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Abstract—We consider the application of a method that
makes the least sum of absolute value change to measured
values of a convex function contaminated with random errors to
achieve convexity. Thus, we present how to analyze, summarize
and interpret these data. The method uses an algorithm
of descent direction that employs Karush-Kuhn-Tucker like
parameters that are both important to the characterization of
the solution and useful for sensitivity analysis. Convexity is
expressed in terms of non-negative second divided differences
of the smoothed data, which gives a linear programming
calculation that is subsequently solved by this algorithm. The
data set that is employed for illustration is the time series of
the annual Gini coefficients in the U.S.A. from 1947 to 1996.
The results are analyzed and the interpretation capability of
the method is demonstrated.

Index Terms—convex data fitting, diminishing return, divided
difference, `1 approximation, linear programming

I. INTRODUCTION

W hat hypotheses can be made about the nature of a
convex function, which is known only by a set of

measured values that have lost convexity due to errors of
measurement? The answer to this question has strong ties
with many applications of economics, science, engineering
and medicine. Applications in economics, for example, arise
when assuming diminishing rates of change of certain de-
mand and production relations [14]. In medical imaging
and robotic vision applications, convex polygonal curves are
recovered from measurements of convex sets that include
errors by optimizing some measure of performance [11].
Other examples arise from univariate convex data fitting,
from decision making [13] and biology [8], for instance.
In particular, the method may be used in order to explore
possible convex relationships between the variables in mul-
tivariate data analysis, thus providing a useful companion to
data exploration methodologies.

The purpose of this paper is to present how to analyze,
summarize and interpret a set of measured values of a convex
function f(x) contaminated with random errors by the use
of a `1 data approximation method that minimizes the sum
of the moduli of the errors subject to the condition that
the second divided differences of the smoothed data are
nonnegative. There are many advantages to using `1 data
approximation techniques in practice (see, for example, [15])
and this paper is an aid to application of a specific `1
algorithm for achieving convexity.

The data are the pairs (xi, φi), i = 1, 2, . . . , n, where the
abscissae xi, i = 1, 2, . . . , n satisfy the inequalities x1 <
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x2 < · · · < xn, and φi is the measurement f(xi). We assume
that φi = f(xi) + εi, where εi is a random number. We also
assume that there are some gross errors in the data due to
blunders.

The authors [17] addressed the problem of calculating
numbers yi, i = 1, 2, . . . , n from the measurements that are
smooth and closer than the measurements to the true function
values. They regarded the original data and the smoothed
values as vectors φ and y respectively in Rn and considered
the problem of minimizing the objective function

∥∥φ− y∥∥
1

=
n∑

i=1

|φi − yi|, y ∈ Rn, (1)

subject to the convexity constraints

y[xi−1, xi, xi+1] ≥ 0, i = 2, 3, . . . , n− 1, (2)

where

y [xi−1, xi, xi+1] =
yi−1

(xi−1 − xi)(xi−1 − xi+1)
+

yi

(xi − xi−1)(xi − xi+1)
+

yi+1

(xi+1 − xi−1)(xi+1 − xi)
(3)

is the ith second divided difference on the components of
y (see [19] for a definition). We call feasible any vector in
Rn that satisfies the constraints (2). The constraints on y are
linear, we denote the constraint normals with respect to y by
aj , j = 2, 3, . . . , n− 1 and we let

y[xj−1, xj , xj+1] = aT
j y, j = 2, 3, . . . , n− 1. (4)

Also, we let aij be the ith component of aj . Since each
divided difference depends on only 3 adjacent components
of y, it immediately follows that the constraints have linearly
independent normals.

Since (1) is continuous in y and tends to infinity as∥∥y∥∥
1
−→∞ for feasible y and the set of feasible vectors is

closed, a finite solution exists. We call it a best `1 convex fit
to φ. Since (1) is not strictly convex, the solution need not
be unique.

In view of [12], this problem may also be derived when
the data come from processes that show increasing rates
of change (cf. convexity), but one does not have sufficient
information to set up a parametric form for the underlying
function. Thus, by writing the ith second divided difference
in the form

y [xi−1, xi, xi+1] =
y [xi, xi+1]− y [xi−1, xi]

xi+1 − xi−1
, (5)

where

y [xi−1, xi] =
yi − yi−1

xi − xi−1
(6)
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is the ith first divided difference, the inequalities on the rates
of change of the sequence {yi : i = 1, 2, . . . , n}

yi − yi−1

xi − xi−1
≤ yi+1 − yi

xi+1 − xi
, i = 2, 3, . . . , n− 1 (7)

imply the inequalities (2). Therefore, an alternative expres-
sion of the constraints (2) is that we require increasing rates
of change on [x1, xn], a property that is quite common
in describing processes, where a potential shape for the
underlying function is that of a convex curve.

