
 

 
Abstract—Two-dimensional thermosolutal natural 

convection in an annular elliptical space filled with a fluid-
saturated porous medium, is analyzed by solving numerically 
the mass balance, momentum, energy and concentration 
equations, using Darcy's law and Boussinesq approximation. 
Two walls delimiting the annular space are maintained at two 
uniform different temperatures and concentrations. The 
external parameters considered are the Rayleigh-Darcy 
number and the buoyancy ratio. There are two main 
approaches of thermosolutal natural convection; the aiding and 
opposing buoyancies. For the present work, the heat and mass 
transfer natural convection is studied for the case of aiding 
buoyancy effects, where the flow is generated by both 
temperature and solutal concentration gradients. The Average 
Nusselt and Sherwood numbers are presented in terms of the 
external parameters mentioned above. 
 

Index Terms— Thermosolutal, Natural convection, Porous 
media, Elliptical annulus, buoyancy effects 
 

I. INTRODUCTION 
uring recent years, innumerable theoretical, numerical 
and experimental studies have dealt with heat and mass 

transfer confined into different vertical and horizontal 
annular enclosures; these annular spaces have different 
geometries and can be partly or completely filled with a 
porous media. The most research effort has been devoted to 
the study of heat and mass transfer induced in a porous 
medium saturated by a fluid for non-curved geometries  the 
horizontal cylindrical and elliptical annulus geometries were 
particularly subject of a considerable studies but for the case 
of heat transfer. Interest in the phenomena of heat and mass 
transfer by natural convection is due to many potential 
applications in the engineering processes. 
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The applications involve the chemical industry, reservoir 
engineering in connection with thermal recovery process and 
the study of dynamics of hot and salty springs of a sea, the 
underground spreading of chemical waste and other 
pollutants. The security issues in the heart of nuclear 
reactors, evaporation cooling and solidification are few other 
application areas where combined thermo-solutal convection 
in porous media can be observed. Sankar and al. [1] 
investigated natural convection flows in a vertical annulus 
filled with a fluid-saturated porous medium, when the inner 
wall is subject to discrete heating. The outer wall is 
maintained isothermally at a lower temperature, while the 
top and bottom walls, and the unheated portions of the inner 
wall are kept adiabatic. Through the Brinkman-extended 
Darcy equation, the relative importance of discrete heating 
on natural convection in the porous annulus is examined. An 
implicit finite difference method has been used to solve the 
governing equations of the flow system. The analysis is 
carried out for a wide range of modified Rayleigh and Darcy 
numbers for different heat source lengths and locations. 

 F.M. Mahfouz [2] has investigated a buoyancy driven 
flow and associated heat convection in an elliptical 
enclosure. The enclosure which is the space between two 
horizontal concentric confocal elliptic tubes is heated 
through its inner tube surface which is maintained at either 
uniform temperature or uniform heat flux. The induced 
buoyancy driven flow and the associated heat convection are 
predicted at different enclosure orientations. The full 
governing equations in terms of vorticity, stream function 
and temperature are solved numerically using Fourier 
Spectral Method. Khanafer and al. [3] studied a numerical 
investigation of natural convection heat transfer within a 
two-dimensional, horizontal annulus that is partially filled 
with a fluid-saturated porous medium. In addition, the 
porous sleeve is considered to be press fitted to the inner 
surface of the outer cylinder. Both cylinders are maintained 
at constant and uniform temperatures with the inner cylinder 
being subjected to a relatively higher temperature than the 
outer one. Moreover, the Forchheimer and Brinkman effects 
are taken into consideration when simulating the fluid 
motion inside the porous sleeve. Kumari and Nath [4] 
studied the unsteady natural convection flow from a 
horizontal cylindrical annulus filled with a non-Darcy 
porous medium .The unsteadiness in the problem arises due 
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to the impulsive change in the wall temperature of the outer 
cylinder. The Navier–Stokes equations along with the energy 
equation governing the unsteady natural convection flow 
have been solved by the finite-volume method. The results 
show that the annulus completely filled with a porous 
medium has the best insulating effectiveness. The effect of 
Darcy number on the heat transfer is more pronounced than 
that of the Grashof number. Yong Shi and al. [5]presented a 
finite difference-based lattice BGK model for thermal flows 
is proposed based on the double-distribution function 
approach; they applied this model to simulate natural 
convection heat transfer in a horizontal concentric annulus 
bounded by two stationary cylinders with different 
temperatures. Velocity and temperature distributions as well 
as Nusselt numbers were obtained for the Rayleigh numbers 
ranging from 2.38x103 to 1.02x105 with the Prandtl number 
around 0.718. Edimilson J and al. [6] examined a numerical 
computation for laminar and turbulent natural convection 
within a horizontal cylindrical annulus filled with a fluid 
saturated porous medium. Computations covered the range 
of 25 < Ram < 500 and 3.2x10-4 > Da > 3.2x10-6 and made 
use of the finite volume method. The inner and outer walls 
are maintained at constant but different temperatures. The 
macroscopic k–e turbulence model with wall function is 
used to handle turbulent flows in porous media.  

