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Abstract—Mathematical modeling of additive manufacturing We point out that growth is often closely associated
technologies is aimed at improving the performance of device, with defects formation processes. In particular, vapor phase
machine, and mechanism parts. These technologies. includeqenssition causes continuous defect formation in growing
stereolithography, electrolytic deposition, thermal and laser- - . . '
based 3D printing, 3D-IC fabrication technologies, etc. They are structures, which can readily be shown by estimating the
booming nowadays’ because they can provide rapid low-cost CI‘yStal gI’OWth rate. |ndeed, the atoms Condensed from VapOI‘
high-accuracy production of 3D items of arbitrarily complex to a crystal surface with regular atomic structure are only
shape (in theory, from any material). However, deformation \eakly coupled with the surface and evaporate back with
and strength problems for products manufactured with these pign propanility. But if there is an unfinished atomic plane
technologies yet remain to be solved. The fundamentally new .
mathematical models considered in the paper describe the O the growth surface, then the atoms that hit _th_e plane edge
evolution of the end product stress-strain state in additive manu- become strongly coupled. This forces the unfinished atomic
facturing and are of general interest for modern technologies in plane to be completed rapidly, and the crystal growth stops
engineering, medicine, electronics industry, aerospace industry, until there is formed a sufficiently large nucleus of a new
and other fields. atomic plane. One can estimate the probability of such a

Index Terms—Additive manufacturing technology, mathe- nucleus to appear as well as the resulting crystal growth
matical modeli_ng, mechanics of growing solids, stress-strain rate, which proves to be many orders of magnitude smaller
state, deformation, strength. than observed in experiments. This apparent paradox can

