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Abstract—The objective of this paper is to present formula-
tions developed for soil-building interaction analysis, including
foundations. The soil is modeled with the boundary element
method (BEM) as a layered solid which may be finite for the
vertical direction, but is always infinite for radial directions.
Beams, collums and piles are modeled with the finite element
method (FEM) using one dimensional elements. Slabs and rafts
are also modeled with the FEM, but with two dimensional
elements. The analysis is static and all materials are considered
homogeneous, isotropic, elastic and with linear behavior.

Index Terms—boundary elements, finite elements, soil-
structure interaction.

I. INTRODUCTION

The construction of buildings involve complex soil-

structure interaction effects that require previous studies to

be correctly considered in the project. The basis of these

studies has to be chosen among many options available and

each one of them implies on advantages and disadvantages,

as described below.

When possible, a good choice is to employ analytical

methods. When correctly programmed they give trustful

results in little processing time. In reference [1], for example,

a solution is presented for an axially loaded pile with a

rectangular cross section and immersed in a layered isotropic

domain. The main disadvantage of these solutions is that

they suit only specific situations, so many researches keep

developing new ones to include new problems. Other works

that may be cited are [2], [3].

If analytical solutions cannot be used, one alternative

could be a numerical approach. The developments [4] of

the numerical methods in the latter years and its versatility

made them attractive to many researchers. The finite element

method (FEM) is still popular [5], [6], [7], [8], however has

some disadvantages when compared to other options such

as the boundary element method (BEM). The FEM require

the discretization of the domain, which has to be simulated

as infinite in most soil-structure interaction problems. This

implies on a high number of elements, leading to a large and

sometimes impracticable processing time.

It becomes more viable solving these problems with the

BEM, once only the boundary of the domains involved is

discretized. This allows reducing the problem dimension,

implying on less processing time. This advantage is explored

in several works [9], [10], [11], [12], [13], [14], [15], [16] and

new developments are making the BEM even more attractive
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Fig. 1. Triangular boundary element.

to future applications. One is simulating non-homogeneous

domains using an alternative multi-domain BEM technique

[17], another is using mapping functions to make boundary

elements infinite [18].

The objective of this paper is to present a formulation

for building-soil interaction analysis that uses recent devel-

opments accomplished by the authors in references [17],

[18]. The proposed formulation is applied into two examples

to show all functionalities of the proposed formulation,

considering a piled raft and a complete building interacting

with a layered soil. The results obtained may be considered

coherent. Finally, it is concluded that the presented formula-

tion may be considered a practical and attractive alternative

in the field of soil-structure interaction simulation.

II. BOUNDARY ELEMENT FORMULATION

The equilibrium of a solid body can be represented by

a boundary integral equation called the Somigliana Identity,

which for homogeneous, isotropic and linear-elastic domains

is
cij (y)uj (y) +

∫

Γ

p∗ij (x, y) uj (x) dΓ (x)

=
∫

Γ

u∗

ij (x, y) pj (x) dΓ (x)
(1)

Equation (1) is written for a source point y at the boundary,

where the displacement is uj (y). The constant cij depends

on the Poisson ratio and the boundary geometry at y,

as pointed out in reference [20]. The field point x goes

through the whole boundary Γ, where displacements are

uj (x) and tractions are pj (x). The integral kernels u∗

ij (x, y)
and p∗ij (x, y) are Kelvin three-dimensional fundamental so-

lutions for displacements and tractions, respectively. Kernel

u∗

ij (x, y) has order 1/r and kernel p∗ij (x, y) order 1
/

r2, where

r = |x− y|, so the integrals have singularity problems when

x approaches y. Therefore the stronger singular integral, over

the traction kernel, has to be defined in terms of a Cauchy

Principal Value (CPV).

