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Abstract—Mathematical modeling of additive manufacturing
technologies is aimed at improving the performance of device,
machine, and mechanism parts. These technologies include
stereolithography, electrolytic deposition, thermal and laser-
based 3D printing, 3D-IC fabrication technologies, etc. They are
booming nowadays, because they can provide rapid low-cost
high-accuracy production of 3D items of arbitrarily complex
shape (in theory, from any material). However, deformation
and strength problems for products manufactured with these
technologies yet remain to be solved. The fundamentally new
mathematical models considered in the paper describe the
evolution of the end product stress-strain state in additive manu-
facturing and are of general interest for modern technologies in
engineering, medicine, electronics industry, aerospace industry,
and other fields.

Index Terms—Additive manufacturing technology, mathe-
matical modeling, mechanics of growing solids, stress-strain
state, deformation, strength.

I. I NTRODUCTION

M ATHEMATICAL modeling of a variety of natural
phenomena and technological processes requires tak-

ing into account thematerial evolutionand remodelingof a
solid, which can be associated with creation and annihilation
of material points or with internal constraint redistribution
in the bulk of the solid. If such changes are accompanied
with deformation of the entire solid, then what we deal with
is a growing solid, whose properties are highly unusual.
Models of winding and welding, vapor deposition, photo-
polymerization, and ion implantation processes can serve
as examples [1], [2]. The solid material composition in
such processes is changed either by adding macroscopic
volumes, whose locally thermostatic states can be described
by statistical parameters such as temperature, distortion, and
tension, or by implanting individual atoms or molecules
(referred to asextra substancein [3]), which from the
macroscopic viewpoint leads to distributed defect evolution
in the boundary layer. Winding and welding are examples of
the former, and ion implantation is an example of the latter.
Sometimes both mechanisms should be taken into account, as
is the case with the vapor deposition process, which involves
the adherence of atomic clusters consisting of large numbers
of coupled atoms as well as the adherence of individual
atoms of ions bombarding the growth surface.
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We point out that growth is often closely associated
with defects formation processes. In particular, vapor phase
deposition causes continuous defect formation in growing
structures, which can readily be shown by estimating the
crystal growth rate. Indeed, the atoms condensed from vapor
to a crystal surface with regular atomic structure are only
weakly coupled with the surface and evaporate back with
high probability. But if there is an unfinished atomic plane
on the growth surface, then the atoms that hit the plane edge
become strongly coupled. This forces the unfinished atomic
plane to be completed rapidly, and the crystal growth stops
until there is formed a sufficiently large nucleus of a new
atomic plane. One can estimate the probability of such a
nucleus to appear as well as the resulting crystal growth
rate, which proves to be many orders of magnitude smaller
than observed in experiments. This apparent paradox can
be explained by assuming that there are a large number of
defects continuously formed on the crystal surface, which
play the role of nuclei for independently growing islands of
atomic planes [4]. With this growth mechanism, the force
interactions arising between these islands result in a residual
stress field.

Kröner showed in his pioneering paper [3] that the residual
stresses insimple materials[5] can be represented in terms
of the incompatibility of the local distortion field defined
in the reference description by methods of non-Euclidean
geometry. Thus, the geometric language of the theory of
smooth manifolds can be used to describe not only solids
with distributed defects but also growing solids.

Stress-strain state analysis for growing solids has been
carried out in numerous papers [6]–[11], where a number of
trends in generalizing classical continuum mechanics have
been used. One of these is developed in the framework of
the theory ofinhomogeneity(structural heterogeneity) arising
from a special connection of parts of a body rather than
from distinctions in the physical properties of the materials of
these parts [12], [13]. This kind of structural inhomogeneity
also arises in bodies made of a single material, which are
homogeneous in the classical sense. To distinguish between
these two kinds of inhomogeneity, we use the termmaterial
uniformity [5] for the latter one.

