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Abstract—For steady-state conditions, the conjugate heat 

transfer process for a developing laminar boundary-layer flow 
over a heated plate is considered. Boundary conditions for the 
heated plate are set as Neumann, i.e., constant heat flux for the 
bottom of the plate, and as convective heat transfer for the 
top, with the interface temperature obtained using Chebyshev 
polynomial approximations. Computation of the derived 
equations is by the computer algebra system, Mathematica. 
 

Index Terms—Conjugate heat transfer, Chebyshev 
polynomials. 
 

I. INTRODUCTION 

LOW and heat transfer in boundary layers, both laminar 
and turbulent have been investigated for many years 

both experimentally and numerically [1,2]. Quite often in 
the design of electronic boxes, the boundary layers over flat 
components are either laminar or transitional in nature [3-
5]. Chebyshev polynomials have been used extensively in 
the calculation of radiative heat transfer [6,7] and to some 
extent in convective heat transfer [8], while conjugate heat 
transfer has been researched within the field of 
computational fluid dynamics [8-11]. 

In this work the aim is to simultaneously solve both heat 
conduction, as found in a solid heated plate and the 
convective heat transfer as found in the boundary layer 
above. The link between these two regimes is facilitated 
using a linear combination of Chebyshev polynomials.  

 

II. HEAT AND MASS TRANSFER EQUATIONS 

Assumptions for the boundary-layer flow here are that 
the fluid is steady, incompressible, the properties of the 
fluid are constant, the flow remains in the laminar regime 
and that the flow is two-dimensional, i.e., the span of the 
flat plate is infinite. Also, the assumptions are that the 
pressure gradient along the ݔ-axis, i.e., the free-stream 
direction is negligible, and, that no body forces act on the 
fluid. The Navier-Stokes equations for the boundary-layer 
reduce to, 
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and the continuity equation to, 
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Since there is no pressure gradient within the boundary 

layer, the energy equation is that of isobaric flow, i.e., 
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The term ߲ଶܶ/߲ݔଶ is much smaller in magnitude than 

߲ଶܶ/߲ݕଶ and it is convenient to divide through the 
equation by ܿߩ௣, giving the following energy equation for 
steady, two-dimensional, isobaric flow, 
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where, ߙ ൌ  ௣. Within the solid plate the Laplaceܿߩ/݇
equation applies for the energy equation, 
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A schematic of both the mass and heat transfer is shown 

on Fig. 1. 
 

 
Fig. 1 Schematic of (a) mass and (b) heat transfer in a laminar boundary-
layer over a flat heated plate. 
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Equations (1,2,4,5) are now non-dimensionalised using, 
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where, ݍ଴ is the heat flux through the bottom of the plate. 

This leads to, 
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Here, ܴ݁ and ܲ݁ are the Reynolds and Peclet number 

respectively, based on the streamwise length of the plate. 
The equivalent non-dimensionalised boundary conditions 
are, 
0 ൏ ′ݔ ൑ 1 and ݕᇱ ൌ ᇱݑ :1 ൌ ᇱݒ ൌ 0; 0 ൏ ′ݔ ൑ 1  
ᇱݕ → ∞: ᇱݑ ൌ 1, ᇱݒ ൌ 0  
0 ൏ ′ݔ ൑ ᇱݕ and ܮ → ߠ	:∞ ൌ 0  
0 ൏ ᇱݔ ൑ 1 and ݕᇱ ൌ ߠ	:1 ൌ ,௦ߠ ௦ߠ߲ ⁄′ݕ߲ ൌ ݇′ ߠ߲ ⁄′ݕ߲   

    0 ൏ ᇱݔ ൑ 1 and ݕᇱ ൌ 0:	 െ߲ߠ௦ ᇱݕ߲ ൌ 1⁄ 			 
ᇱݔ ൌ 0 and ݕᇱ ൐ 1: ᇱݑ ൌ 1, ᇱݒ ൌ 0 
ᇱݔ ൌ 0 and ݕᇱ ൒ ߠ :1 ൌ 0 
ᇱݔ ൌ 0 and 0 ൑ ᇱݕ ൑ 1: ௦ߠ߲ ᇱݔ߲ ൌ 0⁄  
ᇱݔ ൌ 1 and 0 ൑ ᇱݕ ൑ 1: ௦ߠ߲ ᇱݔ߲ ൌ 0⁄  (10) 

 