The piecewise linear interpolant through the points
(xi, yi), i = 1, 2, . . . , n provides some useful geometric
description. If all the differences (2) are zero, then the
smoothed values lie on a straight line. Otherwise some
divided differences are positive, which makes this interpolant
be a convex polygonal curve. It is interesting to note that the
knots of this polygon are a subset of the abscissae which are
not known in advance, but they are calculated automatically
from the process. Further, if n > 4 and if the data lie on two
straight lines in the shape of letter “V” with one of the data
at the vertex, then no other convex function can interpolate
them [5].

Besides that the shape of convexity is likely to strike
immediately a user’s eye when he inspects the data, two
properties of this calculation, which provide some advantages
over other smoothing techniques [3], are as follows. There is
no need to choose a set of approximating functions, because
the missing property of convexity is imposed as a smoothing
condition, namely inequalities (2), in an optimization calcula-
tion that undertakes the process. The approximation process
is a projection because, if the data satisfy the convexity
constraints, then the data provide the required approximation.

Similar problems are studied and characterized by [23],
where (1) is replaced by the supremum norm∥∥φ− y∥∥∞ = max

1≤i≤n
|φi − yi| (8)

and by [7], where (1) is replaced by the least squares norm

∥∥φ− y∥∥
2

=

√√√√ n∑
i=1

(φi − yi)2. (9)

Expression (8) is appropriate when the data errors have
a uniform distribution, while expression (9) is appropriate
when the data errors have a normal distribution. Methods that
rely upon (1) are well suited to long tailed error distributions,
like Cauchy or Laplace, and have the remarkable property
of ignoring some gross errors in the data that makes it
“markedly superior among the Lp norms” as [21] states.
For a general reference on `1 approximation from finite
dimensional subspaces see [18].

The paper is organized as follows. In Section II charac-
terization conditions are stated, which resemble the Karush-
Kuhn-Tucker conditions, that are important both in theory
and in developing efficient algorithms. The associated La-
grange multipliers as well as some other parameters derived
from the optimal fit are highly informative for practical
analyses and applications of the problem. In Section III the
method is applied to the times series of the Gini coefficients
in the U.S.A. for the period 1947-1996. An optimal fit
is calculated, the values of the mentioned multipliers and
parameters are considered and several features of the data

are revealed. This example is worked out as an illustration
of the optimality conditions that a best `1 convex fit satisfies.
A similar analysis may well be applied to a variety of
situations which may arise in several fields. Finally, some
concluding remarks are presented in Section IV. Based on
the characterization conditions, the authors have developed
an algorithm of descent direction and one of the authors
[16] has implemented the method in Matlab. The program
consists of about 200 lines including a simple driver, which
gives an idea of the size of the required calculation in this
environment.

Because sometimes it would be better to employ non-
positive instead of nonnegative second divided differences,
the method may be applied after a change of sign of the
components of φ, which implies diminishing rates of change
(cf. concavity) of the sequence {yi : i = 1, 2, . . . , n}, giving
the inequalities

yi − yi−1

xi − xi−1
≥ yi+1 − yi

xi+1 − xi
, i = 2, 3, . . . , n− 1. (10)

II. BEST `1 DATA FITTING SUBJECT TO NONNEGATIVE
SECOND DIVIDED DIFFERENCES

The general `1 linear approximation problem may be for-
mulated as a primal or a dual linear programming calculation
[1], [2]. These formulations allow certain characterization
theorems and specific numerical methods [9] for implement-
ing the simplex method [6]. Therefore, it is straightforward to
minimize the objective function (1) subject to the convexity
constraints (2) by using a standard simplex method. However,
because several thousand data points may occur in many
smoothing calculations, a special technique for this problem
has been developed by the authors using search of directions
of descent [22] and taking into account the structure of
the constraints. This method gains an order of magnitude
over the classical simplex approaches, both in storage and in
number of operations during the iterations.