Leong and Lai [7] presented a natural convection in 
concentric cylinders with a porous sleeve, analytical 
solutions obtained through perturbation method and Fourier 
transform. The porous sleeve is press-fitted to the inner 
surface of the outer cylinder. Both the inner and outer 
cylinders are kept at constant temperatures with the inner 
surface at a slightly higher temperature than that of the outer. 
The main objective of this study is to investigate the 
buoyancy-induced flow as affected by the presence of the 
porous layer. A parametric study was performed to 
investigate the effects of Rayleigh number, Darcy number, 
porous sleeve thickness, and relative thermal conductivity on 
the heat transfer results. M. Djezzar and al. [8] expressed the 
Boussinesq equations of the laminar thermal and natural 
convection, in the case of permanent and bidimensional 
flow, in an annular space between two confocal elliptic 
cylinders using a new calculation code of the finite volumes 
with the primitive functions (velocity-pressure formulation) 
in the elliptic coordinates system. Both effects of Rayleigh 
number and the geometry of the interior elliptic cylinder 
were examined. Y.D. Zhu and al. [9] presented a natural 
convective heat transfer between two horizontal, elliptic 
cylinders that was numerically studied using the differential 
quadrature (DQ) method. The governing equations are taken 
to be in the vorticity-stream function formulation. The 
coordinate transformation was performed to apply the DQ 
method. An elliptic function was used, which makes the 
coordinate transformation from the physical domain to the 
computational domain be set up by an analytical expression. 
The present method was validated by comparing its 
numerical results with available publication data and very 
good agreement has been achieved. A systematic study is 
conducted for the analysis of flow and thermal fields at 
different eccentricities and angular positions. 

Wassim C. and al. [10] presented a new calculation code 

using a two-dimensional finite element method valid in a 
steady and laminar flow within an annular enclosure which is 
represented by inner circular and outer elliptical cylinders. 
The Rayleigh number is large enough; there exists an 
interval of values of Rayleigh number for which the 
relaxation coefficients do not only influence the speed of 
calculation convergence but also the solution of transfer 
equation.  

Mota and al. [11] solved the two-dimensional Darcy-
Boussinesq equations, governing natural convection heat 
transfer in a saturated porous medium, in generalized 
orthogonal coordinates, using high-order compact finites 
differences on a very fine grid. The mesh is generated 
numerically using the orthogonal trajectory method. The 
code is applied to horizontal eccentric elliptic annuli 
containing saturated porous media. The judicious stretching 
of one of the annular walls in the horizontal direction 
reduces the heat losses with respect to a concentric 
cylindrical annulus with the same amount of insulating 
material. Charrier-Mojtabi [12] carried a numerical 
investigation of two-dimensional and three-dimensional free 
convection flows in a saturated porous horizontal annulus 
heated from the inner surface, using a Fourier-Galerkin 
approximation for the periodic azimuthal and axial 
directions and a collocation-Chebyshev approximation in the 
confined radial direction. The numerical algorithm integrates 
the Darcy-Boussinesq's equations formulated in terms of 
pressure and temperature. This method gives an accurate 
description of the 2-D multicellular structures for a large 
range of Rayleigh number and radii ratio.  
M. M. Elshamy and M. N. Ozisik [13] studied numerically a 
steady-state natural convection for air bounded by two 
confocal horizontal elliptical cylinders for the case of inner 
hot and outer cold isothermal surfaces. The local and 
average Nusselt numbers were determined for different 
value of Rayleigh number for different eccentricities of the 
inner surface.  