III. CHEBYSHEV POLYNOMIALS OF THE FIRST 

KIND 

The Chebyshev polynomials ௡ܶሺݔሻ can be obtained by 
means of the Rodrigue’s formula, 
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When the first two Chebyshev polynomials ଴ܶሺݔሻ and 

ଵܶሺݔሻ are known, all other polynomials, ௡ܶሺݔሻ, ݊ ൒ 2 can 
be obtained by means of the recurrence formula, 
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The Chebyshev polynomials of the first kind are 

orthogonal in the interval ሾെ1,1ሿ and the orthogonally 
properties for these polynomials can be determined using 
knowledge of the orthogonal properties of cosine functions, 
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Then on substituting, 
 

௡ܶሺݔሻ ൌ cosሺ݊ߠሻ,			cos ߠ ൌ  ݔ
 

to obtain the orthogonal properties of the Chebyshev 
polynomials,  
 

න ௠ܶሺݔሻ ௡ܶሺݔሻdݔ

√1 െ ଶݔ
ൌ ൞

0									ሺ݉ ് ݊ሻ
ߨ
2
	ሺ݉ ൌ ݊ ് 0ሻ

ሺ݉		ߨ ൌ ݊ ൌ 0

ଵ

ିଵ

, 

 
it can be seen that the Chebyshev polynomials form an 
orthogonal set on the interval ሾെ1,1ሿ with the weighting 
function ሺ1 െ ଶሻିଵݔ ଶ⁄ . If needed it is possible to map 
ሾെ1,1ሿ to a general range of interest ሾܽ, ܾሿ using ݔ ൌ
ሺ2ݖ െ ܽ െ ܾሻ ሺܾ െ ܽሻ⁄  where ݖ is within the range ሾܽ, ܾሿ. 

When Chebyshev polynomials are considered over 
discrete points, the continuous function is replaced by a set 
of discrete values of the function at these points. It can be 
shown that the Chebyshev polynomials ௡ܶሺݔሻ are 
orthogonal over the following discrete set of ܰ ൅ 1 points 
 ,ߠ ௜, equally spaced onݔ
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This leads to, 
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The ௠ܶሺݔሻ are also orthogonal over the following ܰ 

points ݐ௜ equally spaced, 
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The set of points ݐ௜ are clearly the midpoints of ߠ of the 

first case. The unequal spacing of the points in ݔ௜ሺܰݐ௜ሻ 
compensates for the weight factor, ܹሺݔሻ ൌ ሺ1 െ ଶሻିଵݔ ଶ⁄ . 
The Chebyshev polynomial ௡ܶሺݔሻ has degree ݊ and it has ݊ 
roots, also known as nodes. These nodes can be calculated 
by (10), 
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A function ݂ሺݔሻ can be approximated [13] by an n-th 
degree polynomial ௡ܲሺݔሻ expressed in terms of ଴ܶ, … , ௡ܶ, 
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and, ݔ௞

௖, ݇ ൌ 1,… , ݊ ൅ 1 are zeros of  ௡ܶାଵ. From the basic 
definition, ௝ܶሺݔሻ ൌ cosሺ݆cosିଵݔሻ we have, 
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In this work, the temperature at the interface is 

represented as a linear combination of Chebyshev 
polynomials, 
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IV. HEAT CONDUCTION IN THE SOLID PLATE 

Boundary conditions for the heat conduction in the solid 
plate are summarized on Fig. 2. 

 

 
Fig. 2 Boundary conditions for the heated solid plate. 

 
The boundary conditions in the y’- direction are in fact 

non-homogeneous which necessitates translation of the ߠ 
function as, 
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The general solution for heat flow within the solid is 

well known and is, 
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The coefficients ܿ௠ can be obtained using the boundary 

conditions found at the solid/fluid interface by setting (22) 
equal to ௡ܲሺݔᇱᇱሻ, where ݔᇱᇱ ≡ 2 ∙ ᇱݔ െ 1 when ݕᇱ ൌ 1. 

When the orthogonal properties of Chebyshev 
polynomials in the range ሾെ1,1ሿ it can be shown that, 
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and, when ݉ ് 0, 
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Using (21) a solution for the temperature distribution 

within the solid can be given as, 
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V. ANALYSIS AT THE SOLID/FLUID INTERFACE 

The energy balance at the interface can be given as [2], 
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The local Nusselt number is, 
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where ݅ܤሺݔᇱሻ is the local Biot number in non-dimensional 
coordinates. ݅ܤሺݔᇱሻ is found by putting the Chebyshev 
polynomial solution (21) into (28) to obtain (30). 
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where, ܮᇱᇱ ൌ ሺ1 െ  ᇱሻ. The local Nusselt number can thenܮ2
be found from (29). The average convective heat transfer 
can be found at the surface using suggestions by [14], i.e. 
 