be explained by assuming that there are a large number of

I. INTRODUCTION defects continuously formed on the crystal surface, which

ATHEMATICAL modeling of a variety of natural Play the role of nuclei for independently growing islands of
phenomena and technological processes requires takemic planes [4]. With this growth mechanism, the force
ing into account thenaterial evolutionandremodelingof a  interactions arising between these islands result in a residual
solid, which can be associated with creation and annihilatiiess field.
of material points or with internal constraint redistribution Kroner showed in his pioneering paper [3] that the residual
in the bulk of the solid. If such changes are accompaniétesses irsimple material{5] can be represented in terms
with deformation of the entire solid, then what we deal witRf the incompatibility of the local distortion field defined
is a growing solid whose properties are highly unusualin the reference description by methods of non-Euclidean
Models of winding and welding, vapor deposition, photodeometry. Thus, the geometric language of the theory of
polymerization, and ion implantation processes can ser§@ooth manifolds can be used to describe not only solids
as examples [1], [2]. The solid material composition itvith distributed defects but also growing solids.
such processes is changed either by adding macroscopiétress-strain state analysis for growing solids has been
volumes, whose locally thermostatic states can be descrits&dried out in numerous papers [6]-[11], where a number of
by statistical parameters such as temperature, distortion, dfnds in generalizing classical continuum mechanics have
tension, or by implanting individual atoms or moleculeBeen used. One of these is developed in the framework of
(referred to asextra substancen [3]), which from the the theory ofinhomogeneitystructural heterogeneity) arising
macroscopic viewpoint leads to distributed defect evolutidfiom @ special connection of parts of a body rather than
in the boundary layer. Winding and welding are examples §Pm distinctions in the physical properties of the materials of
the former, and ion implantation is an example of the lattdhese parts [12], [13]. This kind of structural inhomogeneity
Sometimes both mechanisms should be taken into accountalg® arises in bodies made of a single material, which are
is the case with the vapor deposition process, which involvB@mogeneous in the classical sense. To distinguish between
the adherence of atomic clusters consisting of large numb#tgse two kinds of inhomogeneity, we use the tenaterial
of coupled atoms as well as the adherence of individuaniformity [5] for the latter one.
atoms of ions bombarding the growth surface. The growth of a solid is usually viewed as a process
where additional material is joined to the solid, which is
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particular, boundary points become interior points. Here th We treat a bodyB as a smooth manifold without boundary.
process of gluing a bundle of paper sheets can be usdis means thats is a set equipped with a topology
as an example. Prior to gluing, we have a set with mamgatisfying the separation axiom and can be covered by finitely
(possibly, very many) connected components, but after gluingany overlapping open setfs;, C B homeomorphic to
we have a connected set. If each sheet were subjectedbpen subsets ifiR™. The homeomorphisms are established
some deformation from the standard (uniform) state in thmy coordinate mappings (chartg). : U, — R"™ such that
gluing process, no smooth deformation of the final body aftésr every intersectio®/;, "U,, the corresponding composition
gluing would be able to bring all the sheets to the standaxd o x,' : R™ — R" is continuous and has sufficiently
state simultaneously. The response of a local part of the baugny derivatives. Note that can bel, 2, or 3 depending
to external loadings for the case in which it is defined by then whether the body is a fiber, a membrane, or a solid,
elasticity tensor would vary from point to point of the body irrespectively. We refer taw as thedimensionof the body.
any configuration defining an immersion in Euclidean spacéhe material points are elements of the %tand can be
Thus, the body is inhomogeneous even if it is made froidentified by their coordinates provided by the chavts
a single material (i.e., is materially uniform). This exampl&he collection of chart§x;}!_, defines an atlas (of order
illustrates the existence of a special type of inhomogeneity,of the manifold. If a manifold can be covered by an atlas
which is studied in [12], [14], [15]. of the first order, then this manifold igivial. The need
Thus, inhomogeneity results from the growth process afar nontrivial atlases is clear for one- and two- dimensional
is related to varying physical and mechanical propertisslids. (A sphere is a simple example.) At first glance, it
of the material. One can say that it arises in special aseems that the three-dimensional case is different, and only
sembling scenarios. To describe the response of the sdligial atlases are needed. Indeed, a three-dimensional solid
to external inputs, one can either treat it as a nonuniforembedded in Euclidean space can be modeled by a trivial
solid, which results in a complicated description of thenanifold covered by a single chart whose values are just the
constitutive equations, or somehow reconstruct the natu@drtesian coordinatesf the points that constitute the body.
global configuration of the solid and use it as a referen@ut this impression is wrong! In fact, the structure of the
configuration. For simple materials, the latter can be doneaflas should be consistent with theaterial connectior{see
one allows embedding the reference shapes in a space vgiow), and this consistency may require nontrivial atlases;
a more flexible definition of geometric properties (e.g., in aWwang [13] showed this by examples (one of which is the
affine connection space) and defining a global natural shapenous “Mobius crystal”) Of course, all such bodies have
with additional geometric parameters such as the torsiamntrivial inhomogeneity structure. We point out that these
curvature, and nonmetricity of the connection. bodies can be created by appropriate growing processes that
We point out that the inhomogeneity in solids can b&sew” these three-dimensional bodies from two-dimensional
described without using the ideas of non-Euclidean geometsurfaces. Thus, the notion of atlas plays a significant role in
Clearly, if a configuration is an embedding of a body in ¢e theory of growing bodies.
space that is necessarily Euclidean, then an inhomogeneousonnectionin general is a rule that determines the trans-
solid does not have a global natural configuration; i.e., afyrmation of a vector as it moves along a path (curve)
configuration is not free of residual stresses. At the sarg@ 3 that carries the vector from one fiber to another. A
time, we have to use a stressed configuration as a referenig@ar (affine) connection determines the linear transforma-
which complicates the statement of constitutive relationgen under infinitesimal transport, i.e., a mappifg
In particular, they have one more tensor argument known. (%) — L£(T%x(B),Tx(8B)). In a local chart, one has
as implant [9], [10], [14] which characterizes the initial v, g5 =T} ,0,, where thel'] ; are the Christoffel symbols
local deformation. However, the geometric meaning of thef the connection. A linear connectioW is said to be
implant becomes clear if we treat it as the initial (“assembly'dompatiblewith a metric g on the manifold if the inner
local deformation of the element in the natural state, Whicﬁroduct of two arbitrary vectors remains the same after the
directly leads to the notion of local transformation of thearallel transport of these vectors along an arbitrary curve.
natural frame used in the geometry of a space with absolyean be shown tha¥ is compatible withg if and only if
parallelism and thus introduces the concept of non-Euclidegnv,,g = 0. Consider an n-dimensional manifdll with a
geometry. Therefore, we prefer to use the geometric languagetric g and a connectioi’. The triple (B, V, g) is called

from the very beginning. a Riemann—Cartan manifold
The torsion of a connection is the maE : Tx(B) x
Il. BODY AS A SMOOTH MANIFOLD Tx(B) — Tx(B) defined by
In what follows, we use the concept of a body as an
abstract smooth manifold, that is, an open subset of some T(u,v) = Vv — Vou — [u,v].
topological space equipped with a specizterial connec-
tion. This concept allows one to describe the inhomogengrthe components in a local chart, one =14 -T2

ity phenomenon in materially uniform bodies in a rathes connection is said to beymmetridf it is torsion free, that
elegant geometric way. The foundations of the theory &f if VxY — Vy X = [X,Y].! TheRiemannian curvature

inhomogeneity have been laid down in the milestone work By the map: - Tx(B) x Tx(B) = L(Tx(B), Tx(B))
Noll [12] and developed by Wang, Epstein, and Maugin [13]—