II. NOMENCLATURE 
 

Symbol Definition Unit 
a Thermal diffusivity m2/s 
A Elliptic cylinder major axis m 
B Elliptic cylinder minor axis m 
c Constant defined in elliptic coordinates m 
cp Specific heat at constant pressure  J/kg.K 
D Concentration diffusivity m2/s 
C Mass concentration g/l 
C1 Inner wall’s concentration g/l 
C2  Outer wall’s concentration g/l 
Da Darcy number  
e Elliptic cylinder eccentricity,  

g Gravitational acceleration m/s2 
Gr Grashof number, [=gβc3(T1-T2)/υ-2]  
h Dimensional metric coefficient m 
H Dimensionless metric coefficient  
K Porous medium permeability m2 
Le Lewis Number  
N Buoyancy ratio,  [=βc∆C/βT∆T]           
Nu Local Nusselt number  
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P Pressure N/m2 
Pr Prandtl number  
Ra Rayleigh number, [=Gr.Pr]  
Ram Rayleigh-Darcy number, [=Ra.Da]  
Sh Local Sherwood number  
t Time s 
T Fluid’s temperature K 
T1  Inner wall’s temperature K 
T2  Outer wall’s temperature K 
u Velocity component-coordinate x m/s 
v Velocity component-coordinate y m/s 
Uh Velocity component-coordinate h m/s 
Vθ     Velocity component-coordinate θ  
V  Velocity vector m/s 
x, y Cartesian coordinates m 
 
Greek Letters 

  

α Inclination angle ° 
βC Concentration expansion coefficient (g/l)-1 
βΤ  Thermal expansion coefficient K-1 
λ Thermal conductivity W/m.K 
υ Kinematic viscosity, m2/s 
ε Porosity  
σT Thermal capacity factor  
∆C Concentration difference, [=C1-C2] g/l 
∆T Temperature difference, [=T1-T2], K 
ρ Density kg/m3 
ψ Stream function m2/s 
η, θ Elliptic coordinates  
   
Subscripts   
1 Inner  
2 Outer  
p Porous  
 
Superscripts 

  

+ Dimensionless parameters  

III. PROBLEM FORMULATION AND BASIC EQUATION 
We consider a thermosolutal natural convection in an 

annular elliptical space filled with fluid-saturated porous 
medium; Fig. 1 represents a cross section of the system. 
Both elliptic internal and external walls are isothermal and 
impermeable, kept at constant temperatures and 
concentrations T1, C1 and T2, C2 respectively with T1>T2 
and C1>C2. The physical properties of the fluid are 
constant, apart from the density ρ whose variations are at the 
origin of the natural convection.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The cross section of the system 

Viscous dissipation is neglected, just as the radiation 
(emissive properties of the two walls being neglected). Soret 
and Dufour effects are neglected and we admit that the 
problem is bidimensional, permanent and laminar. The 
porous medium is considered isotropic and homogeneous. 
The heat and mass transfer by natural convection is 
represented by the following equations within the framework 
of the Boussinesq approximation: 

A. Continuity Equation 

0=Vdiv


                                                                         (1) 

B. Momentum Equation  
The classic formulation of Darcy is used for writing the 

equation of motion: 
 

( )gPKV 
ρ

µ
+∇−=                                                          (2)      

C. Heath Equation  

( ) T
C

T
t

T

p

p
T

2gradV ∇=⋅+
∂

∂

ρ

λ
σ


                           (3) 

D. Concentration Equation 

 ( ) CDC
t

C 2 grad V ∇=⋅+
∂

∂ 
ε                                 (4) 

The Boussinesq approximation for the combined heat and 
mass transfer is written as following: 
 

( ) ( )( )000 1 CCTT CT −−−−= ββρρ                         (5) 
 

It is convenient to define a reference frame such as the 
limits of the system result in constant values of the 
coordinates. The passage from the Cartesian coordinates     
(x, y) to the elliptic coordinates ( )θh,  is obtained by the 
following relations: 
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Equations (1), (2),(3) and (4) are written respectively:     
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Vη and Vθ are the velocity components in the directions η 
and θ. Metric coefficients in elliptic coordinates are given 
by:  ( ) ( )( )  
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The characteristic quantities used for the dimensionless 
problem between the inner and the outer elliptic cylinder are 
the characteristic temperature and concentration                 
∆T = T1 – T2, ∆C = C1 – C2. The focal length c in the 
elliptic coordinates is the reference length and the thermal 
diffusivity of the fluid a, the ratio of the thermal diffusivity 
and the characteristic length c (a/c) is the characteristic 
velocity. The dimensionless mathematical model obtained is 
expressed by the following equations: 
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Where Vη, Vθ are the components of the dimensionless 
velocity defined by: 

