
 

 

Abstract—Transient convective heat transfer in an air-filled 

shallow enclosure with a vibrating side wall is investigated 

numerically. Rayleigh Bénard convection and oscillatory flows 

has been the subject of many investigations by using both 

experimental and theoretical methods. To our best knowledge, 

the influence of vibrating side wall on classical Rayleigh-

Bénard convection has not been studied. In the present study, 

periodic vibration of the enclosure side wall is employed as a 

driving force of fluid motion. The sidewalls of enclosure are 

kept in adiabatic conditions while the bottom wall is 

isothermally heated and the top wall is kept at initial 

temperature.  A control-volume method based, explicit time-

marching Flux-Corrected Transport Algorithm is implemented 

to solve the fully compressible form of the Navier-Stokes and 

energy equations.  The numerical results of a test case 

simulation with stationary sidewalls are compared with the 

existing literature for code validation. The oscillatory fluid 

motion significantly changes the transient behavior of the 

thermal transport in the enclosure compared to the pure 

Rayleigh-Bénard convection. 

 
Index Terms—Compressible flow, Rayleigh-Bénard 

convection, oscillatory flow 

 

I. INTRODUCTION 

ince Bénard’s experiment [1] on the convective heat 

transfer in a thin horizontal layer heated from below and 

the following theoretical studies of Lord Rayleigh [2],  

Rayleigh-Bénard convection in confined enclosures has been 

the subject of many theoretical, experimental and numerical 

studies due to the great importance it has in various fields of 

science and engineering. In addition to its applications in 

varying engineering fields, a great effort has been dedicated 

Rayleigh-Bénard convection to investigate fluid dynamics 

instability and chaotic behavior in fluids.  

In Rayleigh-Bénard convection, for the implemented no-slip 

boundary conditions to the walls, before Racr= 1707.76 the 

flow is stationary and the transmission of the heat is only due 

to the conduction mechanism. The pioneering investigations 

about this value of the critical Rayleigh number for rigid-rigid 

and rigid-free boundary conditions were performed by Pellew 

and Southwell [3] using linear analysis. It has also been 

determined both analytically by Davis [4] and experimentally 

by Stork and Muller [5]. 
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The first studies of nonlinear Rayleigh-Bénard convection 

and the consequences of surface tension effects had been 

outlined by Chandrasekhar [6]. When the Rayleigh number 

increases beyond this critical value (1707.76), convective 

flows can be observed. In this regime, the fluid motion is 

regular and organized as a set of horizontal parallel rolls. 

Moreover, as the Rayleigh number increases, a bifurcation and 

the second transition from steady to oscillatory flow is 

observed by Stella and Bucchignani [7]. For a three-

dimensional, incompressible flow heated from below, 

bifurcation patterns for different Prandtl numbers were 

investigated numerically by Bucchignani and Stella [8]. In this 

study, they also examined the transition from oscillatory 

behavior to the chaotic behavior for the same geometry and 

flow characteristics. In these two studies, incompressible 

Newtonian fluid was analyzed by employing the Boussinesq 

approximation.  Soong et.al [9] performed the numerical 

investigations in a two-dimensional, heated from below and 

cooled from above inclined enclosure for the aspect ratios of 

4, 3 and 1. In this study, finite-volume method is used, thermo-

physical properties of the fluid were assumed to be constant 

and Boussinesq approximation was utilized for the gravitation 

term.  

Most of the studies existing in literature are based on 

Boussinesq approximation for liquid or gas media in order to 

obtain relatively simple form of the governing equations. 

However, the range in which this assumption is valid is rather 

limiting. Gray and Giorgini [10] conducted a study to analyze 

the validity of the Boussinesq approach for air and water at 

atmospheric conditions (P=1 atm). In this study, it was 

concluded that Boussinesq approximation is not a suitable 

assumption for the relatively higher temperature differences 

(as low as 2 °C for water) and in this case the compressible 

form of the Navier-Stokes equations has to be used. 