 

ത݄ ൌ
1

ሺܮ തܶ௦ሺݔ, ܾሻ െ ଴ܶሻ
න݄ሺݔሻሺ ௦ܶሺݔ, ܾሻ െ ଴ܶሻdݔ

௅

଴

 (31) 

 
The term ௦ܶሺሺݔ, ܾሻ െ ଴ܶሻ in (31) can be found directly 

from (21) whereas the term തܶ௦ሺݔ, ܾሻ െ ଴ܶ is found using, 
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and on using the orthogonal properties of Chebyshev 
polynomials, 
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Starting with (30) and (31), (34) can be found, 
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and using the properties of the Chebyshev polynomials, 
 
 

න݄ሺݔሻሺ ௦ܶሺݔ, ܾሻ െ ଴ܶሻdݔ ൌ ܮ଴ݍ

௅

଴

 (35) 

 
it can be found that, 
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The temperature distribution at the solid/fluid interface 

is now specified in terms of a polynomial. In this work only 
the quadratic and cubic were used. So the temperature in 
non-dimensional terms at the interface can be represented 
by, 
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The relationships for quadratic and cubic coefficients 

are, 
 

TABLE I 
CHEBYSHEV POLYNOMIALS PARAMETER COEFFICIENTS 
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 ଶ - 1/8 3/16ܥ
 ଷ - - 1/32ܥ

 
Using (26), the temperature distribution within the plate can 
now be given as, 
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where, after integration, 
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ଷ
௞ୀଵ

ஶ
௠ୀଵ

∑ ௞ܥ ௞ܶ
ଷ
௞ୀ଴

, (39) 

 

ᇱሻݔሺݑܰ ൌ
1

ଵߙሺ′ܮ′݇ ൅ ᇱݔଶߙ ൅ ᇱݔଷߙ
ଶሻ
െ 

 
 
′ܮ2

∑ ௠ߣ cosሺߣ௠ݔᇱሻ ∙ tanhሺߣ௠ܮᇱሻሺ∑ ௞ሻܫ௞ܥ
ଷ
௞ୀଵ

ஶ
௠ୀଵ

ଵߙሺ′ܮ′݇ ൅ ᇱݔଶߙ ൅ ᇱݔଷߙ
ଶሻ

, 
(40) 

 

ത݄ ൌ
3݇௦

ܾሺ3ܥ଴ െ ଶሻܥ
,								 ഥܤ	 ݅ሺܾሻ ൌ

3
ሺ3ܥ଴ െ ଶሻܥ

,	 

 
 ഥܰݑ ൌ

′ܮ3݇′
ሺ3ܥ଴ െ ଶሻܥ

. (41) 

 

VI. COMPARISON 

The above equations and boundary conditions were 
coded using the computer algebra system, Mathematica for 
both the quadratic and cubic temperature profiles. Two 
Reynolds numbers were considered, i.e., 1,000 and 500,000 
as were three values of  1/4 ,1/2 , ′ܮ and 1/24. The results of 
the developed model were compared with those obtained 
using a computational fluid dynamics code. 

For the CFD solutions grid independence studies were 
carried out by doubling and tripling the numbers of nodes 
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both in the fluid domain and the solid domain. Maximum 
differences for fluid temperature, fluid velocity and solid 
temperatures within the computational domain are shown in 
Table 2. 

TABLE 2 
GRID INDEPENDENCE STUDY - MAXIMUM ERRORS 

No. of 
elements 

Fluid 
Temperature 

Fluid 
Velocity 

Solid 
Temperature 

ൈ 2 0.026% 0.926% 0.027% 
ൈ 3 0.026% 1.05% 0.028% 

 
Fig. 3 shows a comparison of the temperature 

distribution calculated at the interface between the solution 
obtained by the developed Chebyshev polynomial method 
and that of the CFD solution, when ܮᇱ ൌ 1/24 and for the 
two Reynolds numbers of 1,000 and 500,000. The cubic 
temperature profile was used for this case, and the two 
solutions are seen to be in reasonable agreement.  