   
θ

ψ
η

∂

∂
=

+
+

H

1
V , 

η

ψ
θ

∂

∂
−=

+
+

H
V

1  

Ram represents Rayleigh-Darcy number which is defined as: 
Ram=Ra.Da  

The boundary conditions are expressed as following: 
Hot inner wall with high concentration (η=ηi=cst): 
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Cold outer wall with low concentration (η=ηe=cst): 
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IV. NUMERICAL METHOD 
 

 
 
 
 
 
 
 
 

Fig.  2. Physical and computational domain 

Fig. 2 shows the physical and computational domain, to 
solve (11), (12) and (13) with the associated boundary 
conditions; we consider a numerical solution by the finite 
volumes method, exposed by [14]. The power law scheme 
was used for the discretization. To solve (14), we consider a 
numerical solution by the centered differences method. The 
iterative method used for the numerical solution of algebraic 
system of equations is the Gauss-Seidel with an under-
relaxation process. Once the temperature and concentration 
distributions are available, the local Nusselt and Sherwood 
numbers in the physical domain are defined as: 
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V. RESULTS AND DISCUSSION 
Our objective is to analyze the effect of low Rayleigh-

Darcy number and Buoyancy ratio for the cooperative mode 
on the flow and the heat and mass transfer. For this reason, 
we presented streamlines, isotherms and concentration 
contours for different values of Rayleigh-Darcy number for 
the case when the buoyancy ratio is equal to zero N=0 and 
for a determined value of Rayleigh-Darcy number Ram=50, 
we presented streamlines, isotherms and concentration 
contours for different value of buoyancy ratio. The Nusselt 
and Sherwood numbers were presented for different values 
of Ram and N. The above results were carried out for the 
case of the air with a Lewis number Le=0.1 when the 
inclination is α=0°. 

A. Influence of Rayleigh-Darcy number (Ram) 
We consider an annular spaces characterized by the 

eccentricity of the internal and the external elliptic cylinder 
respectively given by e1=0.9 and e2=0.5 with the inclination 
chosen for the calculation is α=0°.  

We used different values of Rayleigh-Darcy number from 
Ram=1 to Ram=50 for the case when only the thermal 
gradients are at the origin of the flow, this case is 
corresponding to a buoyancy number equal to zero (N=0). 

Fig. 3 to fig. 6 represent the streamlines, isotherms and 
concentration contours for different values of Rayleigh-
Darcy number when N=0, Le=0.1 and the inclination α =0°. 
We note that these contours are symmetrical about the 
median fictitious vertical plane. The isotherms in fig. 3 and 
fig. 4 corresponding to Ram =1 and  Ram=10 are parallel and 
concentric closed curves which coincide perfectly with the 
walls profile, in this case the temperature distribution is 
simply decreasing from the hot wall to the cold wall. The 
concentration contours on the same figure illustrate a similar 
behavior as isotherms and they correspond perfectly to the 
walls, the mass distribution is simply decreasing from the 
high concentration wall to the low concentration wall.  

The streamlines of the same figure show that the flow is 
organized in two main cells that rotate very slowly in 
opposite directions. This is due to upward movement of the 
fluid particles which heat up along the hot wall under the 
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buoyancy effect related to temperature gradients only and 
the downward movements of the fluid particles which cool 
along the cold wall under the gravity, values of the stream 
function are very low in this case due to very low Rayleigh-
Darcy number. The concentrations variation doesn’t have 
any contribution in the generation of the flow for the case of 
N=0; the heat and mass transfer takes mainly by conduction 
and diffusion modes respectively at the heated wall with 
high concentration, although the velocity fields are nonzero.  

Fig. 5 corresponding to Ram=30 show that the isotherms 
are modified, the temperature distribution decreases from the 
hot wall to the cold wall and the deformation direction of the 
isotherms is conforming to the direction of streamlines 
rotation. Values of streams function are increased which 
means that the convection is present with the increase of the 
Rayleigh-Darcy number value. The concentration 
distribution remains with a similar behavior; the contours 
continue having parallel and concentric closed curves which 
coincide perfectly with the walls profile. 

