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Abstract—The finite deformations of the growing cylinder
fabricated of an incompressible elastic material of Mooney–
Rivlin type are under consideration. We assume that the
deformations are axisymmetric and constant along the cylinder
axis. The discrete and continuous types of growing are studied.
The analytical solutions of the corresponding boundary-value
problems are derived.

Index Terms—additive technologies, growing solids, finite de-
formations, hyperelasticity, continuous growth, discrete growth.

I. INTRODUCTION

A VAST majority of objects around us arise from some
growth processes. Many natural phenomena such as

growth of biological tissues, glaciers, blocks of sedimentary
and volcanic rocks, and space objects may serve as an exam-
ple. Similar additive processes determine the specific features
of many industrial technologies including well-known crystal
growth, welding, laser deposition, melt solidification, elec-
trolytic formation, pyrolytic deposition, polymerization, and
concreting technologies [1]–[3]. Recent research indicates
that growing solids exhibit properties dramatically different
from those of conventional solids, so that classical solid
mechanics cannot be used to model their behavior.

It is essential that in growing bodies residual stresses can
occur through a variety of mechanisms. For example, in
layer-by-layer welding technology a heat from parts being
welded may cause localized expansion. When the finished
melt cools the incompatible distortion appears that cause the
residual stresses. Another example occurs during an addi-
tive manufacturing when thin film materials with different
thermal and crystalline properties are deposed sequentially
under different process conditions. In general it is impossible
to avoid residual stresses. It leads to undesirable conse-
quences, such as a shape distortion, local discontinuity, loss
of stability. In particular, the estimation (and minimization)
of possible distortions in stereolithography, the analysis of
stability of epitaxial thin-walled structures applicable in
micro-electromechanical systems (MEMS) are significant.

In the design of mentioned above additive technologies it
is often desirable to minimize distortion and residual stresses,
or to produce structures with a predefined distributions of
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initial stresses. This may be achieved through mathematical
modeling of evolution stress-strain state of a growing body.
The present paper deals with the development of this theory.

In the paper the concept of the growth of a solid is
used. This concept refers to a new branch of continuum
mechanics [4]–[7], therefore it seems appropriate here to
clarify the definition of a growing solid. In a broad sense
growing process defines the alteration of the body composi-
tion occurring in the course of deformation. The growing
process may be accompanied by a change of topological
properties of the body. We say that the altering of the body
composition is the accession of new material points and
(or) formation of new constrains between particles already
included into the composition. It also should be noted that
the change of topological properties can occur without the
influx of material and can be caused by the transition of the
boundary points into the interior.

In modern continuum mechanics there are a number of dif-
ferent approaches to the studying of the growth phenomenon.
For today a large number of papers devoted to mechanics
of growing solids have been published. References may be
found in the review [8]. Some works of direct relevance to
the issues discussed in the paper are mentioned below. In
the paper [9] the volumetric grows, in particular the growth
of biological tissues, is studied. Article [10] is devoted
to the development of geometric methods adopted for the
mechanics of incompatible strains arising as the result of
the growing process. In the works [4]–[7], [11] growth
is investigated as the continuous process of deposition of
strained material surfaces to a deformable 3D body.

It is known that under certain additional assumptions on
the continuity of functions defining the stress-strain state of
adhered material surfaces the continuous growing process
can be considered as the limit of a sequence of discrete pro-
cesses. However, one can find only few examples concerning
the finite deformations of growing solids and comparison of
discrete and continuous growth. The aim of the paper is to
give such example.

II. COMMON DEFINITIONS

In what follows the geometrical concept of a body that
is represented in terms of smooth manifolds is used [12]–
[16]. Let the body B be the connected abstract subset of a
topological space such that the image of B may be imbedded
into physical space as a region with regular boundary.
Furthermore, assume that the body B exhibit properties of
differentiable manifold [17]. We say that p ∈ B are material
points. Assume that they are simple, i.e. the local response
of the body depends only on first deformation gradient [18].