Let A be a nonempty subset of {2, 3, . . . , n−1} and let |A|
be the number of elements of A. The problem that minimizes
(1) subject to the equality or active constraints

y[xi−1, xi, xi+1] = 0, i ∈ A, (11)

has particular interest to the inequality constrained problem
of Section I. It is a discrete `1 approximation problem from
the linear subspace defined by the equations (11) to the
finite set of values {φi, i = 1, 2, . . . , n}. It always has a
solution, which could be determined by interpolation to
some components of φ, as the following theorem shows.

Theorem 1: There exists a vector y that minimizes (1)
subject to the constraints (11) and that has the property

yi = φi, i ∈ I ⊆ {1, 2, . . . , n}, (12)

with set I containing at least n− |A| indices.

Proof : A proof that is based on [20] is provided by [17]. �

The theorem states that a best `1 fit y to φ subject to (11)
may be calculated by seeking a set I that allows y to be
obtained by interpolation to the points {φi : i ∈ I}. Since
set I is not known in advance, a method of searching is
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TABLE I
BEST `1 CONVEX FIT TO THE GINI COEFFICIENTS FOR THE TIME PERIOD 1947-1996, CALCULATED DIFFERENCES AND OPTIMAL PARAMETERS

No xi φi yi y [xi−1, xi] y [xi−1, xi, xi+1] λj λ̃i

1 1947 37.60 37.60 - - - –0.10
2 1948 37.10 37.44 –0.1600 0 0.2449 1
3 1949 37.80 37.28 –0.1600 . 2.9394 –1
4 1950 37.90 37.12 –0.1600 . 3.1843 –1
5 1951 36.30 36.96 –0.1600 . 0.9798 1
6 1952 36.80 36.80 –0.1600 0 1.2247 0.60
7 1953 35.90 36.64 –0.1600 0.0231 - 1
8 1954 37.10 36.54 –0.1033 0 1.2247 –1
9 1955 36.30 36.43 –0.1033 0.0082 - 1

10 1956 35.80 36.35 –0.0833 0 1.2247 1
11 1957 35.10 36.27 –0.0833 4.8990 1
12 1958 35.40 36.18 –0.0833 11.0227 1
13 1959 36.10 36.10 –0.0833 19.5959 1.00
14 1960 36.40 36.02 –0.0833 25.7196 –1
15 1961 37.40 35.93 –0.0833 . 29.3939 –1
16 1962 36.20 35.85 –0.0833 . 30.6186 –1
17 1963 36.20 35.77 –0.0833 . 29.3939 –1
18 1964 36.10 35.68 –0.0833 25.7196 –1
19 1965 35.60 35.60 –0.0833 19.5959 1.00
20 1966 34.90 35.52 –0.0833 11.0227 1
21 1967 34.80 35.43 –0.0833 4.8990 1
22 1968 34.80 35.35 –0.0833 0 1.2247 1
23 1969 34.90 35.27 –0.0833 0.0635 - 1
24 1970 35.30 35.34 0.0722 0 1.2247 1
25 1971 35.50 35.41 0.0722 . 4.8990 –1
26 1972 35.90 35.48 0.0722 . 6.1237 –1
27 1973 35.60 35.56 0.0722 . 4.8990 –1
28 1974 35.50 35.63 0.0722 0 1.2247 1
29 1975 35.70 35.70 0.0722 0.0113 - –0.50
30 1976 35.80 35.80 0.1000 0.0612 - –0.50
31 1977 36.30 36.05 0.2500 0 1.2247 –1
32 1978 36.30 36.30 0.2500 0 0.0000 –0.50
33 1979 36.50 36.55 0.2500 0.0383 - 1
34 1980 36.50 36.89 0.3438 0 2.4495 1
35 1981 36.90 37.24 0.3438 7.3485 1
36 1982 38.00 37.58 0.3438 14.6969 –1
37 1983 38.20 37.92 0.3438 19.5959 –1
38 1984 38.30 38.27 0.3438 . 22.0454 –1
39 1985 38.90 38.61 0.3438 . 22.0454 –1
40 1986 39.20 38.96 0.3438 . 19.5959 –1
41 1987 39.30 39.30 0.3438 14.6969 0.00
42 1988 39.50 39.64 0.3438 9.7980 1
43 1989 40.10 39.99 0.3438 7.3485 –1
44 1990 39.60 40.33 0.3438 0 2.4495 1
45 1991 39.70 40.68 0.3438 0.0087 - 1
46 1992 40.40 41.04 0.3650 0 0.0000 1
47 1993 42.90 41.41 0.3650 0 2.4495 –1
48 1994 42.60 41.77 0.3650 0 2.4495 –1
49 1995 42.10 42.13 0.3650 0 0.0000 1
50 1996 42.50 42.50 0.3650 - - 0.00

needed that should also test the optimality of a trial set of
interpolation points [19]. The following theorem provides
optimality conditions for this problem.