Fig. 6 for Ram=50 illustrates that the increase of Rayleigh-
Darcy number reflects a significant intensification of natural 
convection induced by a thermal-buoyancy effect and shows 
that the flow remains organized in two main cells  rotating in  

 
 
 
 

 
 
 

opposite directions but with a higher velocity, the 
streamlines from both cells tend to became adjacent which 
reduce the gap between the cells in the upper annulus space. 
Isotherms in fig. 6 show that the fluid is almost motionless in 
the bottom of the annular space, in the other hand; isotherms 
deform into the area where there is presence of two counter-
rotating vortices in the upper space. This configuration 
illustrates a transition in the heat transfer from the pure 
conduction in the whole space to a convective mode in the 
upper space. The heat transfer remains dominated by the 
conduction mode in the lower space. The concentration 
distribution remains with a similar behavior that corresponds 
to a mass transfer conducted by a pure diffusion mode. 

B. The effect of Rayleigh-Darcy number on local Nusselt 
and Sherwood numbers 

In fig. 7 we illustrated the variation of local Nusselt 
number on the inner wall of the elliptical cylinder; this 
variation allows us to note that with the increase of 
Rayleigh-Darcy number, the value of local Nusselt number 
increases, which is obvious. For the Nusselt variation the 
same figure shows for Ram=50, an existence of two 
minimums and two maximums corresponding to a counter-
rotating cells. 

 
 

                                                                         

 
 

Fig. 3. Streamlines, isotherms and concentration contours for Ram=1, Le=0.1 and N=0
 

 
 
 
 
 
 
 

  
                                                                                                                    

Fig. 4. Streamlines, isotherms and concentration contours for Ram=10, Le=0.1 and N=0 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5. Streamlines, isotherms and concentration contours for Ram=30, Le=0.1 and N=0 
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Fig. 6. Streamlines, isotherms and concentration contours for Ram=50, Le=0.1 and N=0. 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Fig. 7.  Variation of local Nusselt and Sherwood numbers on the hot wall for N=0. 
 

These cells are pushing away the fluid from the hot wall in 
the case of a minimum, and bringing the fluid to the wall in 
the case of a maximum. In the other hand, the local 
Sherwood number which interprets the mass transfer for the 
same case of N=0, has a same profile with increasing the 
Rayleigh-Darcy number for this range where the local 
Sherwood is not sensitive within this range of low Rayleigh-
Darcy number values. 

C. Influence of the Buoyancy ratio (N) 
We consider the same annular spaces characterized by the 

eccentricity of the internal and the external elliptic cylinder 
respectively given by e1=0.9 and e2=0.5 with the inclination 
chosen for the calculation is α=0°. We use different values 
of the Buoyancy ratio N=1, N=5, N=10 and N=50 for the 
case when the Rayleigh-Darcy number Ram=50 and Le=0.1. 

Fig. 8 to fig. 11 represent the streamlines, isotherms and 
concentration contours for different values of Buoyancy 
ratio. With increasing the buoyancy ratio N>0 and for the 
case of N=1 as shown in fig. 8 the flow remains organized in 
two main cells that rotate in opposite directions and it is 
clear that the solutal buoyancy force which increases with 
the buoyancy ratio is cooperating with the thermal buoyancy 
and they drive the fluid in the same direction to form a 
cooperator flow, where the stream function levels have a 
significant increase with increasing in buoyancy ratio due to 
aiding effect of thermal and solutal buoyancies. The 
isotherms contours are maintained on the same previous 
behavior when the only thermal buoyancy was acting, but 
the gradients are stronger and increase directly with the 
increasing the buoyancy ratio. A slight change arisen in the 
concentration contours which are not perfectly coinciding 
with the walls shape, this change announce that a mass 
transfer is generated by the solutal buoyancy and contributes 

in the flow structure.  
Fig. 9 and fig. 10 corresponding to N=5 and N=10 show 

that the concentration contours present an intensification due 
the increase of the buoyancy ratio; the solutal buoyancy is 
contributing and gaining more implication in the flow. The 
concentration contours tend to have a shape of a dome in the 
upper space. The isotherms are modified from a dome 
shaped in the case of N=0 for the same value of Rayleigh-
Darcy number to a mushroom shaped due to the increase in 
the buoyancy ratio that gives a preponderant effect to the 
solutal buoyancy for the flow structure.  