The growth of a solid is usually viewed as a process
where additional material is joined to the solid, which is
deformed in the process. It is assumed that the additional
material may have the form of material surfaces, threads, or
drops and be deposited to the main body in some stressed
state. Moreover, the growing body, together with additional
material, can be viewed as a single body represented by
multiple solid components, and the growth process can be
treated as the generation of constraints providing that the
number of connected components of the solid decreases.
This leads to a change in the topology of the body. In
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particular, boundary points become interior points. Here the
process of gluing a bundle of paper sheets can be used
as an example. Prior to gluing, we have a set with many
(possibly, very many) connected components, but after gluing
we have a connected set. If each sheet were subjected to
some deformation from the standard (uniform) state in the
gluing process, no smooth deformation of the final body after
gluing would be able to bring all the sheets to the standard
state simultaneously. The response of a local part of the body
to external loadings for the case in which it is defined by the
elasticity tensor would vary from point to point of the body in
any configuration defining an immersion in Euclidean space.
Thus, the body is inhomogeneous even if it is made from
a single material (i.e., is materially uniform). This example
illustrates the existence of a special type of inhomogeneity,
which is studied in [12], [14], [15].

Thus, inhomogeneity results from the growth process and
is related to varying physical and mechanical properties
of the material. One can say that it arises in special as-
sembling scenarios. To describe the response of the solid
to external inputs, one can either treat it as a nonuniform
solid, which results in a complicated description of the
constitutive equations, or somehow reconstruct the natural
global configuration of the solid and use it as a reference
configuration. For simple materials, the latter can be done if
one allows embedding the reference shapes in a space with
a more flexible definition of geometric properties (e.g., in an
affine connection space) and defining a global natural shape
with additional geometric parameters such as the torsion,
curvature, and nonmetricity of the connection.

We point out that the inhomogeneity in solids can be
described without using the ideas of non-Euclidean geometry.
Clearly, if a configuration is an embedding of a body in a
space that is necessarily Euclidean, then an inhomogeneous
solid does not have a global natural configuration; i.e., any
configuration is not free of residual stresses. At the same
time, we have to use a stressed configuration as a reference,
which complicates the statement of constitutive relations.
In particular, they have one more tensor argument known
as implant [9], [10], [14] which characterizes the initial
local deformation. However, the geometric meaning of the
implant becomes clear if we treat it as the initial (“assembly”)
local deformation of the element in the natural state, which
directly leads to the notion of local transformation of the
natural frame used in the geometry of a space with absolute
parallelism and thus introduces the concept of non-Euclidean
geometry. Therefore, we prefer to use the geometric language
from the very beginning.

II. B ODY AS A SMOOTH MANIFOLD

In what follows, we use the concept of a body as an
abstract smooth manifold, that is, an open subset of some
topological space equipped with a specialmaterial connec-
tion. This concept allows one to describe the inhomogene-
ity phenomenon in materially uniform bodies in a rather
elegant geometric way. The foundations of the theory of
inhomogeneity have been laid down in the milestone work by
Noll [12] and developed by Wang, Epstein, and Maugin [13]–
[15]. Since inhomogeneity results from an accretion process,
we can hope that this geometric approach will be effective
for the problems considered.

We treat a bodyB as a smooth manifold without boundary.
This means thatB is a set equipped with a topology
satisfying the separation axiom and can be covered by finitely
many overlapping open setsUk ⊂ B homeomorphic to
open subsets inRn. The homeomorphisms are established
by coordinate mappings (charts)χk : Uk → R

n such that
for every intersectionUk∩Up the corresponding composition
χk ◦ χ−1

p : R
n → R

n is continuous and has sufficiently
many derivatives. Note thatn can be1, 2, or 3 depending
on whether the body is a fiber, a membrane, or a solid,
respectively. We refer ton as thedimensionof the body.
The material points are elements of the setB and can be
identified by their coordinates provided by the chartsχk.
The collection of charts{χk}

l
k=1 defines an atlas (of order

l) of the manifold. If a manifold can be covered by an atlas
of the first order, then this manifold istrivial . The need
for nontrivial atlases is clear for one- and two- dimensional
solids. (A sphere is a simple example.) At first glance, it
seems that the three-dimensional case is different, and only
trivial atlases are needed. Indeed, a three-dimensional solid
embedded in Euclidean space can be modeled by a trivial
manifold covered by a single chart whose values are just the
Cartesian coordinatesof the points that constitute the body.
But this impression is wrong! In fact, the structure of the
atlas should be consistent with thematerial connection(see
below), and this consistency may require nontrivial atlases;
Wang [13] showed this by examples (one of which is the
famous “Möbius crystal”) Of course, all such bodies have
nontrivial inhomogeneity structure. We point out that these
bodies can be created by appropriate growing processes that
“sew” these three-dimensional bodies from two-dimensional
surfaces. Thus, the notion of atlas plays a significant role in
the theory of growing bodies.