Theorem 2: Let si be the sign of yi − φi,

si =


−1, φi > yi

0, φi = yi i = 1, 2, . . . , n
1, φi < yi.

A vector y ∈ Rn minimizes (1) subject to (11) if and only
if there exists a vector v in

V = {v ∈ Rn : |vi| ≤ 1, i ∈ I; vi = si, i /∈ I} (13)

such that

yT v = 0. (14)

Proof : See Theorem 6.1 of [24]. �

Therefore in order that y minimizes (1) subject to (11), it
suffices to find a vector v in V that is orthogonal to y.

Furthermore, in order to minimize (1) subject to (2),
Theorem 1 suggests searching for a best `1 fit among
feasible (i.e. convex) vectors that satisfy the interpolation
conditions (12). Therefore several applications of Theorem
2 may be needed before a solution is reached. Theorem 3
below provides conditions for testing whether a feasible
vector that satisfies the conditions of Theorem 1 is optimal
[17]. It is remarkable that although the objective function
(1) is non-differentiable, these conditions are given in terms
of Karush-Kuhn-Tucker description.

Theorem 3: Let y∗ be a vector that minimizes (1) subject
to (11) and let s∗i be the sign of y∗i −φi. Then y∗ minimizes
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(1) subject to (2), if and only if there exist nonnegative
multipliers λj , j ∈ A, such that

s∗i =
∑
j∈A

λjaij , i /∈ I. � (15)

Motivated by this theorem we write v as a linear combi-
nation of the constraint normals aj , j ∈ A,

v =
∑
j∈A

λjaj , (16)

which, in view of (11), satisfies the orthogonality condition
(14) and, in view of (15), satisfies the relations vi = si, i /∈ I
that appear in (13). In addition, by invoking the separating
hyperplane theorem (see, for example, [25]), it can be proved
that a vector y∗ minimizes (1) subject to (11) if and only if

−1 ≤ vi ≤ 1, i ∈ I. (17)

Hence, the construction of v is complete. Further, for nota-
tional purposes, we let λ̃i = vi, for i = 1, 2, . . . , n.

The parameters λj and λ̃i are important to the develop-
ment of an algorithm of descent direction, both for adding
and deleting interpolation points, and for deleting from
and adding to the active set constraints iteratively until the
conditions of Theorem 3 are satisfied.

III. DATA ENGINEERING BY THE BEST `1 CONVEX FIT
METHOD

In this section we analyze, summarize and interpret the
results obtained by a best `1 convex fit to a particular data
set, which shows a convex pattern. Specifically, the data are
the values of the Gini coefficient and its evolution in the
U.S.A. for the time period 1947 to 1996. The same data set
is used by [10]. The Gini coefficient is commonly used as a
measure of inequality of income or wealth [4], where a value
of 0 expresses total equality and a value of 100 maximal
inequality. Fifty pairs of data were retrieved from the World
Income Inequality Database of the U.S. Bureau of Census
1997 and presented in the second (xi) and third (φi) column
of Table I. The interest here does not lie on any theoretical
assumption of convexity nor on any underlying relation that
has to be validated, but on explaining numerically what is
happening with the optimality conditions of the calculated
best `1 convex fit to the data. Furthermore, we are not
interested in the physical details of the process, but only
in what they imply for the convex relationship.