To solve Equation (1) numerically, the boundary is divided

into regions within which displacements and tractions are
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approximated by known shape functions. Here these regions

are of two types, finite boundary elements (BEs) and infinite

boundary elements (IBEs). The BEs employed are triangular,

as shown in Figure 1 with the local system of coordinates,

ξ1ξ2, and the local node numbering. The following approx-

imations are used for this BE:

uj =

3
∑

k=1

Nkuk
j , pj =

3
∑

k=1

Nkpkj (2)

Equation (2) relates the boundary values uj and pj to

the nodal values of the BE. The BEs have 3 nodes and

for each node there are three components of displacement

uk
j and traction pkj . The shape functions Nk used for these

approximations are

N1 = ξ1, N2 = ξ2, N3 = 1− ξ1 − ξ2 (3)

The same shape functions are used to approximate the

boundary geometry:

xj =

3
∑

k=1

Nkxk
j (4)

where xk
j are the node coordinates. The same functions are

also used to interpolate displacements and tractions for the

IBEs:

uj =

Np
∑

k=1

Nkuk
j , pj =

Np
∑

k=1

Nkpkj (5)

Each IBE has Np nodes and not the 3 that the BEs have.

The IBE geometry, on the other hand, is approximated by

special mapping functions.

By substituting Equations (2) and (5) in (1), Equation (6)

is obtained:

cijuj +
NBE
∑

e=1

{

3
∑

k=1

[

∆pekij u
k
j

]

}

+
NIBE
∑

e=1

{

Np
∑

k=1

[

∆∞pekij u
k
j

]

}

=
NBE
∑

e=1

{

3
∑

k=1

[

∆uek
ij p

k
j

]

}

+
NIBE
∑

e=1

{

Np
∑

k=1

[

∆∞uek
ij p

k
j

]

}

(6)

NBE is the number of BEs and NIBE is the number of IBEs.

For BEs:

∆pekij =

∫

γe

|J |Nkp∗ij (x, y) dγe (7)

∆uek
ij =

∫

γe

|J |Nku∗

ij (x, y) dγe (8)

In Equations (7) and (8), γe represents the domain of

element e in the local coordinate system and the global

system of coordinates is transformed to the local one by

the Jacobian |J | = 2A, where A is the element area in the

global system. On the other hand, for IBEs:

∆∞pekij =

∫

γe

|∞J |Nkp∗ij (x, y) dγe (9)

∆∞uek
ij =

∫

γe

|∞J |Nku∗

ij (x, y) dγe (10)

Equations (9) and (10) are analogous to (7) and (8).

Integrals of Equations (7), (8), (9) and (10) are calculated by

standard BEM techniques. Non-singular integrals are evalu-

ated numerically by using integration points. The singular

Fig. 2. Model for load lines.

ones, on the other hand, are evaluated by the technique

presented in reference [19]. Finally, the free term cij may

be obtained by rigid body motions. Writing Equation (6) for

all boundary nodes leads to the following system:

∆p · u = ∆u · p (11)

The ∆pekij and ∆∞pekij element contributions, including the

free term cij , are assembled into matrix ∆p, while ∆uek
ij and

∆∞uek
ij contributions are assembled into matrix ∆u. Vectors

u and p contain all boundary displacements and tractions,

respectively. Reorganizing this system so as to separate the

known boundary values from the unknown yields a system

of equations whose solution is all the unknown boundary

values.

III. LOAD LINES IN THE SOIL

In this work, the reactive tractions from the piles are

applied in the soil as load lines. Figure 2 presents the model

adopted, with four nodes equally spaced along the pile.

The load lines influence may be computed in Equation (1)

with an additional term as follows

cijuj +

∫

Γ

p∗ijujdΓ =

∫

Γ

u∗

ijpjdΓ +

nl
∑

e=1





∫

Γe

u∗

ijs
e
jdΓ

e





(12)

where nl is the number of load lines, Γe are their external

surface and sej are the tractions presented in Figures 2c

and 2d. The tractions are approximated from the nodal values

sekj using nf polynomial shape functions φ:

sej =

nf
∑

k=1

φksekj (13)

Shape functions are written with a dimensionless coordi-

nate ξ = 2x3/L − 1, where L is the load line length and

x3 is the vertical global coordinate. One may observe that

−1 ≤ ξ ≤ 1, so the use of Gauss points is facilitated. For

the horizontal tractions, illustrated in Figure 2c, nf = 4 and

the shape functions are:

φ1 =
1

16

(

−9ξ3 + 9ξ2 + ξ − 1
)

(14)