Connectionin general is a rule that determines the trans-
formation of a vector as it moves along a path (curve)
on B that carries the vector from one fiber to another. A
linear (affine) connection determines the linear transforma-
tion under infinitesimal transport, i.e., a mapping∇ :
TX(B) → L(TX(B), TX(B)). In a local chart, one has
∇∂α

∂β = Γγ
αβ∂γ , where theΓγ

αβ are the Christoffel symbols
of the connection. A linear connection∇ is said to be
compatiblewith a metric g on the manifold if the inner
product of two arbitrary vectors remains the same after the
parallel transport of these vectors along an arbitrary curve.
It can be shown that∇ is compatible withg if and only if
∀u∇ug = 0. Consider an n-dimensional manifoldB with a
metricg and a connection∇. The triple(B,∇, g) is called
a Riemann–Cartan manifold.

The torsion of a connection is the mapT : TX(B) ×
TX(B)→ TX(B) defined by

T(u,v) = ∇uv −∇vu− [u,v].

In the components in a local chart, one hasTα
βγ = Γα

βγ−Γ
α
γβ.

A connection is said to besymmetricif it is torsion free, that
is, if ∇XY −∇Y X = [X,Y ].1 TheRiemannian curvature
is the mapR : TX(B) × TX(B) → L(TX(B), TX(B))

1One can show that on every Riemannian manifold(B, g) there exists
a unique torsion-free linear connection∇ compatible withG, namely, the
Levi-Civita connection.
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Fig. 1. Configurations and Deformations

defined by

R(u,v) = ∇u∇v −∇v∇u −∇[u,v].

A metric-affine manifold is a manifold equipped with both a
connection and a metric,(B,∇, g). If the connection is met-
rically compatible, then the manifold is called aRiemann–
Cartan manifold. If the connection is torsion free but has
nontrivial curvature, thenB is called aRiemannian manifold.
If the curvature of the connection vanishes but the torsion
is nontrivial, thenB is called a Weitzenböck manifold. If
both the torsion and the curvature vanish, thenB is a flat
(Euclidean) manifold.

Let us explain the concept ofmaterial connectionin a few
words. It implements the idea of a local uniform reference
configuration that carries an infinitesimal neighborhood of
a material point to some uniform (typically natural) strain
state. In the simplest but frequently studied cases, one can
carry the whole body to a uniform state by some global
configuration. In this case, the connection turns out to be
Euclidean, and the theory becomes trivial. In general, there
does not exist a smooth mapping transforming the infinites-
imal neighborhoods of all material points to a uniform state
simultaneously. That is why one equips a materially uniform
body, i.e., a body all of whose material points are of the same
kind, with some artificial (or structural) inhomogeneity.
From the mechanical viewpoint, such bodies do not have
shapes free from residual stresses. The only way to return
the neighborhood of each material point to a natural state
and hence relax the residual stresses is to cut the body into
infinitely many parts and allow them to deform independently
(Fig.1). This fictitious process in some sense is reciprocal to
the growing process. One can find a detailed statement of
the theory in [8], [11].

III. G ROWING BODY

Now let us give a precise definition of growing body.
We consider growing bodies that can be represented as
continuous families of nested bodies. Recall that, according
to the definitions given above, the manifolds that represent
bodies have no boundaries. Certainly, physical bodies have
boundaries. The boundary points are not included in the
open setB, but their union is the set∂B = B \B, which
represents the boundary of the bodyB. We can assume that
∂B is a smooth manifold whose dimension is the dimension
of B minus one. Finally, we believe that the inclusion of
material can be represented as a continuous adjunction of

material surfaces(in the sense of [16]) to the boundary∂B.
These considerations can be summarized as follows:

A layerwisegrowing body is a continuous monotone (with
respect to inclusion) one-parameter family of manifolds