In the classical continuum mechanics bodies are treated as
permanent sets of material points. In mechanics of growing
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solids one consider the evolution of the set B. Note that
the evolution of growing body in the abstract topological
(material) space can be very complex and may be described
in general in terms of discontinuous mappings [19]. However,
under some restrictions on the smoothness of functions
describing the growing process the evolution of the body can
be presented by a continuous family of bodies ordered with
respect to inclusion. In general this family can be associated
with a smooth bundle. The dimension of a base of this bundle
defines the class of a growing body [5]. In present paper we
will considered the simplest class that corresponds to the
three-dimensional bundle over one-dimensional base. It has
the following interpretation in the terms of continuum me-
chanics. For a sufficiently large class of additive technologies
the growing process may be modelled as a continuous influx
of prestressed material surfaces [20] to a growing three-
dimensional body. Due to this assumption the growing body
can be represented by a one-parameter family of smooth
bodies

C = {Bα}α∈I .

Here I is a set of indices that can be finite, countable or
continual.

We introduce the notion of total body B∗ and initial body
B∗ as follows

B∗ =
∪
α∈I

Bα, B∗ =
∩
α∈I

Bα.

We shall say that the elements of C corresponding to interior
points of the interval I are the intermediate bodies.

We will distinguish discrete and continuous growth. In the
case of a discrete growth the family C is a finite sequence
of nested sets:

C : B1 ⊂ B2 ⊂ . . . ⊂ BN . (1)

If the growth is continuous then the family C is repre-
sented by continuous family of bodies over the interval
I = (α, β) ⊂ R, that satisfy the following condition. There
are two-dimensional smooth manifolds Ωk and no more than
a countable set of homeomorphisms such that

Ψk : (Ωk, α) → B∗, α ∈ R,
∀α < β Bα ⊂ Bβ , ∀α ∃k ∂Bα = Ψk(Ωk, α),∪

k

Ψk(Ωk × Ik) = B∗,
∪
k

Ik = I. (2)

Obviously, the set C has countable cardinality |C| = ℵ1.
Note that manifolds Ωk represent the preimage of growth
boundary. Relations (2) introduce on the manifold B∗ the
structure of a smooth bundle [5], [17]. The interval I repre-
sents the base of the bundle while the manifolds Ωk represent
the fibers. If there is a single (universal) homeomorphism
Ψ = Ψ1 and a single manifold Ω = Ω1, then the bundle be-
comes trivial. Otherwise topological structure of the growing
boundary can vary. Changes in the topology of the preimage
of growth boundaries correspond to the phenomenon of
selfcontact of the image Ωk, e.g. the transformation of a
cylinder to a torus under the joining of the bases of the
cylinder.

Arguing as above we see that growing body can be
represented as a bundle over the total body B∗. Considering
the fact that the base of the bundle is one-dimensional we

denote the fiber by Mα. where α is the base coordinate of
the fiber. Structural properties of the bundle implies that the
fibers are disjoint, and their union coincides with total body
B∗, i.e. B∗ =

∪
γ∈I

Mγ .

In the process of growth the body Bα is presented by open
subsets of total body B∗, whose boundary ∂Bα is a union of
two separate fibers Mα′ and Mβ′ , i.e. ∂Bα = Mα′ ∪Mβ′ .
In this case the body Bα can be presented as the union of
fibers over an open interval (α′, β′) ⊂ I:

Bα = B(α′, β′) =
∪

γ∈(α′,β′)

Mγ . (3)

Under the above mentioned assumptions we can define the
growing body as the one-parameter family

C =
{
Bα = B(α0, α)

∣∣α ∈ I
}
.

Here α is a continuous parameter that characterizes the
evolution of the growing body. As α → α0 the body
degenerates into an infinitely thin film or a point. The obvious
generalization of this definition is follows

C =
{
Bγ = B(αγ , βγ)

∣∣(αγ , βγ) ⊂ I
}
,

where (αγ , βγ) is a family of nested intervals.
According to the above definition the boundary of the

growing body should be topologically equivalent to a typical
fiber, which should be a smooth manifold. Hence the growing
boundary must be topologically equivalent to a geometrically
closed surface. If the growing boundary is topologically
equivalent to a manifold with edge, then the growing body
can be defined as follows

C =
{
Bγ = B0 ∩ B(αγ , βγ)

∣∣(αγ , βγ) ⊂ I
}
.

Here B0 is a fixed subset of the material manifold with
smooth edge.

In present paper we consider the growth of a hollow cir-
cular cylinder of fixed height h. Suppose that the additional
material is attached to the lateral surface of the growing
cylinder. If the coordinate charts correspond to the placement
coordinates in an actual configuration then the the image of
the set B0 corresponds to a sufficiently large parallelepiped
which height is equal to the height of the growing cylinder.

