
 

  
Abstract— A  family  of  transformations  is  the one of  

several  methods  to  analyze the data  that do  not 
correspond  with  the  assumption. A  well-known  family 
of  transformations  often  used  in  many  studies  was  
proposed  by Box and Cox. However, Box-Cox 
transformation is  not  always  applicable.  It  should  be  
used  with  caution  in  some cases  such  as  failure  time 
and  survival  data. The  simple case, some  observations  
in  the  set  of  failure  time data  may  be  zero  but  the  
value  of  observation  in  the  condition  of  Box-Cox  
transformation is greater than zero. In this  case, Manly  
transformation   may  be  appropriated  than  Box-Cox  
transformation  because  it  was  proposed  as  a  family  
of exponential transformations that negative x values  
are  also  allowed. In  this  paper, a new family of  
transformation  is proposed to manage  with  the 
problem  as  mentioned and  Manly  transformation  
were  compared  in  the  lifetime data  those  have 
exponential  gamma and weibull  distribution. They were 
investigated  for  some sets of the lifetime data. It is 
found  that the proposed  transformation  and  Manly 
transformation  have  not different   efficiency  in  sense  
of  normality. The proposed   transformation performs 
better than Manly  transformation  in  sense  of  
homogeneity  of variances for some  data set of weibull 
distributions and exponential distributions when the 
sample sizes are large.   
 

Index Terms— Manly transformation, proposed 
transformation, homogeneity  of variances, lifetime data, 
normality 

I. INTRODUCTION 
N statistical data analysis, many statistical procedures 
require  data to be approximately normal. If the data are 
not normally distributed, a transformation that transforms 

the data set to achieve normality is used. Tukey [1] 
suggested that when analyzing data that do not match the 
assumptions of a conventional method of analysis, there are 
two choices; transform the data to fit the assumptions or 
develop some new robust methods of analysis. Montgomery  
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[2] suggested that transformations are used for three 
purposes; stabilizing response variance, making the 
distribution of the response variable closer to a normal  
distribution and improving the fit of the model to the data.  
There are several alternatives for transforming such as 
transformations based on the relationship between the 
standard deviation and the mean. Furthermore, it is possible  
to transform the data using a family of transformations 
already extensively studied over a long period of time, e.g. 
Box and Cox [3], Manly [4], and John and Draper [5] .  A 
well-known family of transformations often used in previous 
studies was proposed by Box and Cox. Doksum and Wong 
[6] indicated that the Box-Cox transformation should be 
used with caution in some cases such as failure time and 
survival data. John and Draper [5] showed that the Box-Cox 
transformation was not satisfactory even when the best 
value of transformation parameter had been chosen.  
 

II. A FAMILY OF TRANSFORMATIONS 
A family of transformations applied over a long period 

can be used for data from any population so that the 
transformed data are normally distributed. 

Let X  be a random variable distributed as non-normal,Y
the transformed variable of  X , x  the value of X , c the 
range of data set and λ   a transformation parameter. 

Box and Cox [3] gave a simple modified form of the 
power transformation to avoid discontinuity at 0=λ . They 
considered 
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This has become well known as Box-Cox transformation. 

 Manly [4] suggested a one parameter family of 
exponential transformations 
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This is a useful alternative to Box-Cox transformations  
because negative x values are also allowed. It has been 
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found in particular that this transformation is quite effective 
at turning skew unimodal distributions into nearly 
symmetric normal distributions. 

Yeo and Johnson [8] proposed a family of modified Box 
and Cox transformation 
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 In this paper, the alternative family of transformations for 
lifetime data is proposed in this form 
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III. LIFETIME  DATA 
 
Lifetime data are important in reliability analysis and 

survival analysis. It is often of interest to estimate the 
reliability of the system/component from the observed 
lifetime data. 

Weibull Exponential and Gamma distributions are 
involved lifetime data. The Weibull distribution is a natural 
starting point in the modeling of failure times in reliability, 
material strength data and many other applications. The 
probability density function of a two parameter Weibull 
random variable X is 
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where  α is the shape parameter and β is the scale parameter. 
It is related to the other probability distribution such as the 
Exponential distribution when α=1. The probability density 
function of one parameter Exponential random variable X is 
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where  β is the scale parameter.  
 Gamma distribution is the common choices of frailty 

distribution in lifetime data models.  
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where α is the shape parameter and β is the scale 
parameter. 

IV. ESTIMATION OF THE TRANSFORMATION PARAMETER 
For several groups of data, the value of λ  in (2) and (3) 

need to be found so that the transformed variables will be 
independently normal distribution with homogeneity of 
variances. The probability density function of each ijY  is in 
the form 
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where iμ  is the mean of the ith transformed population data, 

2σ  the pooled variance of all transformed population data 
and ijy  the observed value of ijY . For (2), the likelihood 
function in relation to the observations ijx  is given by  
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. For a fixed λ , the MLE’s  
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Substitute ˆiμ and 2σ̂  into the likelihood equation (9).  Thus 
for fixed λ , the maximized log likelihood is 
 

2

1 1 1

1 1

ln ( )

exp( ) 1 exp( ) 11 1ln 2 ln
2 2

2

= = =

= =

=

⎧ ⎫− −⎛ ⎞⎪ ⎪− − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

+

∑∑ ∑

∑∑

i i

i

ij

n nk
ij ij

i j ji

nk

ij
i j

L x

x xn n
n n

n x

λ

λ λ
π

λ λ

λ  -   ,                  

  