φ2 =
1

16

(

27ξ3 − 9ξ2 − 27ξ + 9
)

(15)

φ3 =
1

16

(

−27ξ3 − 9ξ2 + 27ξ + 9
)

(16)

φ4 =
1

16

(

9ξ3 + 9ξ2 − ξ − 1
)

(17)
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For shear tractions in direction x3, nf = 3 and the shape

functions are

φ1 =
1

8

(

9ξ2 − 1
)

(18)

φ2 =
1

4

(

−9ξ2 − 6ξ + 3
)

(19)

φ3 =
1

8

(

9ξ2 + 12ξ + 3
)

(20)

Finally, for the base reaction nf = 1 and a constant

approximation is used. Using the shape functions presented

above, the integrals that are not singular may be numerically

calculated using Gauss points. The term referent to the load

lines becomes singular only when the source point belongs

to a load line base which is being integrated. In this case,

the integral calculation is analytical.

Writing Equation (12) for all boundary points plus the

points defined on each load line, the following system of

equations is obtained:

[H ] {u} = [G] {p} − [M ] {s} (21)

Matrix [M ] is obtained from the integrals calculated for all

load lines, and vector {s} contains the tractions prescribed

for them. As the number of equations is equal to the

number of unknowns, the system may be solved obtaining

all unknowns.

IV. FEM-BEM COUPLING

Each pile is modeled using a single finite element with

polynomial shape functions. Lateral displacements are ap-

proximated using fourth degree polynomials {ϕ}. Vertical

displacements and lateral tractions are approximated using

third degree polynomials {φ}. Vertical tractions are ap-

proximated using second degree polynomials {ω} and the

tractions at the pile base are considered constant. Using a

dimensionless coordinate ξ = x3

L
, where x3 is the global

vertical coordinate and L is the pile length, {ϕ}, {φ} and

{ω} may be written as:

{ϕ} =























− 99
4
ξ4 + 45ξ3 − 85

4
ξ2 + 1

− 9
2
ξ4L+ 9ξ3L− 11

2
ξ2L+ ξL

81
2
ξ4 − 135

2
ξ3 + 27ξ2

− 81
4
ξ4 + 27ξ3 − 27

4
ξ2

9
2
ξ4 − 9

2
ξ3 + ξ2























(22)

{φ} =















− 9
2
ξ3 + 9ξ2 − 11

2
ξ + 1

27
2
ξ3 − 45

2
ξ2 + 9ξ

− 27
2
ξ3 + 18ξ2 − 9

2
ξ

9
2
ξ3 − 9

2
ξ2 + ξ















(23)

{ω} =







9
2
ξ2 − 9

2
ξ + 1

−9ξ2 + 6ξ
9
2
ξ2 − 3

2
ξ







(24)

The next step is obtaining the total potential energy

function, considering internal and external contributions. To

obtain the final system of equations, such function must be

minimized with respect to the nodal parameters. The result

is:

[K] {u} = {f} − [Q] {y} → [K] {u} = {f} − {r} (25)

where [K] is the stiffness matrix of the pile, {u} contains

nodal displacements, {f} contains nodal loads, {y} contains

Fig. 3. Triangular finite element.

distributed tractions and [Q] is a matrix that transforms

distributed tractions into nodal loads. Therefore, {r} contains

nodal loads that represent the distributed loads.

Now a brief description of the triangular finite element

used for the raft and slabs will be presented. The element

has three nodes at its vertices as presented in Figure 3a with

the local node numbering and a local rectangular system of

coordinates xi, where the superscript i indicates the direction.