III. STRESS-STRAIN STATE OF THE BODY-FIBER

The stress-strain state of a growing body fundamentally
differs from the stress-strain state of solids considered in
classical solid mechanics. The most important is the fact
that growing body has no natural (stress-free) configuration.
Stress-strain state for growing bodies may be modelled in
the framework of the theory of inhomogeneity developed
in [12]–[14].

The representation of a body as a bundle of a smooth
manifold allows one to use additional hypothesis concerning
the properties of the fibers. In particular one can assume
that each individual fiber has a natural configuration. Such
hypothesis is adopted in present paper.

In order to describe stress-strain of a growing body it is
necessary to determine the stress-strain state for a fiber as
its structural element. In the case of discrete growth this
structural element is a three-dimensional body Bn+1 \ Bn,
corresponding to the increment of the sequence (1). In
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the case of continuous growth the material surface Mγ ,
which corresponds to a fiber of a bundle (3), plays the role
of structural element. Within the present work we assume
that each separate body-fiber has a natural configuration
immersed in Euclidean space. It is clear that the assembly
of body-fibers have no such configuration.

In the case of discrete growth each assembly consists of a
finite number of nested hollow cylindrical bodies. The second
case is more abstract. It corresponds to the assembly of the
continuum family of two-dimensional material surfaces.

We assume that the material of a body-fibers is hyper-
elastic and incompressible. Then the stress-strain state can
be determined analytically by universal solutions of Rivlin–
Ericksen type [18].

Let the image of stress-free (natural) configuration of the
body-fiber Bn+1 \Bn is embedded into physical (Euclidean)
space E . This embedding can be defined by the vector
field of placements presented in Cartesian basis {i1, i2, i3}
by decomposition X = Xmim. Here {X1, X2, X3} are
Cartesian coordinates. Suppose that the deformation of the
body-fiber is defined by the map X 7→ x. We assume that
this map has a symmetry relative to the axial axis of the
cylindrical fibers and does not depend on coordinate X3.

For a more compact formulation of the kinematic relations
we use cylindrical coordinates {R, Θ, Z}:

X1 = R cosΘ, X2 = R sinΘ, X3 = Z.

The cylindrical coordinates define the local basis
{eR, eΘ, eZ} and reciprocal basis {eR, eΘ, eZ}. Elements
of them can be presented by the decompositions

eR = eR = i1 cosΘ + i2 sinΘ,

eΘ = −i1R sinΘ + i2R cosΘ, eΘ =
eΘ
R2

, eZ = eZ = i3.

The reference positions of material points in simplest form
can be written as X = ReR + ZeZ . Taking into account
the central symmetry, the independence with respect to
vertical coordinate Z, and the condition of incompressibility
|dx/dX| = 1 we arrive at the following family of mapping
(universal deformations belonging to the family 3 according
to the classification given in [18])

x(X) = eR

√
(eR ·X)2 + a+ eZ ⊗ eZ ·X. (4)

Here a is a deformation parameter that represents the change
of the outer cylindrical surface radius. The deformation
gradient F and left Cauchy–Green tensor B = F ·F ∗ (here-
inafter the symbol ∗ denotes the transpose) are determined
in terms of local basis corresponded to the reference position
as follows

F =
R√

R2 + a
eR ⊗ eR +

√
R2 + a

R3
eΘ ⊗ eΘ + eZ ⊗ eZ .

The decomposition of tensor B and its inverse in the terms
of the elements of the local basis corresponded to the actual
position, i.e.

eR = er, eΘ =

√
r2 − a

r
, eθ, eZ = ez,

have the forms

B =
r2 − a

r2
er ⊗ er +

1

r2 − a
eθ ⊗ eθ + ez ⊗ ez, (5)

B−1 =
r2

r2 − a
er ⊗ er +

r2 − a

r4
eθ ⊗ eθ + ez ⊗ ez.

If the cylindrical body-fiber is produced from an incom-
pressible material of Mooney–Rivlin type then the strain
energy can be presented as a linear function of the first
I1 = I1(B) and second I2 = I2(B) invariants of tensor B,
i.e.:

W (I1, I2) = C1(I1 − 3) + C2(I2 − 3),

I1 = TrB = 3 +
a2

r2(r2 − a)
, I2 = I1.