The main emphasis of this paper is investigating the 

transient convective heat transfer in an air-filled shallow 

enclosure with a vibrating sidewall. Due to the fact that non-

Boussinesq effects arise in a wide range of circumstances, 

instead of considering fluid density to be independent of 

pressure (i.e., incompressibility assumption) and depend 

linearly on temperature, it is of interest to use fully 

compressible equations in the present paper. For the 

verification of the implemented numerical procedure, 

stationary wall test cases (i.e., pure Rayleigh- Bénard 

convection) are used. The achieved numerical results for the 

test case display a good agreement with the literature. Flow 

structure and corresponding temperature distribution under the 

Numerical Simulation of Rayleigh Bénard 

Convection in an Enclosure: Effect of Vibrating 

Side Wall 

Semih CETINDAG, Murat K. AKTAS 

S 

Proceedings of the World Congress on Engineering 2014 Vol II, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19253-5-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



 

effect of oscillatory motion significantly differs from the pure 

Rayleigh-Bénard convection which yields to significant 

augmentation of the heat transfer from the bottom wall. 

II. FORMULATION OF THE PROBLEM 

A. Problem Geometry 

A two-dimensional shallow enclosure filled with air is 

considered (Fig. 1). The enclosure height is 15 mm and the 

length is 60 mm. Corresponding aspect ratio (AR) of the 

enclosure is 4. Air is heated from the below by Th temperature 

and cooled from above by Tc temperature and the vertical 

walls of enclosure are adiabatic. 
 

 
 

Fig. 1.  Problem schematic and corresponding boundary conditions.  

 

No-slip boundary condition was implemented for all solid 

walls. The oscillatory motion of air is driven by the harmonic 

vibration of the left wall at certain frequency. The frequency 

of wall is chosen as to create a standing wave at the first 

fundamental mode in the enclosure in order to maximize the 

pressure wave amplitudes and oscillatory flow velocities.  

    In the simulation of the oscillatory flow and Rayleigh-

Bénard convection, the left wall of the enclosure is 

harmonically vibrated by the formula of  

 

X = Xmaxsint (1) 

 

     In the present study,  (angular frequency) is selected as 

18177 rad/s (f= 2893 Hz) and the maximum wall displacement 

is selected as 5µm, 3µm, 1µm, 0.5µm, 0.4µm, 0.3µm and 

0.2µm. 

 

B. Mathematical Model 

The compressible form of the Navier-Stokes and the energy 

equations in Cartesian coordinate system were used in this 

study to model the interaction of oscillatory flow and 

Rayleigh-Bénard convection: 
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Energy Equation 
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The ratio of specific heats 

C Cp v
 

                   (6) 

The total energy term  
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Heat flux components for the x and y direction in the Cartesian 

coordinates is expressed as  

T
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Corresponding stress tensor components in the momentum and 

energy equation are 
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Density and temperature variations are related to pressure by 

the ideal gas law:  

p RT                      (12) 

where R (=0.287 kJ/kg K) is the gas constant of air. 

Initially, pressure (101.325 Pa), temperature (300 K), and 

density (1.1768 kg/m
3
) have uniform values in the enclosure. 

 

C. Numerical Approach 

The stated equations in the previous section were solved by 

using a finite-volume based explicit time marching flux 

corrected transport (FCT) algorithm. The reason behind using 

this algorithm for the numerical simulations lies in the fact that 

it has relatively higher ability to resolve steep gradients with 

minimum numerical diffusion. FCT is a high-order, nonlinear, 

monotone, conservative and positivity-preserving method 

designed to solve a general one-dimensional continuity 

equation with appropriate source terms. The diffusion terms 

(the viscous term in the momentum equations and the 

conduction terms in the energy equation) were discretized 

using a second-order central difference approach. Time-step 

splitting was also used to couple all of the representative 

physical effects. A more detailed discussion of FCT algorithm 

is performed by Oran and Boris [11]. As stated in the study of 

Tillet et al. [12], higher order, non-dissipative algorithms such 

as FCT, requires a great vigilance to prevent the spurious 

wave reflections in the vicinities of boundaries and 

nonphysical numerical oscillations arising from instabilities 

when the boundary conditions are being implemented. In 

present study, treatment proposed by Poinsot and Lele [13] is 

used to accurately compute the density along the stationary no-

slip walls. Since an algorithm based on explicit numerical 

method is employed, the CFL (Courant-Friedrichs-Lewy) 

stability condition is important. In order to satisfy the stability 
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criteria the time step size of the computations was chosen 

based on 

min( , )
( )

,

x y
t CFL

ai j

  
   
  

              (13) 

The selected CFL number for the analysis is 0.4 which is 

already smaller than the necessary value of 0.5. 