The data were fed to the computer program without any
preliminary analysis. The initial components for y were
set to the line that interpolates the points (x1, φ1) and
(x50, φ50) and the solution was reached with the set of data
interpolation indices I = {1, 6, 13, 19, 29, 30, 32, 41, 50} and
the set of indices of active constraints A = {2, 3, . . . , 49} \
{7, 9, 23, 29, 30, 33, 45}. The components of the calculated
best `1 convex fit are presented in the fourth column (yi) of
Table I and displayed in Fig.1. Index 6 ∈ I implies the
interpolation condition y6 = φ6 = 36.80. Index 6 ∈ A
implies the active constraint y[x5, x6, x7] = 0. To the con-
trary, since index 7 /∈ A, the 7th constraint is inactive, giving
y[x6, x7, x8] = 0.0231 > 0. Moreover, the sequences of the
first and the second divided differences of the best convex fit
are presented in the fifth and sixth column respectively. They

are useful to the analysis of the results, because they identify
and reveal local trends, such as linearities and convexities.
The Lagrange multipliers and the components of vector λ̃
associated with the best fit are presented in the seventh (λj)
and eighth column (λ̃i) respectively.

1940 1950 1960 1970 1980 1990 2000
34

35

36

37

38

39

40

41

42

43

Fig. 1. Best `1 convex fit (o) to the Gini coefficients (+) of Table I for
the years 1947-1996. The piecewise linear interpolant illustrates the fit

Having the sets A and I available, the components of y are
defined by interpolation to some components of φ, in view of
(12), and by solving the system of the divided differences that
are equal to zero, in view of (11). In case of degeneracy, the
inequality |A|+|I| > n may hold, because set I may contain
more than n−|A| elements. Since degeneracy can be avoided
in practice, the method arranges the calculation so that |A|+
|I| = n. The solution has given |A| = 41 and |I| = 9. Hence
the components {yi : i /∈ I} are calculated by solving a
(n− |I|)× (n− |I|) system of equations whose coefficient
matrix elements are obtained by deleting a row and column
of the n × n coefficient matrix of the linear equations (11)
and (12) for each i ∈ I . This matrix is considered later on
when discussing the Lagrange multipliers.

We can immediately notice the non-decreasing property of
the sequence of the first divided differences in column 5 as
stated by conditions (7). These differences are negative in the
interval [1947,1969] and positive subsequently. Therefore,
the smoothed Gini coefficients decrease in [1947,1969] down
to the value y27 = 35.27 and increase subsequently, with a
rate of change of income inequality that increases gradually
from negative to positive values, as it is shown in Table II.

TABLE II
RATES OF CHANGE OF GINI COEFFICIENTS

Period 1st divided differences

1947 - 1953 –0.1600
1953 - 1955 –0.1033
1955 - 1969 –0.0833
1969 - 1975 0.0722
1975 - 1976 0.1000
1976 - 1979 0.2500
1979 - 1991 0.3438
1991 - 1996 0.3650

The nonnegativity of the sequence of the second di-
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vided differences in column 6 shows the convexity of
the piecewise linear interpolant to the smoothed val-
ues. Since points with zero second divided differences
lie on a straight line and since the positive second di-
vided differences are centered at the abscissae with indices
{7, 9, 23, 29, 30, 33, 45}, the calculated smoothed values lie
on a convex polygonal line that consists of eight consecutive
line segments that join the smoothed values at the abscis-
sae x1, x7, x9, x23, x29, x30, x33, x45 and x50. The rates of
change shown in Table II are the slopes of the line segments
of the piecewise linear interpolant to the smoothed values.

All the Lagrange multipliers in column 7 are nonnegative,
according to Theorem 3. We see that whenever λj > 0,
then y[xj−1, xj , xj+1] = 0. In words, if the jth Lagrange
multiplier is strictly positive, the jth constraint is by necessity
an active constraint at the solution. However, if the jth
constraint is strictly positive, then the method ignores the
associated jth multiplier. For each vector y = y∗, we obtain
the system of equations (15) and we let the corresponding
Lagrange multipliers be obtained by solving this system. In
words, the columns of the (n − |I|) × (n − |I|) matrix
of system (15) are the normals of the active constraints
after deleting the rows for i ∈ I . It is remarkable that the
matrix that occurs in the definition of λ is the transpose of
the matrix that is used to define y. In Fig. 2 we see the
coefficient matrix of (15), emphasizing its sparsity. The first
row of numbers displays the indices of the active constraints,
namely A. The first column of numbers displays the data in-
dices after excluding the interpolation point indices, namely
{1, 2, . . . , 50} \ I . Because the abscissae are equally spaced
and because multiplication of this matrix by a constant does
not change the problem, the matrix elements in Fig. 2 come
from the coefficients of the second difference giving a quint
diagonal band and similarly if the abscissae are not equally
spaced. The higher the value of a Lagrange multiplier, the
stronger the linear tendency of the corresponding constraint
is. The symmetric values of the Lagrange multipliers ob-
served in the intervals [1956, 1968] and [1980, 1990] are due
to the local symmetries of the coefficient matrix of system
(15) and the distribution of the ±1 signs at the constant side
of this system.

