and [15], where it is assumed that the conditional jump intensity, i.e. the expected number of jumps occurring between time $t - 1$ and t conditional on information I_{t-1}, is autoregressive and related both to the last period’s conditional jump intensity and to an intensity residual.

C. GARCH Model with Jumps Augmented with News Analytics Data

Many investment companies in the U.S. and Europe have been using news analytics to improve the quality of their business [16]. Interest in news analytics is related to the ability to predict changes of prices, volatility and trading volume on the stock market [17]. News analytics uses some methods and technics of data mining [18] and relies on methods of computer science, artificial intelligence (including algorithms for natural language processing), financial engineering, mathematical statistics and mathematical modeling. News analytics software signalizes traders about the most important events or send their output data directly to automated trading algorithms, which take into account this signals automatically during the trade.

We are going to analyze the impact of news process intensity on stock volatility by extending GARCH–Jumps model in [1]. The main assumption of the model is that jump intensity might change over time and that jump intensity depends linearly on the news intensity (the number of company news per day).

Unlike [1] we consider the model (2), (3), (4), (5), where N_t is a Poisson random variable with conditional jump intensity

$$\lambda_t = \lambda + \theta_n t, \quad (6)$$

where $\zeta_t = \mathbb{E}(N_{t-1} | I_{t-1}) - \theta_n t$, and n_{t-1} is the number of news from $t - 2$ to $t - 1$ respectively. Therefore we directly take into account the qualitative data of news intensity (source: RavenPack News Scores).

Note that GARCH–Jump model can be calibrated either with generalized method of moments or with quasi-maximum likelihood approach [19]. We have chosen to apply the latter approach here. The problem of calibration of GARCH–Jumps models is difficult due to its non convexity and noisiness. We tried to use different solvers for global optimization and to develop heuristic search algorithms.
III. EMPIRICAL RESULTS

Our sample covers a period ranging from July 15, 2005 to July 15, 2008 (i.e. 752 trading days). Our sample is composed of the 10 UK stocks that were part of the FTSE100 index in the beginning of 2005 and which survived through the period of 3 years (see Table I).

Daily stock closing prices (the last daily transaction price of the security), as well as daily transactions volume (number of shares traded during the day) are obtained from Yahoo Finance database. Table I presents

- the list of stocks,
- the Kiefer-Salmon skewness test statistic (S)
- the Kiefer-Salmon kurtosis statistic (K)
- p-value of the Shapiro-Wilk statistic (marginal significance level)
- the Box-Ljung Q-statistic, constructed for maximum lag of 20.

It is well-known that S and K are asymptotically \(\chi^2(1) \) distributed, and \(K + S \) is \(\chi^2(2) \)-distributed.

Based on the results presented in Table I we can conclude that the null hypothesis of normality is rejected for all stocks. The values of skewness is more than 3 for all companies.

The Box-Ljung Q-statistic shows that there is no autocorrelation of log returns. Using this fact, we do not include autoregressive and moving average terms in mean equation. We will assume \(\mu = \mathbb{E}(r_t) \).

Consistent with the findings in [13], we find that the p-values of Shapiro-Wilk statistic of log returns for all five companies are close to zero. We may conclude that all series are non-normal.

In our research we use the Raven Pack data, one of the most well-known providers of news analytics data. Raven-Pack News Scores measures the news sentiment and news flow of the global equity market based on all major investable equity securities. News scores include analytics on more than 27,000 companies in 83 countries and covers over 98% of the investable global market. All relevant news items about companies are classified and quantified according to their sentiment, relevance, topic, novelty, and market impact; the result is a data product that can be segmented into many distinct benchmarks and used in various applications. For every new instance a company is reported in the news, RavenPack produces a company level record. Each record contains 16 fields including a time stamp, company identifiers, scores for relevance, novelty and sentiment, and a unique identifier for each news story analyzed. In the historical data files, each row in the file represents a company-level record. Empirical properties of news analytics data for 10 companies can be found in Table II.