In the present numerical simulations typically 201 x 51 

uniform numerical meshes are utilized to be small enough 

considering the computational time constraint for the 

enclosure having the height of 15 mm and length of 60 mm, 

respectively. The computations performed using even denser 

numerical mesh did not alter the results significantly. 

III. RESULTS 

For the code validation purpose, the pure Rayleigh-Bénard 

convection predictions of Soong et al. [9] were used. In the 

aforementioned study, for AR=4 and Ra=5000, the bottom 

and the top wall temperatures was taken as Th=320 K and 

Tc=300 K, respectively ( 20T K  ). The dimensionless 

maximum velocity components u and v and Nu number was 

compared with the existing data.  

For the comparison of these parameters, length and velocity 

components are non-dimensionalized by H and α/H 

respectively. Nusselt number is calculated as 

.

T
H

y aveNu
T

 
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 








                (14) 

 
TABLE I 

COMPARISONS OF THE PRESENT RESULTS WITH THE 

LITERATURE 

 
Soong et al. [9] Present Study 

maxu
 

16.1 16.2 

maxv
 18.0 19.7 

Nu  2.1 2.12 

 

The present numerical predictions agree quite well with 

literature. Soong et al. [9] employed Boussinesq 

approximation in their work. Since fully compressible 

formulation is employed in the present work vmax value 

slightly differs from the prediction of Soong et al. 

Fig. 2 and Fig.3 depict the time evolution of the flow field 

and temperature distribution at different instants for the case of 

pure Rayleigh-Bénard convection. The flow field and the 

corresponding temperature distribution are consistent with the 

literature. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.  Streamlines of different instants for pure Rayleigh-Bénard 

convection (a) t=0.5 s, (b) t=1 s, (c) t=2.5 s, (d) t=5 s. 

 

At relatively early times (0.5 s) the velocity values are 

rather small while the plume formation is observed instead 

of the characteristic nature of the Rayleigh-Bénard cells for 

AR=4 (Fig. 2a). In the process of time (1 s.), first of all, the 

characteristic Rayleigh-Bénard cells with relatively small 

velocity magnitudes starts to be established (Fig. 2b). At 

2.5s., the typical cell structure develops but the velocity 

values continue to increase further (Fig. 2c). At 5 s., the 

typical cell structure (Ra=5000) with two clock wise and two 

counter clock wise rotating vortices fully develops (Fig. 2d).  

The time evolution of the temperature distribution in the 

flow domain for pure Rayleigh-Bénard convection was 

presented in Fig.3.  The diffusive transport dominates 

temperature field at early times (Fig. 3a) and (Fig. 3b). At 

2.5 s., the characteristic temperature distribution in 

Rayleigh-Bénard for AR=4 starts to be established (Fig. 3c). 

At 5 s., fully developed Rayleigh- Bénard convection cells 

are observed (Fig. 3d). The fully developed temperature 

field completely agrees with the results in the literature. 
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(d) 

Fig. 3.  Temperature distributions of different instants for pure Rayleigh-

Bénard convection (a) t=0.5s, (b) t=1s, (c) t=2.5s, (d) t=5s. 

 

As a secondary validation study of the numerical scheme 

utilized, pure oscillatory flow is considered for an unheated 

enclosure. The vibration frequency of the harmonic vibration 

of the enclosure left wall is chosen as f= 2893 Hz. Four 

different left wall maximum displacement values were 

considered. As a rule of thumb, particle velocity (velocity 

amplitude) should be equal to ratio of the pressure to 

specific acoustic impedance (p/Z), Beranek [14]. 