Here C1, C2 are material constants. Under the conditions of
incompressibility we have the following decomposition of
Cauchy stress tensor [21]

T = −pI + J1B + J−1B
−1,

where p is hydrostatic pressure, J1 = 2∂W/∂I1 = 2C1 and
J−1 = −2∂W/∂I2 = −2C2 are coefficients of reaction, and
I is a unit tensor. Note that constants C1, C2 can be defined
by pair of engineering constants µ, β, i.e.:

C1 = µ(1 + β)/4, C2 = µ(1− β)/4.

Here µ corresponds to the shear modulus and β defines the
additional parameter for nonlinear response. From thermo-
dynamical restriction it follows that −1 < β < 1 [18].

After simple calculations we obtain the following:

T = T rrer ⊗ er + T θθeθ ⊗ eθ + T zzez ⊗ ez,

T rr=−p+ J1
r2 − a

r2
+ J−1

r2

r2 − a
,

T θθ=− p

r2
+ J1

1

r2 − a
+ J−1

r2 − a

r4
,

T zz=−p+ J1 + J−1.

Hydrostatic stress component p can be determined by the
equilibrium equation ∇ · T = 0. Integrating this equation
with respect to r we get

T rr =
µ

2

(
ln

r2 − a

r2
− a

r2

)
+ p0, (6)

T θθ =
T rr

r2
+

µ

r2

(
r2

r2 − a
− r2 − a

r2

)
,

T zz = T rr + µa
r2 − (1 + β) a/2

r2(r2 − a)
, (7)

where p0 is the constant of integration. Note that in the terms
of physical basis e⟨r⟩ = er, e⟨θ⟩ = eθ/r, e⟨z⟩ = ez the
stresses have the form

T⟨rr⟩ = T rr, T⟨θθ⟩ = T θθr2, T⟨zz⟩ = T zz.

Thus, the deformations and stresses can be defined up
to the parameters a and p0. This implies that the boundary
conditions may be satisfied exactly only on the cylindrical
surfaces if the constant hydrostatic load intensity pi and pe
are given

T ·er
∣∣
r=ri

= pier, T ·er
∣∣
r=re

= peer, (8)

Here ri, re are the radii of the inner and outer cylindrical
boundary surfaces.

Substituting expressions for the radial component of the
stress (7) to the boundary conditions (8) and taking into
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account the kinematic relations (4) we obtain the system of
equations 

µ
2

(
ln

R2
i

R2
i+a

− a
R2

i+a

)
+ p0 = pi,

µ
2

(
ln

R2
e

R2
e+a − a

R2
e+a

)
+ p0 = pe,

(9)

where Ri =
√
r2i − a, Re =

√
r2e − a are reference values

of the radii of the boundary surfaces. After eliminating of
the parameter p0 from the resulting system we obtain the
equation with respect to the parameter a:

ln

(
R2

i

R2
e

R2
e + a

R2
i + a

)
= 2

pi − pe
µ

+ a
R2

e −R2
i

(R2
i + a)(R2

e + a)
.

Let x = a/R2
e be a new variable that can be interpreted as a

relative deformation parameter. Potentiating the left and right
hand-sides of the resulting expression we obtain the equation
with respect to x

F = 0, F =
1 + x

γ + x
− A

γ
ex

1−γ
(1+x)(γ+x) . (10)

Here γ = R2
i /R

2
e , A = exp[2(pi − pe)/µ]. Because the

internal radius in the reference configuration has always
positive value then 0 < γ < 1. Furthermore x > −γ. Limit
relations

lim
x→−γ

F = ∞, lim
x→∞

F = 1− A

γ

show that equation (10) has a solution only if A > γ,
i.e. there is a limit for the difference of hydrostatic load
intensities: pi − pe > µ/2 ln γ.

If the value of x is determined then the absolute de-
formation parameter a = R1

ex can be calculated and the
corresponding value p0 may be also determined. Thus, for
given values of hydrostatic loads pi, pe and radii of the
boundary surfaces Ri, Re one can define the parameters
a, p0 and all components of strain tensors (5) and stresses (7)
as well.

IV. DISCRETE GROWTH

Consider a finite set of bodies. Let the elements of this
set be the circular hollow cylinders of equal height h (in
natural configuration). The motion (4) transform them to the
hollow cylinders of the same height, but of another radii.
Such deformation can be realized, e.g. by expanding the
hollow cylinder which base lie on the smooth rigid slabs.
We assume that the images of the actual configuration of the
cylinders are pairwise disjoint and their union is a connected
set. The final composite body can be treated as a result
of discrete growth because cylindrical parts cannot deform
independently after joining.