We restrict the sample to news released with high relevance score (more or equal to 90). We do not eliminate all news releases with the same headlines and lead paragraphs, since we suppose that the number of the same news published by different news agencies reflects the importance of the news.

Let \(r_t \) and \(r_t^* \) denote log return of the stock and log return of FTSE100 index on interval \(t \) respectively. We will consider a process \((\epsilon_t) = r_t - (\theta_1 + \theta_2 r_t^*) \), where \(\theta_1 \) and \(\theta_2 \) are parameters of models.

The GARCH model of [3] provides a flexible and parsimonious approximation to conditional variance dynamics. Maximum likelihood estimates of the GARCH(1,1) model defined by (1) for log returns of closing daily prices are presented in Table III. Using GARCH estimates, Table III shows that volatility persistence, i.e. \(\alpha + \beta \), is more than 0.9. It provides clear evidence of GARCH effect. The coefficients of the model are significant with levels of 5%.

Table IV shows the maximum likelihood estimates of GARCH(1,1) model with Jumps for log returns of the closing daily prices of the 16 companies for 3 years (July 5, 2005 - July 5, 2008).

It can be seen that the coefficients \(\alpha, \beta \) of the model are highly significant. Table IV shows that volatility persistence, i.e. \(\alpha + \beta \), is more than 0.9. It provides clear evidence of GARCH effect.

Note that jumps are mainly related with negative movements in the price, because the estimates of parameter \(\theta \) are either negative or insignificant. The size of jumps (standard deviation of jumps, \(\delta \)) is the highest for Carnival (\(\delta = 3.13 \)) and is the lowest for British Amero Tobacco (\(\delta = 0.68 \)). Despite the fact that many of parameters are non-significant, the Box-Ljung statistics reject the model only for the company Intl. Cons. Air Grp. The average jump intensity is different for different companies. For example, the average of the jump intensity for Aviva is equal to 0.61, while for CRH Plc it is 0.07. Since the average intensity for BP is close to 0.5, the jumps are occurred every two days in average.

Table V shows the maximum likelihood estimates of the GARCH(1,1)–Jumps model augmented with news intensity for log returns of the closing daily prices of the 10 companies for 3 years (July 5, 2005 - July 5, 2008). Table V shows that the coefficients \(\alpha, \beta \) of the model are highly significant.
Volatility of the stock has a high persistence, since the sum of the coefficients $\alpha + \beta$ is close to 1. It provides clear evidence of ARCH–GARCH effect.

Table V shows that jumps are mainly related with negative movements in the price, because the estimates of parameter θ are either negative or insignificant. The size of jumps (standard deviation of jumps, δ) varies between 0.01 and 2.19.

Despite the fact that many of parameters are non-significant, the Box-Ljung statistics reject the model only for the company Intl. Cons. Air Grp. The highest average of the jumps intensity (λ) is equal to 0.55 (for BP), while the lowest is 0.01 (for British Americo Tobacco).

Note that the GARCH model with jumps (the null model) is a special case of the augmented GARCH-Jumps model (the alternative model). Therefore, to compare the fit of two models it can be used a likelihood ratio test (see e.g. [20]). It is the most common approach to testing problem. This test has been discussed in the papers [21] and [22]. We use this approach to test the augmented GARCH-Jumps model against ‘pure’ GARCH model with jumps.

Let H_0 denote the ‘pure’ GARCH–Jumps model and H_1 denote the augmented GARCH-Jumps model. Let ϵ_t be a random variable that has a mean and a variance conditionally
on the information set I_{t-1}.

Denote the corresponding log likelihood functions by $LLF_{H_0}(\epsilon; \theta_0)$ and $LLF_{H_1}(\epsilon; \hat{\theta}_1)$, respectively.