C = {Bα}α∈I , ∀α < β ∈ I Bα ⊂ Bβ , (1)

where I = (a, b) ⊂ R is an open interval, such that the
following property holds:

∀α ∈ I ∀X ∈ Bα \Ba ∃γ ∈ I X ∈ ∂Bγ . (2)

We refer roBa as to initial body and toBb as to final body.
Since the family (1) represents some evolution process, we
refer to α as theevolution parameter. Property (2) states
that any interior point that belongs to the adjoined part of
the body has been an element of the boundary manifold at
some stage of growth, and so the topological dimension of
its neighborhood has changed. This is specific for growing
bodies.

We single out a particular class of growth, namely,com-
plete surface growth, by the following condition:

∀α < β ∈ I ∂Bβ 6∈ Bα,

or, equivalently,∀α < β ∈ I ∂Bβ∩∂Bα = ∅. This property
ensures that for eachBα ∈ C there exists a continuous
projection ofBα \Ba onto an intervalI ′ ⊂ I exists, so that
one can interpret the manifoldBα \Ba as a trivial bundle
over I ′ whose fibers are the manifolds∂Bγ , γ ∈ I ′.

The idea of continuity can be formalized by means of
some measure (such as volume or mass) on the manifolds
Bα. If a certain measuremes(. . .) has been introduced, then
thecontinuityof the family (1) is equivalent to the following
property:

∀ε ∃δ ∀α < β ∈ I β − α < δ ⇒ mes(Bβ \Bα) < ε.

It is also possible to interpret the layerwise character of
growth in terms of measure as follows:

lim
β→α

mes(Bβ \Bα)

β − α
= k,

0 < k <∞, ∃Ω ⊂ Bβ \Bα dimΩ = dimBα − 1.

The latter condition states that the infinitesimal increment,
which is the set difference between two nearby instances of
the familyC representing the growing body, is asymptotically
equivalent to a body of dimension less by one. For example,
if the Bα are three-dimensional manifolds, thenΩ is two-
dimensional, and its mechanical response can be described
by relations suitable for membranes, shells,etc.

Clearly, the definition given above does not cover all
possible ways of surface growth that can be implemented as
a continuous process of joining surfaces, fibers, or drops. An
appropriate classification can be obtained on the geometric
basis. In this framework, we treat a growing body as a bundle
of smooth manifolds; the topological structure of the bundle,
in particular, the dimensions of the base and a typical fiber,
depends on the accretion process. See [8], [11] for details.

It is conventional in rational mechanics [5, p. 35] that
bodies are presented in the physical spaceE as shapesBα ⊂
E . On the one hand, shapesBα are connected subsets of the
physical space, and on the other hand, every shape is the
image of a configurationκα : Bα → Bα and belongs to
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the class of admissible configurations that equip the body
Bα with the structure of a smooth manifold. We associate
two shapes with each element of the family (1), the reference
shapeBR

α = κ
R
αBα and the actual shapeBα = καBα. Thus,

the family (1) induces the corresponding families of reference
and actual configurations as well as families of reference and
actual shapes. From now on, we use exactly these definitions
of configurations and shapes. Note that the reference shape
is not stress free in general.

Note that the conventional notation for the position of a
material pointXα in the reference configuration isTE ∋
Xα = κ

R
α (X), and xα is used for the position in the

actual configuration; i.e.,TE ∋ xα = κα(X). The com-
position ϕα = κα ◦ (κ

R
α )

−1 of these configurations, i.e.,
ϕα : Xα 7→ xα, is the deformation. The derivative in
the mappingϕ, which exists owing to the differentiability
of the configurations and their inverses, is known as the
deformation gradient(which is actually not a gradient at all)
F = ∂xm/∂Xnem⊗en ≡ ∂xm/∂Xn∂m⊗dxn. We always
assume thatJ = detF > 0.

In general, the configuration of a growing body is a smooth
mapping of the material manifold equipped with a material
connection onto the physical manifold, whose connection is
substantially different.