 

 

 
Fig. 3  Temperature at the interface for two Reynolds numbers (a) ܴ݁ ൌ
1 ൈ 10ଷ and (b) ܴ݁ ൌ 5 ൈ 10ହ, ᇱܮ ൌ 1/24. ( ൈ Chebyshevshev polynomial 
solution,         CFD) 
 

The errors (differences) between the two solution 
methods when Re = 500,000 and ܮᇱ ൌ 1/4 are shown on 
Fig. 4, and, as can be seen, the differences for this flow are 
reasonable over most of the heated plate, except near the 
start where differences in the region of 3.5% were found.  
 

 

 
Fig. 4  Errors (differences) between the Chebyshev polynomial and CFD 
solutions for ܴ݁ ൌ 5 ൈ 10ହ, at	ܮᇱ ൌ 1 24	⁄ and	ܮᇱ ൌ 1/2. 
 

Fig. 5 shows the results of the temperature calculated  
at the interface for ܮᇱ ൌ 1/2. In this case only the quadratic 
temperature profile was used. It is striking that the 
temperature distribution for ܴ݁ ൌ 5 ൈ 10ହ is an almost 
linear profile as calculated by both the CFD and Chebyshev 
polynomial solutions. Also, as the rise in temperature along 
the plate surface is so small the temperature distribution 
could also be approximated to being constant. Differences 
in the results between the two solution methods are shown 
on Fig.4 and found to be reasonable except close to the 
beginning of the plate. 
 

 
 

 
Fig. 5  Temperature at the interface for two Reynolds numbers (a) ܴ݁ ൌ
1 ൈ 10ଷ and (b) ܴ݁ ൌ 5 ൈ 10ହ, ᇱܮ ൌ 1/2. ( ൈ Chebyshevshev polynomial 
solution,         CFD) 

 

Interface Temperature 

Interface Temperature 
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Fig. 6 shows the temperature distribution for the inside 
of the plate close to its start for the two solution methods. 
The distribution is given for ܴ݁ ൌ 1 ൈ 10ଷ and ܮᇱ ൌ 1 4⁄ . It 
can be seen that the temperature field is two-dimensional 
for both cases. Reasonable agreement was found between 
the temperature contours for the solution methods. 

 
Fig. 6 Solid temperature distributions comparison for the CFD and 
Chebyshev polynomial methods for ܴ݁ ൌ 1 ൈ 10ଷ and ܮᇱ ൌ 1 4⁄ . 
(      CFD, --  Chebyshev polynomial) 

 

VII. CONCLUSIONS 

A method using Chebyshev polynomials was developed 
to calculate the conjugate heat transfer between solid and 
fluid domains. The results found were encouraging with 
most calculated using the cubic temperature distribution 
along the surface. At higher Reynolds numbers and larger 
plate thicknesses it was concluded that the third-order 
polynomials can be relaxed to that of second-order or even 
linear. 
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NOMENCLATURE 
ܾ  plate thickness. 
 .ሻ local Biot numberݔሺ݅ܤ
 .ത݅ average Biot numberܤ
ܿ௣ heat capacity. 
݄ሺݔሻ local convective heat transfer coefficient. 
ത݄ average convective heat transfer coefficient. 
݇ thermal conductivity. 
݇′ thermal conductivity ratio. 
 .length of the plate ܮ
 .dimensionless length               ′ܮ
 .ሻ local Nusselt numberݔሺݑܰ
ഥܰݑ average Nusselt number. 
ܲ݁ local Peclet number. 
 .heat flow per unit area ′′ݍ
 .௦ heat flow at the solid-fluid interface′′ݍ
Re Reynolds number. 
ܶ temperature. 

଴ܶ free-stream temperature. 

௜ܶሺݔሻ Chebyshev polynomial, ith order. 
 .streamwise velocity ݑ
 .dimensionless streamwise velocity ′ݑ
 .଴ free-stream velocityݑ
 .cross-stream velocity ݒ
 .dimensionless cross-stream velocity ′ݒ
 .streamwise distance ݔ
 .dimensionless streamwise distance ′ݔ
 .Chebyshev variable ′′ݔ
 .solid and cross stream distance ݕ
 .dimensionless solid and cross stream distance ′ݕ
 
Greek symbols 
݇) ratio ߙ ⁄௣ሻܿߩ . 
 .ሻߨ݊) product ߣ
 .kinematic viscosity ߥ
 .dimensionless temperature ߠ
 .density ߩ
 
Subscripts 
o free-stream. 
s solid/interface 
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