We will consider the test statistic defined by

$$LR = 2(LLF_{H_1}(\epsilon; \hat{\theta}_1) - LLF_{H_0}(\epsilon; \hat{\theta}_0)). \quad (7)$$

While the asymptotic null distribution of (7) is unknown, it can be approximated by Monte Carlo simulation.

We can assume that the augmented GARCH-Jumps model is the alternative model and that $\hat{\theta}_1$ is the true parameter. Using Monte Carlo approach we will generate N realizations of T observations $\epsilon^{(i)} = (\epsilon_t^{(i)})_{t=1}^{T}$, $i = 1, \ldots, N$, from this model. Then we will estimate both models and calculates the value of (7) using each realization $\epsilon^{(i)}$.

Ranking the N values gives an empirical distribution with which one compares the original value of (7). The true value of $\hat{\theta}_1$ is unknown, but the approximation error due to the use of $\hat{\theta}_1$ as a replacement vanishes asymptotically as $T \to \infty$.

If the value of (7) is more or equal to the 100$(1-\alpha)$% quantile of the empirical distribution, the null model is rejected at significance level α. As it was mentioned in [21] the models under comparison need not have the same number of parameters, and the value of the statistic can also be negative. Reversing the roles of the models, it can be possible to test GARCH–Jumps models against the augmented GARCH–Jumps model.

Finally, we have set the number of trials N in each Monte Carlo experiment to 500.

Results of likelihood ratio test for GARCH–Jumps model (null model) and the augmented GARCH–Jumps model (alternative model) one can find in Table VI. For 9 of 10 companies the alternative model is preferable with confidence level of 1%.