In view of the zero Lagrange multipliers λ32 = λ46

= λ49 = 0 and the corresponding zero differences
y[x31, x32, x33] = y[x45, x46, x47] = y[x48, x49, x50] = 0,
we deduce that the obtained best `1 convex fit is degenerate.
Hence, the minimization of the objective function (1) subject
to the active constraints that are indexed in set A leads to the
same best fit, whether any of the constraints with index 32,
46 or 49 is present or not. For example, whether we impose
the constraint y[x31, x32, x33] ≥ 0 or not and then proceed
to minimize (1) subject to the remaining constraints indexed
in set A, we obtain a solution which happens to satisfy the
equation y[x31, x32, x33] = 0. Similarly, whether we impose
y[x45, x46, x47] ≥ 0 or not, the result is the same.

The best fit interpolates the points (xi, yi), for i ∈
{1, 6, 13, 19, 29, 30, 32, 41, 50}. The associated parameters
λ̃i in column 8 of Table I have the values λ̃1 = −0.10,
λ̃6 = 0.60, λ̃13 = 1.00, λ̃19 = 1.00, λ̃29 = −0.50,
λ̃30 = −0.50, λ̃32 = −0.50, λ̃41 = 0.00 and λ̃50 = 0.00,
which are all in the interval [−1, 1] as it follows from the
optimality conditions (17). The underlined components of φ,

y and λ̃ in Table I indicate the interpolation point positions
and the corresponding λ̃i. The components {λ̃i : i /∈ I} have
the values of the signs of the residuals yi − φi, according
to the equations contained in (13), and the components
{λ̃i : i ∈ I} are obtained from formula (16) for i ∈ I . The
corresponding 9 × 41 coefficient matrix in (16) for i ∈ I ,
say it is ΣT , is presented below in transposed form. The
first row of numbers displays the indices in set I and the
first column of numbers displays the indices in set A. In
words, ΣT consists of the rows excluded from the formation
of the matrix in Fig. 2. Further, the underlined components
of λ̃i, i ∈ I in column 8 of Table I, in view of (16) for
i ∈ I , are obtained by multiplying ΣT with the vector whose
components are the active constraint multipliers λj , j ∈ A
(see column 7 of Table I).

Σ =

1 6 13 19 29 30 32 41 50



2 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 0
6 0 −2 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0
12 0 0 1 0 0 0 0 0 0
13 0 0 −2 0 0 0 0 0 0
14 0 0 1 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0
18 0 0 0 1 0 0 0 0 0
19 0 0 0 −2 0 0 0 0 0
20 0 0 0 1 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0
28 0 0 0 0 1 0 0 0 0
31 0 0 0 0 0 1 1 0 0
32 0 0 0 0 0 0 −2 0 0
34 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 1 0
41 0 0 0 0 0 0 0 −2 0
42 0 0 0 0 0 0 0 1 0
43 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 1

IV. CONCLUDING REMARKS

If measurements of function values show some gross errors
and away from them the function seems to be convex,
then the least sum of absolute change to the data that
provides nonnegative second divided differences may be
required. This problem is a highly structured constrained `1
approximation calculation, which can be solved by standard
linear programming techniques. However, we solve it by an
iterative algorithm of descent direction that employs Karush-
Kuhn-Tucker like optimality conditions, despite the non-
differentiable objective function. The associated parameters
are important to the characterization of the solution and the
development of the algorithm as well as useful for sensitivity
analysis. The primary purpose of this work is to illustrate
the optimality conditions by a numerical example, so as to
guide the application of the method and the interpretation of
the results. The data that are used are real measurements of
the Gini coefficient in the U.S.A. Besides that the analysis
investigates particular aspects of the evolution of this coef-
ficient, such situations are common and similar analyses of
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2 3 4 5 6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 31 32 34 35 36 37 38 39 40 41 42 43 44 46 47 48 49



2 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 –2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 –2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 –2 1 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1 0
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2 1
49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 –2

Fig. 2. The coefficient matrix of system (15)

the general approach may arise in several fields. Moreover,
the subject deserves study in the area of inferential statistics
in order to bring about further possibilities for applications.
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