Let N be the number of cylindrical parts. Assume that the
following scenario of growth is realized. On the first step
the joining of the 1-st and 2-d body-fibers is performed. A
composite body appears which we call the first assembly.
Then the third body is joint to the composite body, etc. On
the internal r = r1i,n and the outer boundary r = rne,n of this
composite bodies the uniformly distributed pressure pi,n and
pe,n are defined

T ·er
∣∣
r=r1i,n

= pi,ner, T ·er
∣∣
r=rne,n

= pe,ner. (11)

Index n indicates the number of assembly. The indexing in
the notation of intensity of hydrostatic loads pi,n, pe,n shows
that they may vary during the growing process. Suppose that
the contact between body-fibers is ideal, i.e. inner surface
of k-th fiber and the outer surface of k + 1-th fiber in the
actual configuration are the same and stresses on them are
in equilibrium:

T·er
∣∣
r=rke,n

= T·er
∣∣
r=rk+1

i,n

, rke,n = rk+1
i,n , k = 1, 2, ...n−1.

(12)
The deformation parameters akn and parameters pk0,n, k =
1, 2, . . . , n may be found from the system of 2n nonlinear
equations (11) and (12). Taking into account (4) and (7) we
get

µ

2

[
ln

(R1
i )

2

(R1
i )

2+a1n
− a1n

(R1
i )

2+a1n

]
+p10,n=pi,n,

µ

2

[
ln

(Rn
e )

2

(Rn
e )

2+ann
− ann

(Rn
e )

2+ann

]
+pn0,n=pe,n,

µ

2

[
ln

(Rk
e )

2

(Rk
e )

2+akn
− akn

(Rk
e )

2+akn

]
+ pk0,n =

=
µ

2

[
ln

(Rk+1
i )2

(Rk+1
i )2+ak+1

n

− ak+1
n

(Rk+1
i )2 + ak+1

n

]
+pk+1

0,n ,

(Rk
e )

2 + akn = (Rk+1
i )2 + ak+1

n , k = 1, 2, ..., n− 1. (13)

Let αk = 1 + Ak/(R
k
e )

2, βk = γk + Ak/(R
k
e )

2, νk =

(R1
e)

2/(Rk
e )

2, xn = a1n/(R
1
e)

2, Wn = e2
pi,n−pe,n

µ

A1 = 0, Ak =

k∑
p=2

(
(Rp−1

e )2 − (Rp
i )

2
)
, k = 2, 3, . . . , n,

γk =

(
Rk

i

Rk
e

)2

.

Potentiating of the left and right hand sides of above equa-
tion, we obtain

n∏
k=1

γk
αk + νkxn

βk + νkxn
=

= Wn exp

[
n∑

k=1

(1−γk)
νkxn+αk − 1

(βk+νkxn)(αk+νkxn)

]
. (14)

We distinguish the following types of growth
1) Growth with a prescribed reference geometry. Here we

suppose that the geometrical characteristics of body-
fibers in the image of natural configuration are given,
i.e. the reference radii of the unstrained body-fibers Rk

i

and Rk
e are known.

2) Growth with a given actual geometry. The position
of growing boundaries in the image of the actual
configuration Rn and the thickness of body-fibers in
the reference configuration are known, i.e. the values
∆k = Rk

e −Rk
i , k = 1, . . . , n are prescribed.

Let us consider these types of growth in detail.
Type 1. Growth with a given reference geometry. Using

given values of the reference radius Rk
i , Rk

e , k = 1, . . . , n
one can calculate values of αk, γk, βk, νk, and taking into
account given values of hydrostatic load pi,n, pe,n calculate
the values of Wn. As a result one obtain a series of uncoupled
non-linear equations (14). The solutions of this equations
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determines deformation parameters xn independently. There-
after one may calculate akn, k = 1, . . . , n and define stresses
by the relations (7).

Type 2. Growth with a given actual geometry. In this case
the reference radii of the body-fibers fibers are not known
a priori, and the equations (14) have to be supplemented
by additional equations that define the radius of growing
boundary Rn in actual configurations

rne,n =
√
(Rn

e )
2 + ann = Rn.