We assume that the bodiesBα are materially uniform,
simple and elastic [5], so their response can be defined by
the response functional,

T α = S(Hα). (3)

HereS(. . .) is the response functional, which is nonlinear in
the general case. We assume thatS(. . .) does not explicitly
depend on the evolution parameterα. The tensorT α is some
kind of stress tensor field. (To be definite, we use the term
Cauchy stresses). Assume thatS satisfy the principle of
frame indifference and has been calibrated,

S(0) = 0, lim
detH→0

|S(H)| =∞.

The tensorHα is a smooth tensor field representing the local
distortion. It can be written in the form of multiplicative
decomposition

Hα = Fα ◦Kα, (4)

whereF α is the conventional deformation gradient, i.e., the
linearization of the mappingγα : BR

α → Bα, which can be
represented by the relative gradient∇

κ
R
α

as follows [5]:

F α = ∇
κ

R
α
γα. (5)

It is important to note that the tensor fieldFα is compatible
in the following sense: there exists a vector field whose
gradient givesF α. Note that this property does not hold
in general for the second factor on the right-hand side in (4),
namely, for the smooth tensor fieldKα. This field was
dubbed theimplant field in [14]. Indeed,Kα is a field of
linear transformations acting on the undistorted incompatible
infinitesimal parts and joining them without gaps into a
global reference configuration.

By virtue of its incompatibility, the implant fieldKα

induces an inhomogeneity that can be represented by a
non-Euclidean material connection, which is a certain type
of affine connection admissible on the manifoldBα. In
abstract terms, this connection can be defined as a field of

Fig. 2. Correspondence Between Local Shapes and Space with Absolute
Parallelism

operatorsΓα that map some tangent vectorh onto a linear
operator [12],

Γαh = K−1
α ∇Kα

(Kαh)Kα,

It is clear that the material connection is actually a geometric
representation of the implant fieldKα. The non-Euclidean
features of such a connection are represented by the torsion
tensor fieldTα,

Tα(h,p) = (Γαp)h − (Γαh)p− [h,p].

Here[·, ·] denotes the Lie bracket, which represents the com-
mutator of tangent vector fields [12], [17]. One can express
these relations in terms of the natural frame∂ν induced by
a certain coordinate map, sayκR

α , on the manifoldsBα in
the form [14]

eβ = (Kα)
ν
·β∂ν , (Γα)

β
γν =

(
K−1

α

)ρ
·γ,ν

(Kα)
β
·ρ,

(Tα)
β
γν = (Γα)

β
γν − (Γα)

β
νγ ,

where theeβ combine to form a nonholonomic system of
frames corresponding to the “implantation” byKα.

The connection turns the manifoldBα into a Cartan space
(space with absolute parallelism, teleparallel space [17])
(Fig.2). Indeed, using the operatorsΓα, we can define a
rule of parallel transport onBα. The implant fieldKα

defines arbitrary affine transformations of the natural frame
∂ν at all points ofB, and so the frame fieldeβ becomes
nonholonomic. The rule of parallel transport can be stated as
follows. A vector is transported parallelly if its projections
onto the frameseβ remain invariant. Since the fieldKα

defines the inhomogeneity, we see that this situation has
a vivid physical interpretation; i.e., and observer traveling
with the moving frame sees no inhomogeneities, just as a
geodesic observerdoes not “feel” any gravitation field in
general relativity; e.g., see [14]. Actually, one can represent
the local shapes as a continuous family of stressed reference
shapes (Fig.3).

We have already pointed out that the response functional
S does not depend onα explicitly. Formally, this means
that, for everyα < β ∈ I, the response of the bodyBα at
a fixed interior material pointx ∈ Bα is equal to that of its
successorBβ . From the physical viewpoint, this means that
the properties of already accreted material do not change as
the growth process continues. The “implantation” parameters
corresponding to a material point are completely determined
at the accretion time and remain unchanged ever after. In
other words, the inhomogeneity arises owing to the growth
process on the boundary and does not develop further in the
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Fig. 3. Representation for Local Shapes as a Family of Reference Shapes

bulk. In terms of [15], this means that remodeling does not
occur in the bulk. Thus, we exclude processes like plasticity
or shrinkage from consideration. We shall refer to growing
bodies under such condition asnonrearranged:

A layerwise growing body isnonrearrangedif

∀α < β ∈ I ∀x ∈ Bα Tβ(x) = Tα(x). (6)

Note that the property of nonrearrangement in the bulk is
typical of surface growth models as opposed to so-called
volume growth models [15].