                      (10)   
except for a constant, the maximum likelihood estimate of 
λ is obtained by solving the likelihood equation 
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Similar procedures yield the same results for (4), the 

maximum likelihood estimate of λ is obtained by solving 
the likelihood equation 
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AVERAGES OF THE P-VALUES FOR K-S TEST OF NORMALITY 
 USING DATA TRANSFORMED BY THE TWO TRANSFORMATIONS WITH 

GAMMA DATA WHEN 2,=iα 1 2 31, 2, 3= = =β β β  

 
From Table I to VII, we see that the results from both of 

two transformations the averages of the  p-value of K-S test 
are small different in each situation. Moreover, the averages 
of the  p-value of K-S test decrease as the sample sizes 
increase.  
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For the check of validity in sense of homogeneity of 
variance, the results of the Levene test with 5,000 replicated 
samples of various sizes and data are shown in Table VIII. 
 

 
TABLE VIII 

AVERAGES OF THE P-VALUES FOR LEVENE TEST USING DATA 
TRANSFORMED BY THE TWO TRANSFORMATIONS 

 
From Table VIII, for Case I to VII, we see that averages 

of the p-value of  Levene test of proposed transformation are 
higher than them of Manly transformation in each of sample 
sizes. In case I and IV when the sample sizes are large, 
proposed transformation performs better than Manly 
transformation at significant level 0.05. For Case III, we see 
that both proposed transformation and Manly transformation 
work well with only the small sample size. Moreover, the 
averages of the  p-value of Levene test decrease as the 
sample sizes increase.  
 

VI. CONCLUSION 
The efficiency of the proposed transformation is 

compared with Manly transformation in sense of normality 
and homogeneity of variance. Both of them can transform 
the lifetime data to correspond with the basic assumptions in 
some situation. In sense of normality, it is found that the 
proposed  transformation and  Manly transformation  have  
not different efficiency. The proposed   transformation 
performs better than Manly  transformation  in  sense  of  
homogeneity  of variances for some  data set of weibull 
distributions and exponential distributions when the sample 
sizes are large.   

Transformations in  
Averages of the p-Values for 

K-S Test 

of Transformed Data 

Manly 10 0.7655 0.7777 0.7919 
Proposed 10 0.7688 0.7800 0.7940 
Manly 30 0.5820 0.6333 0.6592 
Proposed 30 0.5954 0.6408 0.6670 
Manly 80 0.2911 0.3585 0.4298 
Proposed 80 0.3151 0.3704 0.4416 
Manly 10,20,30 0.7814 0.7038 0.6602 
Proposed 10,20,30 0.7842 0.7099 0.6683 

Transformations in  
Averages of the p-Values for 

K-S Test 

of Transformed Data 

Manly 10 0.7507 0.7773 0.7767 
Proposed 10 0.7574 0.7760 0.7802 
Manly 30 0.5588 0.6026 0.6501 
Proposed 30 0.5809 0.5933 0.6583 
Manly 80 0.2468 0.3298 0.4063 
Proposed 80 0.2812 0.3203 0.4240 
Manly 10,20,30 0.7754 0.6837 0.5850 
Proposed 10,20,30 0.7810 0.6833 0.5818 

Transformations in  
Averages of the p-Values for 

K-S Test 

of Transformed Data 

Manly 10 0.7733 0.7749 0.7844 
Proposed 10 0.7776 0.7758 0.7842 
Manly 30 0.5976 0.6150 0.6398 
Proposed 30 0.6048 0.6179 0.6417 
Manly 80 0.3073 0.3633 0.3691 
Proposed 80 0.3188 0.3682 0.3746 
Manly 10,20,30 0.7903 0.7503 0.6347 
Proposed 10,20,30 0.7907 0.7521 0.6333 

Data in  Manly Proposed 

Weibull (Case I) 10 0.4017 0.4873 
2=iα  30 0.1344 0.2453 

1 2 31, 2, 3= = =β β β  80 0.0108 0.0571 
 10,20,30 0.1944 0.2999 
Weibull  (Case II) 10 0.5742 0.6013 

1 2 32, 3, 4= = =  α α α 30 0.4343 0.5032 

1 2 31, 2, 3= = =β β β  80 0.2384 0.3637 
 10,20,30 0.5199 0.5873 
Weibull  (Case III) 10 0.1901 0.1751 

1 2 32, 3, 4= = =  α α α 30 0.0093 0.0068 
1=iβ  80 0.0000 0.0000 

 10,20,30 0.0615 0.0547 
Exponential (Case IV) 10 0.3304 0.4519 

1 2 31, 2, 3= = =β β β  30 0.0839 0.2498 
 80 0.0025 0.0554 
 10,20,30 0.2354 0.3870 
Gamma (Case V) 10 0.6602 0.6971 

2=iα  30 0.5596 0.6604 

1 2 31, 2, 3= = =β β β  80 0.3575 0.5976 
 10,20,30 0.5934 0.6639 
Gamma (Case VI) 10 0.6357 0.6576 

1 2 32, 3, 4= = =  α α α 30 0.4823 0.5539 

1 2 31, 2, 3= = =β β β  80 0.2303 0.3594 
 10,20,30 0.5849 0.6088 
Gamma (Case VII) 10 0.6033 0.7020 

1 2 32, 3, 4= = =  α α α 30 0.6696 0.6781 
1=iβ  80 0.6174 0.6372 

 10,20,30 0.6611 0.6627 
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