To analyze the system of equations firstly allocate in the
left and right hand sides of the equation (14) the terms
corresponding to the n-th body-fiber, i.e.:

γn
αn + νnxn

βn + νnxn

n−1∏
k=1

γk
αk + νkxn

βk + νkxn
=

= Wn exp

[
(1− γn) (νnxn + αn − 1)

(βn + νnxn)(αn + νnxn)
+

+

n−1∑
k=1

(1− γk) (νkxn + αk − 1)

(βk + νkxn)(αk + νkxn)

]
. (15)

Unlike type 1 the values of γn, αn, βn, νn, can’t be
defined a priori, because they depend on the dimensionless
deformation parameter xn. In fact, since

(Rn
e )

n = R2
n−ann = R2

n−(R1
e)

2xn−An, Rn
i = Rn

e −∆n,

the expression for An

An = An−1 + (Rn−1
e )2 − (Rn

i )
2

is the algebraic equation whose solution determines An

through the parameters with indices m < n, actual radius
of the growing border Rn and the deformation parameter
xn. Substituting these expressions into equation (15) leads
to the explicit form of non-linear equations:(

1 +
2 ξn

σn − xn

)2
ζn

ϕn−1 + xn

n−1∏
k=1

γk
αk + νkxn

βk + νkxn
=

= Wn exp

[
σn − xn − ξn
ϕn−1 + xn

(
1− (σn − xn)

2

4ζnξn

)
+

+
n−1∑
k=1

(1− γk) (νkxn + αk − 1)

(βk + νkxn)(αk + νkxn)

]
. (16)

ξn =

(
∆n

R1
e

)2

, σn =
Hn

(R1
e)

2
, ζn =

(
Rn

R1
e

)2

,

ϕn−1 =
An−1 + (Rn−1

e )2

(R1
e)

2
,

Hn = R2
n −An−1 − (Rn−1

e )2 + (∆n)
2.

V. CONTINUOUS GROWTH

In the case of continuous growth it is convenient to
introduce an intermediate configuration which image is not
free from stresses but it may be immersed in Euclidean
space. If such intermediate configurations perform additional
conditions, i.e. the local configuration in the neighborhood
of any interior point does not change during the growing
process, then the total local deformation, which transforms

the neighborhood of material point to the actual state, can
be presented as a multiplicative decomposition

H = F ·K, rotF = 0, rotK ̸= 0, K̇ = 0,

where K̇ denotes the derivative with respect to time, or to
a time like parameter.

In general, the intermediate configuration is not compatible
with actual external fields acting on the growing body. Thus
one must attach a system of fictitious mass and surface forces
which have the character of Eshelby forces [15].

Bearing in mind the idea of a bundle as a continual family
of material surfaces, which separately has natural (stress-
free) configuration in Euclidean space, we can present the
system of fictitious forces by continuous family of surface
loads that hold the material surfaces in assembly.

Thus, with each material surface one can associate the
deformation that transforms the surface from the intermediate
configuration to the unstressed state

K =
R√

R2 + α(R)
eR ⊗ eR +

√
R2 + α(R)

R
eΘ ⊗ eΘ+

+ eZ ⊗ eZ .

Note that the union of these fields determines a single field of
linear transformations (a three-dimensional field of second-
rank tensors) which are not gradients of any vector field in
Euclidean space.

The body deforms from the intermediate configuration to
the actual in conventional sense. So it is subjected to the
deformation F which has the form

F =
r̃√

r̃2 +A(t)
er̃ ⊗ er̃ +

√
r̃2 +A(t)

r̃
eθ̃ ⊗ eθ̃ + ez̃ ⊗ ez̃.

In this case the total distortion and corresponding strain are
the following

H = F ·K, B = H ·H∗,

H(r̃, t) =

√
r̃2 − α(r̃)√
r̃2 +A(t)

er̃ ⊗ er̃ +

√
r̃2 +A(t)√
r̃2 − α(r̃)

eθ̃ ⊗ eθ̃+

+ ez̃ ⊗ ez̃.

Considering the general case we assume that growth starts
on a non-empty initial body which is a hollow cylinder that is
free of stresses at initial instant. Its inner and outer radii are
r̃i, r̃e respectively. Cylindrical material surfaces are attached
to the outer surface of the body continuously increasing its
external radius in the intermediate configuration. Let actual
value of this radius is rg. Suppose that on cylindrical surfaces
of the growing body we have hydrostatic load pe and pi, i.e.