It is not difficult to take into account the natural geometric
definition of Cartan connection and its torsionTα, but this
can require some additional calculations. Thus, in many cases
it is preferable to deal directly with the implant fieldKα

inducing certain type of connection. To this end, we can
choose ahereditaryfamily of reference shapes, i.e., a family
that satisfies the following relation:

∀α < β ∈ I Bα = κ
R
β|αBα,

where κ
R
β|α is the restriction of the mappingκR

β to the
domainBα ⊂ Bβ . This means that the family of reference
shapes can be treated as a sequence of continuations of the set
BR
a to the setBR

b . From the mechanical viewpoint, this means
that the shapeBR

a continuously increases by the addition of
a flux of material surfaces to its boundary, while the state
of already adhered material particles remains unchanged.
Obviously. these shapes are not stress free and can be in
equilibrium only under special external fields of bulk forces
and surface forces on the boundary (Eshelby forces). In this
case, the condition (6) can be represented in terms of the
implantKα as follows:

∀α < β ∈ I ∀x ∈ Bα Hα(x) = Hβ(x).

Furthermore, if the familyC (1) admits differentiation with
respect to the parameterα, then condition (6) can be rewrit-
ten in terms of the field equation,

K̇ = 0, (7)

where the symbolK denotes the mappingK : I ∋ α 7→
Kα and the dot stands for differentiation with respect to the
parameterα.

IV. B OUNDARY VALUE PROBLEM IN THE HYPERELASTIC

CASE

Let us introduce the elastic potentialWκR

κ
, that is, the

elastic energy per unit volume in the reference stateκR,

which can be interpreted as a function of three arguments
F , K, andX [14],

WκR

κ
(K, F ,X) = J−1

K
WκC

κ
(H ,X) = J−1

K
WκC

κ
(K·F ,X).

One can express the Piola stress tensorTκR

κ
corresponding

to κR by the formula

TκR

κ
=

∂WκR

κ

∂F ∗ = J−1
K

K∗ ·
∂WκC

κ

∂H∗ .

The stress tensorTκC

κ
corresponding toκC can be defined

fiberwise as follows:

TκC

κ
=

∂WκC

κ

∂H∗ .

The boundary value problem for an accreted solid is
determined by the equations of equilibrium inV (t) with
boundaryΩ(t) whose parametrically depends on time,

∇κR
·

[
J−1
K

K∗ ·
∂WκC

κ
(H ,X)

∂H∗

∣∣∣
H=K·F

]
+ b = 0, (8)

and the boundary conditions onΩ(t),

nκR
·

[
J−1
K

K∗ ·
∂WκC

κ
(H ,X)

∂H∗

∣∣∣
H=K·F

] ∣∣∣∣∣
Ω(t)

= p.

At first glance, the formal statement of the boundary value
problem differs from the classical one only in that the bound-
ary of the domain depends parametrically on time. However,
there is a more profound difference: the elastic potential
depends on the distortion tensor field, whose determination
requires additional conditions. The particular form of these
conditions depends on the geometric structure of the adhering
elements, that is, essentially, on the structure of the bundle
of material manifolds. If the growth of a body is due to
a continuous influx of prestressed material surfaces to this
body, then this condition can be written in the form

PκR
·

[
J−1
K

K∗ ·
∂WκC

κ
(H,X)

∂H∗

∣∣∣
H=K·F

]
·PκR

∣∣∣∣∣
Ω(t)

= T .

HereP = (E − n⊗ n) is the projection onto the tangent
plane toΩ(t). This equation expresses the fact that the fibers
align with the specified tension determined by the surface
tensorT , i.e., two-dimensional tensor of second rank defined
on the tangent space to the adhering material surface.