Each node, indicated with the subscript j, has six degrees

of freedom (DOFs). Three of them, uj , vj and θ3j , may

be visualized in Figure 3b which refers to the membrane

effects. The other three, wj , θ1j and θ2j , are presented in

Figure 3c which refers to the plate effects. In Figure 3c,

rotational DOFs are indicated with a double arrow for better

visualization. All DOFs of the finite element may be arranged

into three vectors, one for each node, as shown below:

{u1}
T
=

{

u1 v1 θ1
3 w1 θ1

1 θ1
2
}

{u2}
T
=

{

u2 v2 θ2
3 w2 θ2

1 θ2
2
}

{u3}
T
=

{

u3 v3 θ3
3 w3 θ3

1 θ3
2
}

(26)

Displacements at any point P of the finite element, with

coordinates x1, x2 and x3, may be written as

{u} =







u

v

w







=







u0 − x3
∂w0

∂x1

v0 − x3
∂w0

∂x2

w0







(27)

where u0, v0, and w0 are the displacements for the projection

of P at the mid plane of the finite element. The strain field

may be obtained from the displacements as follows:

{ε} = {εm}+{εp} =











∂u0

∂x1

∂v0
∂x2

∂u0

∂x2

+ ∂v0
∂x1











−x3











∂2w0

∂x1
2

∂2w0

∂x2
2

2 ∂2w0

∂x1∂x2











(28)

where index m corresponds to the membrane effect and the

index p indicates the plate effect. Equation (28) relates the

strain field to the displacement field, which may be related to

the nodal displacements using the element shape functions.

Using these functions and Equation (28), it is possible to

relate strains with the DOFs of the finite element as follows:

{ε} = [B]







u1

u2

u3







(29)

It is also necessary to relate strains with stresses. For linear

elasticity this may be done using a matrix [D] which is

obtained from Hooke’s law:

{σ} = [D] {ε} (30)
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In the end, the stiffness matrix of the element is obtained

by integrating the domain Ω of the element:

[K] =

∫

Ω

[B]
T
[D] [B] dΩ (31)

More detail about the membrane and plate effects of

this element may be consulted in references [21] and [22],

respectively.

All finite element contributions, including piles and the

raft, are assembled to the same system of equations. This

system has the form of Equation (25), which is later used

to demonstrate how the FEM/BEM coupling is made. The

starting point is Equation (21), which may be rewritten as:

[H ] {u} = [T ] {y} (32)

Matrix [T ] contains the terms of matrices [G] and [M ]
and {y} contains the distributed loads of vectors {p} and

{s}. Next step is isolating the distributed loads, which are

transformed in nodal loads using a matrix [Q].

[T ]
−1

[H ] {u} = {y} → [B] {u} = {y} (33)

[Q] [B] {u} = [Q] {y} → [D] {u} = {r} (34)

Before relating Equations (25) and (34), they must be

expanded as to contain all degrees of freedom defined in

the coupled FEM-BEM model. The result is
[

K̄
]

{ūFEM} =
{

f̄
}

− {r̄FEM} (35)
[

D̄
]

{ūBEM} = {r̄BEM} (36)

These equations are related by imposing compatibility and

equilibrium conditions, which are {ūFEM} = {ūBEM} =
{ū} and {r̄FEM} = {r̄BEM} = {r̄}. The following

expressions are then obtained:
[

K̄
]

{ū} =
{

f̄
}

−
[

D̄
]

{ū} (37)
([

K̄
]

+
[

D̄
])

{ū} =
{

f̄
}

(38)
[

Ā
]

{ū} =
{

f̄
}

(39)

where {ū} contain all unknown displacements of the FEM-

BEM model. Once the number of equations is equal to the

number of unknowns, the system may be solved obtaining

all unknowns.

V. EXAMPLES

A. Piled raft on a layered domain

A raft with nine piles on a layered domain is considered,

as presented in Figure 4 with all geometrical and material

parameters. Young’s module is represented as E, Poisson

Ratio as ν and thickness as t. The R subscript indicates

the raft, P indicates piles and numbers refer to layers. All

piles diameter is 0, 5 m and are numbered considering the

symmetry planes. The raft is uniformly loaded with 0, 04
MPa.

Figure 5a contains the mesh used for the surface and

contacts, with 160 BEs and 32 IBEs. Figure 5b contains the

FE mesh employed for the raft, with the pile positions de-

tached. For piles a one-dimensional FE is used, as previously

presented.

Figure 6 presents vertical displacements along the piles,

using numbers defined in Figure 4. Pile 3 has the larger

Fig. 4. First example.

Fig. 5. Mesh employed.

displacements, followed by piles 2 and piles 1 with the

smaller ones. The result was also symmetric as expected and

the magnitude of the values is coherent. This facts allow to

conclude the the values here obtained are trustworthy.