T ·er̃
∣∣
r̃=r̃i

= pier̃, T ·er̃
∣∣
r̃=r̃e

= peer̃, (17)

Then physical components of stresses can be presented by
the formulas

T<r̃r̃> =


I(r̃, A) + pi, r̃0 ≤ r̃ ≤ r̃1

I(r̃1, A) + pi +
r̃∫̃

r1

ρ
(

1
ρ2−α

− ρ2−α
(ρ2+A)2

)
dρ, r̃1 ≤ r̃ ≤ r̃g

T<θ̃θ̃> = T<r̃r̃> +

 r̃2+A
r̃2

− r̃2

r̃2+A
, r̃0 ≤ r̃ ≤ r̃1

r̃2+A
r̃2−α

− r̃2−α
r̃2+A

, r̃1 ≤ r̃ ≤ r̃g
(18)

T<z̃z̃> = T<r̃r̃> +


r̃2+A−(1+β)A/2

(r̃2+A)r̃2
A, r̃0 ≤ r̃ ≤ r̃1

r̃2+A−(1+β)(A+α)/2

(r̃2+A)(r̃2+α)
(A+ α), r̃1 ≤ r̃ ≤ r̃g
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I(r̃, A) =

r̃∫
r̃0

ρ
( 1

ρ2
− ρ2

(ρ2 +A)2

)
dρ =

= ln
r̃
√

A+ r̃20
r0
√
A+ r̃2

− A

2

( 1

A+ r̃20
+

1

A+ r̃2

)
. (19)

Radial stresses T<r̃r̃> in the neighborhood of growing
boundary are defined by the formula

T<r̃r̃> = I(r̃1, A) + pi +

r̃g∫
r̃1

ρ
( 1

ρ2 − α
− ρ2 − α

(ρ2 +A)2

)
dρ.

(20)
Circumferential stresses T<θ̃θ̃> in the neighborhood of

growing boundary can be defined by the relation

T<θ̃θ̃>|r̃=r̃g
= pe +

r̃2 +A

r̃2 − α(r̃g)
− r̃2 − α(r̃g)

r̃2 +A
. (21)

Radius of the outer cylindrical boundary in the actual
configuration is defined by

rg =
√
r̃2g +A. (22)

The rate of change of the material composition of the body
can be given a function V (t), which determines the increas-
ing of the volume of the growing body during the growing
process. For incompressible material it is an invariant with
respect to the change of configuration. Under the assumption
that the inner radius of r̃i does not change, the outer one can
be defined as follows

r̃g =
√

V (t)/(πh) + r̃20. (23)

Consider the types of growth like in the case considered for
discrete growth. We assume that in all cases the dependence
of the volume V (t) is known.

Type 1. Growth with given distortion.The distortion func-
tion α = α(r̃) is prescribed. To determine stress field one
must find parameter A(t) which is defined implicitly by the
equation

F (A) = ∆p,

F (A) = I(r̃1, A) +

r̃g∫
r̃1

ρ
( 1

ρ2 − α
− ρ2 − α

(ρ2 +A)2

)
dρ.

Here ∆p = (pe − pi)/µ. Stresses that arise in the body in
the process of growth can be determined by relation (18).

Type 2. Growth with a predefined displacements of grow-
ing boundary. The position of the image of growing bound-
ary in the actual configuration is known, i.e. the function
z = rg(t) is given. Since the radial coordinate of the growing
boundary in intermediate configuration is given by (23), the
parameter A can be determined from equation (22), i.e.

A = z2 − r̃2g . (24)

Substituting expressions (24) and (20) into the boundary
conditions (17) we get integral equation with respect to α(r̃)

x∫
r̃0

ρ
( 1

ρ2 − α
− ρ2 − α(ρ)

(ρ2 + z2(x)− x2)2

)
dρ =

= ∆p− I(r̃, z2(x)− x2), ∆p = (pe − pi)/µ.

As a result of change of variables ξ = ρ2, y = ρ2 − α(ρ),
ζ = x2 we obtain the integral equation

ζ∫
a

( 1

y(ξ)
− y(ξ)

(ξ −A(ζ))2

)
dξ = Q(ξ) (25)

with respect to function y(ξ). Here the functions A(ζ) =
z2(

√
ξ)−ζ Q(ζ) = 2(∆p(

√
ξ)−I(r̃1, A(ζ))) are prescribed.

The solution of this equation defines function α(ρ) and
therefore all stresses (18).

The computational examples show the convergence of
solutions obtained for the discrete growth to corresponding
solutions for continuous growth under the following condi-
tions: the number of discrete body-fibers increases while their
thickness decreases such that the final volume of growing
solid is fixed.
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