If the growth results from continuous adherence of pre-
stressed surfaces, then the equation for the distortion tensor
K can be obtained from the relations of the theory of
material surfaces (theory of solids with material bound-
ary [16]). The effect of material surface adhering leads
to an infinitesimal change in the stress–strain state of the
accreted solid, but since the elementary adhesion act occurs
on an infinitesimal time interval, the stress rate proves to be
finite. This rate can be found from the equations of contact
interaction between the 3D body and the adhering material
surface. The equilibrium equation for the physical boundary
(which is a bounding surface of the body in its actual state
from the geometric viewpoint and a thin film in a membrane
stress state from the mechanical viewpoint) can be written
as∇s ·T + bs = nκR

·TκR

κ

∣∣∣
Ω(t)

, where∇s is the surface

nabla operator andbs is the surface density of external forces
acting onΩ(t). To complete the statement of the boundary
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value problem, we should pose a condition on the curvilinear
boundary∂Ω(t) of the surfaceΩ(t). This condition can be

of the form ñ ·T
∣∣∣
∂Ω(t)

= f̃ . Here ñ is the external unit

normal to the curve∂Ω(t) in the tangent plane and̃f is a
linear density of forces distributed on∂Ω(t).

V. NOTE ON THE REPRESENTATIONS OF STRESSES

In classical linear algebra, associated with a vector space
is the dual space, i.e., the space of linear functionals (cov-
ectors). The distinction between vectors and covectors is
commonly ignored in continuum mechanics. However, a
superstructure on a vector space in the form of a linear
functional space seems more natural from the physical view-
point. If all the variables of vector nature are defined in
the same vector space, which is usually equipped with an
inner product, then there is a quite justified wish to treat the
velocity vector and the force vector as elements of the same
vector space, whose inner product is a scalar, i.e., power,
exerted by the force on the velocity. On the other hand,
taking into account their equivalence as elements of the same
vector space one can formally consider their sum which is
deprived of any physical meaning. The situation is fixed by
the argument that the force should be a covector and the
velocity should be a vector. The covector representation of
the force treat it as a linear functional whose action on the
velocity vector gives a scalar, i.e., power. Of course, the sum
of a vector and a co-vector is not defined.

Following [18], we use the statement of continuum me-
chanics in terms of vector- and covector-valued forms (exte-
rior forms), which are taken as replacements for the standard
stresses. This statement seems to be more natural from the
geometric viewpoint. It permits one to present the concept
of stresses on a manifold with non-Euclidean connection.

We take an approach to stresses that treats them as
covector-valued two-forms and regard them as fundamental
variables,

T : Bα → TB ⊗ Ω2, T = ∗2σ = σ·j
i· e

i ⊗ (∗ej),

P : BR
α → TB ⊗ Ω2, P = ∗2P = p·ji·e

i ⊗ (∗ej).

Here∗ denotes the Hodge star operator.
Physically T and P can be interpreted as follows. The

stress upon pairing with a velocity field provides an area-
form that is ready to be integrated over a surface to give the
rate of work done by the stress on that surface [18]. The
above-mentioned considerations remain valid on a manifold
with non-Euclidean connection [19]. All one needs to define
stress covector-valued forms in such cases is a volume 3-
form.

Equations (8) can also be transformed to local form by
the Cartan calculus machinery. Consider the Cartan exterior
derivative

d : T ∗E ⊗ Ωk−1 → T ∗E ⊗ Ωk; T 7→ dT

∀u udT = d(uT )−∇u∧̇T ,

where ∧̇ is, by definition, a pairing on the first elements
of dyadic decomposition and a wedge product on the rest.
Note that fork = 0, d is reduced to the regular covariant
derivative, while fork = 3, d is identically zero.

Since the pullback of forms commutes with the exterior
derivative, it is possible to used in the definition of a
derivativeD on elements of the spaceT ∗E ⊗ Ωk−1 such
that the following diagram commutes [18]

T ∗E ⊗ Ωk−1(BR)
ϕ∗2

←−−−− T ∗E ⊗ Ωk−1(B)
yD

yd

T ∗E ⊗ Ωk(BR) ←−−−−
ϕ∗2

T ∗E ⊗ Ωk(B)

In terms of exterior calculus, the balance equations appear
in the following form:

dT +G⊗ ε = 0, DP + g ⊗ ε = 0.

Here ε is the volume form corresponding to a certain
parametrization of physical space. We again point out that
the above-mention considerations remain valid on a manifold
with a non-Euclidean connection. All one needs to define
stress covector-valued forms in such cases is a volume 3-
form.
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