The temperature distribution is gaining more regions in 
the lower annular space due to the high temperature 
gradients induced by the aiding effect of solutal and thermal 
buoyancies. Streamlines in these figures show that the flow 
remains organized in two main cells, but with increasing 
buoyancy ratio these two cells tend to decline towards the 
right and left sides of the annular space, the stream function 
levels have a significant increase with increasing in 
buoyancy ratio due to the aiding effect. 

Fig. 11 represents streamlines, isotherms and 
concentration contours for N=50, the solutal distribution is 
intensified and the concentration gradients have a significant 
increase with the increase of buoyancy ratio, the mass 
transfer is almost gaining all the half upper space. In the 
lower space, the concentration contours tend to become very 
close to each other near the lower hot wall which is a result 
of the preponderant convective role in the mass transfer. 

The isotherms have a significant change with a cone 
shaped curves, the convective heat transfer is gaining more 
space due the intensification of the flow which is dominated 
by a high solutal buoyancy forces. The streamlines shown in 
fig. 11 have completely transformed from smooth curved 
cells to narrow cells that rotate in opposite directions but 
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with a very high velocity, both cells decline towards the right 
and the left side in the annular space under the high velocity 
of streams function, this configuration demonstrates that the 
heat and mass transfer is dominated by the solutal forces 
under a convective mode. 

D. The effect of Buoyancy ratio on local Nusselt and 
Sherwood numbers 

In fig. 12 we illustrated the variation of the local Nusselt 
and Sherwood numbers on the inner wall of the elliptical 
cylinder. The variation of the local Nusselt number allows us 
to note that with the  increase in the buoyancy ratio, its value  

 
 

 

 

increases due to the increase in the flow that gives a better 
heat transfer under a convective mode.  

The Nusselt variation in fig. 12 shows for Ram=50, a 
presence of three maximums in the lower side of the 
enclosure (190°<θ<330°), two of them are corresponding to 
the maximum velocities of both counter-rotating cells that 
bringing the fluid to the cold region from both sides where 
the heat exchange is active. The third maximum 
corresponding to the middle point in the lower hot wall 
which is expressing an additional intensive conductive heat 
exchange made in a very thin boundary layer where the 
motionless fluid is directly in contact with the hot wall.    

 
 

 
Fig. 8. Streamlines, isotherms and concentration contours for Ram=50, Le=0.1 and N=1

 

 

 

 
Fig. 9. Streamlines, isotherms and concentration contours for Ram=50, Le=0.1 and N=5

 

 

 

 
Fig. 10. Streamlines, isotherms and concentration contours for Ram=50, Le=0.1 and N=10 

 

 
Fig. 11. Streamlines, isotherms and concentration contours for Ram=50, Le=0.1 and N=50 
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Fig. 12. Variation of local Nusselt and Sherwood numbers on the hot wall for Ram=50 
 

The local Sherwood number illustrates a significant 
increase with increasing the buoyancy ratio, which is 
obvious because the solutal buoyancy forces increase. 
However, the mass transfer remains moderate with a 
qualitative comparison to the heat transfer due to the low 
value of Lewis number. 

VI. CONCLUSION 
The thermosolutal natural convection in a porous elliptical 

annulus saturated by a Newtonian fluid was studied using a 
numerical method using the method of finite volumes, the 
vorticity-streamline formulation, makes it possible to find    
a good agreement with the literature of bidimensional 
thermal natural convection for a laminar and permanent flow 
in an annular space filled with fluid-saturated porous media 
located between two confocal elliptic cylinders. 

We examined, in particular, the influence of low 
Rayleigh-Darcy number range for the case when only the 
thermal buoyancy is at the origin of the fluid flow and the 
effects of aiding buoyancies using different values of 
buoyancy ratio. Different structures of bicellular convection 
take place according to the value of the Rayleigh-Darcy 
number, when the solutal buoyancy ratio is equal to zero, 
only the thermal forces are generating the flow.   

The heat transfer is transiting form a conductive mode to a 
convective mode with increasing Rayleigh-Darcy number. In 
the other hand, the mass transfer remains dominated by a 
diffusive mode when only the thermal buoyancy is 
generating the flow for a low values of Rayleigh-Darcy 
number. The heat and mass transfer are both involved in the 
flow structure when the values of buoyancy ratio are nonzero 
and positive. The solutal buoyancy forces which increase 
with the buoyancy ratio are cooperating with the thermal 
buoyancy forces and they drive the fluid in the same 
direction to form a cooperator flow, where the aiding effect 
is observed by an intensification of the heat and mass 
transfer with a significant evolution in the flow structure. 
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