B. Building resting on a layered domain

The objective of this example is to demonstrate the gen-

erality of the presented formulation. The problem to be

analyzed is presented in Figure 7 and considers a building

with its foundations, resting on a layered media. In Figure 7a

the lateral view is illustrated, Figure 7b contains the standard
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Fig. 6. Displacements for distributed load.

Fig. 7. Soil-building interaction

floor considered and in Figure 7c is presented the top view

of the structural foundations included.

The Poisson Ratio is zero for all soil layers. The elasticity

modulus of the layers is 60 MPa for the top one, 80 MPa

for the second and 90000 MPa for the base layer. The

thickness is 15 m for the top layer, 20 m for the second

and the base layer is considered infinite. The diameter of all

piles is 0, 5 m, their length is 10 m and they are spaced of 5
m. The square raft has size 20 m and thickness 0, 5 m. The

elasticity modulus of all materials modeled with the FEM is

15000 MPa and their Poisson ratio is 0, 2. This includes all

piles, beams, columns, slabs and the raft.

The building has four floors, as shown in Figure 7a. All

floors have the same standard geometry, as presented in

Figure 7b, with a slab with thickness 0, 3 m, four beams

supporting this slab and four columns supporting the beams.

A square cross section size 1 m is used for all beams and

columns. The base of each column is connected to the raft

at the same node where a corner pile is connected. Corner

piles are numerated in Figure 7c as 1, 3, 7 and 9.

Figure 8 presents the FE-BE-IBE mesh employed in the

example. Figure 8a contains the top view of the mesh used

for the soil surface and contacts between layers, totalizing

480 BEs and 96 IBEs. The square detached at the center

indicates the position of the raft at the surface. In Figure

8b is illustrated the mesh with 32 FEs used for the raft,

Fig. 8. FE/BE/IBE mesh employed

together with the position of the piles. Finally, Figure 8c

contains the 32 FE mesh used for the slabs. Lines detached

at the boundary indicate the FEs used for beams, totalizing

16 FEs for each floor. Furthermore, each part of the columns

between floors is divided into 4 FEs. Considering all floors

plus the raft, the total number of two-dimensional FEs is 160
and the total of one-dimensional FEs is 128.

Piles are also simulated with the FEM, employing the FE

with 14 parameters presented previously. The axis of any pile

is orthogonal to the surface of the soil.

Fig. 9. Horizontal loads applied

Two horizontal forces are applied at lateral points of the

building, as shown in Figure 9. In Figure 9a is presented

a lateral view of the structure, with the external forces

contained in the plane of the fourth floor. Figure 9b shows a

top view, where the position of the forces may be visualized

from another perspective.

Considering these loads, Figure 10 contains the horizontal

displacements calculated for column C1, which position may

be observed in Figure 7b. In this case two simulations were

also performed, one considering the flexible base illustrated

in Figure 7a and another considering a rigid base. The rigid

base was represented restraining displacements at the base

node of all columns.

As expected, the column presents higher displacements

when the elastic foundation is considered. For the rigid base

the horizontal displacement calculated for the top of column

C1 was 8, 9 mm, and for the elastic foundation this value in-

creased to 11, 3 mm. Furthermore, analyzing displacements

along the column in both cases, it may be concluded that it

becomes more inclined when the elastic foundation is consid-

ered. Horizontal displacements combined with vertical loads

Proceedings of the World Congress on Engineering 2014 Vol II, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19253-5-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



Fig. 10. Horizontal displacement of column C1

may produce moments that cannot be unvalued and could

compromise the safety of the structure. This demonstrates

that it is important to include the flexibility of the foundations

when projecting buildings.

VI. CONCLUSIONS

In this paper a formulation for building-soil interaction

analysis was presented. The FEM/BEM equations together

with the techniques from references [17], [18] contributed

with reducing the total number of degrees of freedom. Piles

are modeled using one-dimensional FEs, whose influence in

the soil is computed by integrating load lines. Two examples

were presented. In both of them the results obtained were

considered coherent. In the end, it may be concluded that the

presented formulation is a powerful and attractive alternative

for soil-structure interaction analysis.
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