Table 2 compares the theoretically calculated maximum 

velocity values (3
rd

 line) and the maximum velocity 

predictions of the present numerical study (4
th

 line) for 

different wall displacements (1 µm, 0.5 µm, 0.3 µm, 0.2 µm). 

 
TABLE II 

THEORATICAL AND NUMERICALLY CALCULATED PARTICLE 

VELOCITY VALUES FOR DIFFERENT WALL DISPLACEMENTS  

Xmax         1 µm 0.5 µm  0.3 µm  0.2 µm 

 wallleftP (Pa) 580 210 117 100 

 wallleftP Z (m/s) 1.404 0.508 0.281 0.242 

particlev (m/s) 1.401 0.501 0.280 0.230 

Error   (%) 0.214 1.378 0.356 4.956 

 

In the calculation, the specific acoustic impedance is taken 

as Z=413 (Ns/m
3
) for the air of T=20 

0
C. The results of the 

present simulation with theoretical values agree well. 
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Fig. 4.  Time evolution of relative pressure wave amplitudes for different 

wall displacement values at the vicinity of t=0.01 (a) on the left wall, and at 

the vicinity of t=0.01 (b) on the right wall. 

 

The time averaged flow fields in the enclosure at 5 s are 

shown in Fig. 5 for different cases. At this time, the time 

averaged velocities reach pseudo-steady values. The time 

averaging is applied to instantaneous velocity values for one 

period of wall vibration and pseudo-steady velocity values are 

obtained.   

      In Fig. 5a, the signature of flow field is quite similar to that 

of pure Rayleigh-Bénard convection except the rotation 

direction of the cells. This pattern indicates a stronger flow 

field (due to oscillatory wall motion) which has similar to 

Bénard cells but has opposite flow direction for this amount of 

wall displacement value. 
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Fig. 5  Cycle averaged velocity vectors for different wall displacement values 

(a) Xmax=0.2µm, (b) Xmax=0.3µm, (c) Xmax=0.4 µm, (d) Xmax=0.5 µm, (e) 

Xmax=1µm, (f) Xmax=3µm, (g) Xmax=5 µm. 

 

Fig.5 shows that below the wall displacement value 0.3 µm, 

the flow field significantly changes. Because of this alteration 

in the flow field, Nusselt number for these Xmax values 

significantly lower than the higher Xmax values explained in the 

Table 3 below.  

 

Table 3 presents the Nusselt numbers from the bottom wall for 

these different maximum left wall displacement values. 
 

TABLE III 

BOTTOM WALL NUSSELT NUMBERS FOR DIFFERENT WALL 

DISPLACEMENTS 

Wall displacement 
Cycle averaged Nu number for 

the bottom wall at 5 s  

        5      µm 13.82 

        3      µm 9.57 

        1      µm 4.29 

        0.5   µm 3.99 

        0.4   µm 
        0.3   µm 

3.75 

2.67 

        0.2   µm 2.50 

Pure  Rayleigh-Benard 2.12 
 

 

 

Table 3 lists the cases studied with different maximum wall 

displacements. The heat transfer values from the bottom wall 

were calculated using the temperature values of the last 

vibration cycle. It can be concluded that with increasing wall 

displacement, heat transfer increases compare to pure 

Rayleigh- Bénard convection. 

 

IV. CONCLUSIONS 

Vibrations are known to be among the most effective 

ways of enhancing heat transfer due to its pronounced effect 

on the behavior and stability of fluid systems. The present 

work is devoted to investigate the effect of left wall of an 

enclosure on classical Rayleigh-Benard convection 

numerically.  

 It is observed that with the increment in the left wall 

vibration, the flow field significantly differs from the classical 

Rayleigh-Benard convection cell structure and as a result of 

this; flow inside the enclosure apt to generate a secondary 

circulating motions. Furthermore, the last cycle averaged 

bottom wall Nusselt values increases proportional to the left 

wall displacements. It is observed that while the classical 

Rayleigh-Benard convection has a bottom Nu value of 2.116 

(Ra=5000), when 5 µm amplitude of vibration is applied to 

the system, this value increases to 13.821 which is about the 

7 times higher than the original value.  
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