<table>
<thead>
<tr>
<th>Company</th>
<th>α</th>
<th>β</th>
<th>δ</th>
<th>θ</th>
<th>λ</th>
<th>ρ</th>
<th>LLF_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviva</td>
<td>0.10</td>
<td>0.87</td>
<td>1.11</td>
<td>-0.79</td>
<td>0.09</td>
<td>0.055</td>
<td>2122.58</td>
</tr>
<tr>
<td>(0.03)</td>
<td></td>
<td>(0.03)</td>
<td>(3.20)</td>
<td>(0.76)</td>
<td>(0.09)</td>
<td>(0.033)</td>
<td></td>
</tr>
<tr>
<td>Barclays</td>
<td>0.15</td>
<td>0.83</td>
<td>0.81</td>
<td>-0.16</td>
<td>0.11</td>
<td>0.077</td>
<td>2039.48</td>
</tr>
<tr>
<td>(0.02)</td>
<td></td>
<td>(0.02)</td>
<td>(25.84)</td>
<td>(0.34)</td>
<td>(1.27)</td>
<td>(0.038)</td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>0.07</td>
<td>0.87</td>
<td>0.82</td>
<td>0.08</td>
<td>0.55</td>
<td>0.036</td>
<td>2198.82</td>
</tr>
<tr>
<td>(0.02)</td>
<td></td>
<td>(0.03)</td>
<td>(7.78)</td>
<td>(0.04)</td>
<td>(0.22)</td>
<td>(0.013)</td>
<td></td>
</tr>
<tr>
<td>Brit Amer Tobacco</td>
<td>0.02</td>
<td>0.97</td>
<td>1.40</td>
<td>-0.03</td>
<td>0.01</td>
<td>0.055</td>
<td>2283.09</td>
</tr>
<tr>
<td>(0.02)</td>
<td></td>
<td>(0.02)</td>
<td>(0.53)</td>
<td>(0.09)</td>
<td>(0.01)</td>
<td>(0.012)</td>
<td></td>
</tr>
<tr>
<td>BT Group</td>
<td>0.04</td>
<td>0.90</td>
<td>2.02</td>
<td>0.36</td>
<td>0.04</td>
<td>0.039</td>
<td>2159.51</td>
</tr>
<tr>
<td>(0.02)</td>
<td></td>
<td>(0.02)</td>
<td>(5.62)</td>
<td>(2.35)</td>
<td>(0.09)</td>
<td>(0.019)</td>
<td></td>
</tr>
<tr>
<td>Carnival</td>
<td>0.05</td>
<td>0.88</td>
<td>2.19</td>
<td>-0.17</td>
<td>0.06</td>
<td>0.101</td>
<td>2072.07</td>
</tr>
<tr>
<td>(0.02)</td>
<td></td>
<td>(0.02)</td>
<td>(1.14)</td>
<td>(0.04)</td>
<td>(0.01)</td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>Centrica</td>
<td>0.03</td>
<td>0.85</td>
<td>1.76</td>
<td>0.27</td>
<td>0.14</td>
<td>0.041</td>
<td>2156.53</td>
</tr>
<tr>
<td>(0.02)</td>
<td></td>
<td>(0.05)</td>
<td>(0.86)</td>
<td>(0.11)</td>
<td>(0.13)</td>
<td>(0.032)</td>
<td></td>
</tr>
<tr>
<td>CRH Plc</td>
<td>0.19</td>
<td>0.80</td>
<td>0.01</td>
<td>-2.70</td>
<td>0.02</td>
<td>0.03</td>
<td>2034.37</td>
</tr>
<tr>
<td>(0.03)</td>
<td></td>
<td>(0.05)</td>
<td>(0.01)</td>
<td>(0.75)</td>
<td>(0.01)</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Intl. Cons. Air Grp</td>
<td>0.08</td>
<td>0.90</td>
<td>1.88</td>
<td>0.54</td>
<td>0.28</td>
<td>-0.009</td>
<td>1853.87</td>
</tr>
<tr>
<td>(0.05)</td>
<td></td>
<td>(0.07)</td>
<td>(4.64)</td>
<td>(3.24)</td>
<td>(0.32)</td>
<td>(0.174)</td>
<td></td>
</tr>
<tr>
<td>Vodafone Grp</td>
<td>0.06</td>
<td>0.83</td>
<td>1.99</td>
<td>-0.32</td>
<td>0.12</td>
<td>0.029</td>
<td>2053.31</td>
</tr>
<tr>
<td>(0.02)</td>
<td></td>
<td>(0.02)</td>
<td>(1.62)</td>
<td>(0.13)</td>
<td>(0.06)</td>
<td>(0.010)</td>
<td></td>
</tr>
</tbody>
</table>

IV. CONCLUSION

We have studied GARCH model augmented with news analytics data to examine the impact of news intensity on stock volatility. Likelihood ratio test has shown that the GARCH–Jump model augmented with the news intensity performs efficiently than the ‘pure’ GARCH–Jump model. To calibrate the models we have used the Maximum Likelihood Estimation (MLE) and Quasi Maximum Likelihood Estimation (QMEL) methods. We have used RavenPack news analytics data. We may conclude that

- the likelihood ratio test supports the hypothesis of impact of news on jump intensity of volatility;
- GARCH–Jump model augmented with the news intensity does not remove GARCH and ARCH effects for all companies.

Based on the research it can be suggested some directions of future work.

- The first problem is to develop a GARCH-type model with news analytics data for prediction VaR with better performance than the "pure” GARCH model.

![Table V](image-url)
• It is worth considering the problem of mutual dependence of volatility and news intensity.
• Future work may be also associated with the study of
 – Markov – Switching GARCH models.
 – HMM – GARCH Model.

There are some evidences (see e.g. [16]) that effect of news on prices is short-term, therefore it is more likely that we need tick by tick data to examine impact of news on stock volatility.

ACKNOWLEDGEMENTS

We would like to express our gratitude to Prof Gautam Mitra, director of CARISMA, for the kindly provided opportunity to use RavenPack news analytics data, and to Prof Brendan McCabe and Keming Yu for helpful comments and remarks.

REFERENCES