[15]. Since inhomogeneity results from an accretion Process, | . - <how that on every Riemannian maniflil g) there exists

we can hope that th|3_ geometric approach will be eﬁecméleunique torsion-free linear connectidn compatible withG, namely, the
for the problems considered. Levi-Civita connection.
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material surfacegin the sense of [16]) to the boundapys.
These considerations can be summarized as follows:

A layerwisegrowing body is a continuous monotone (with
respect to inclusion) one-parameter family of manifolds

C={Ba}er, Ya<pBel B, C DBy, 1)

s N

Reference stressed
shape

Natural local shapes Actual shape

whereI = (a,b) C R is an open interval, such that the
following property holds:

Vael VXeB,\B, Iyel XecoB, (2

We refer roB,, as to initial body and t@5; as to final body.
Since the family (1) represents some evolution process, we
refer to « as theevolution parameterProperty (2) states
that any interior point that belongs to the adjoined part of

Fig. 1. Configurations and Deformations

defined by the body has been an element of the boundary manifold at
some stage of growth, and so the topological dimension of
R(u,v) = VauVe = Vo Vau = Vi o). its neighborhood has changed. This is specific for growing

A metric-affine manifold is a manifold equipped with both &0dies. _
connection and a metri¢®, V, g). If the connection is met- e single out a particular class of growth, namelgm-
rically compatible, then the manifold is calledRiemann— Plete surface growthby the following condition:
Carta_n. manifold If the connection is_ torsion_ free bl_Jt has Va<Bel 0Bs¢Ba,
nontrivial curvature, thef8 is called aRiemannian manifold
If the curvature of the connection vanishes but the torsi@f, equivalentlyYa < 3 € I 9B3N0B, = (. This property
is nontrivial, then®B is called a Weitzenbock manifold. If ensures that for eactB, € € there exists a continuous
both the torsion and the curvature vanish, tferis a flat projection of3, \ B, onto an intervall’ C I exists, so that
(Euclidean manifold. one can interpret the manifols, \ B8, as a trivial bundle

Let us explain the concept afaterial connectiorin a few over I’ whose fibers are the manifoldss.,, v € I'.
words. It implements the idea of a local uniform reference The idea of continuity can be formalized by means of
configuration that carries an infinitesimal neighborhood some measure (such as volume or mass) on the manifolds
a material point to some uniform (typically natural) straifB.. If a certain measurmes(. ..) has been introduced, then
state. In the simplest but frequently studied cases, one d¢ha continuityof the family (1) is equivalent to the following
carry the whole body to a uniform state by some glob@iroperty:
configuration. In this case, the connection turns out to
Eucligean, and the theory becomes trivial. In general, th;?éS G Va<fel f-o<i=mes(Bs\Ba)<e.
does not exist a smooth mapping transforming the infiniteg-is also possible to interpret the layerwise character of
imal neighborhoods of all material points to a uniform statgrowth in terms of measure as follows:
simultaneously. That is why one equips a materially uniform
body, i.e., a body all of whose material points are of the same lim W
kind, with some artificial (or structural) inhomogeneity. poa f-a
From the mechanical viewpoint, such bodies do not have0 <k <oo, 30 C Bs\ B, dimQ =dimB, — 1.

sk?apes_ fr:f)e Lm”:j ref5|duakll stress_esl. The only way tolretl,me latter condition states that the infinitesimal increment,
the neighborhood of each material point to a natural Stalg,; -y, js the set difference between two nearby instances of

ar]:d .helnce relax the rejidllljal s:]ressesdisfto cyt;he bczjdy i 8familyet representing the growing body, is asymptotically
Ininitely many parts and allow them to deform independent guivalent to a body of dimension less by one. For example,

(Fig.1). This fictitious process in some sense is reciprocal ﬁo he B, are three-dimensional manifolds, thénis two-

the growing process. One can find a detailed statement ensional, and its mechanical response can be described
the theory in [8], [11]. by relations suitable for membranes, shedi;
Clearly, the definition given above does not cover all
I1l. GROWING BODY possible ways of surface growth that can be implemented as
Now let us give a precise definition of growing bodya continuous process of joining surfaces, fibers, or drops. An
We consider growing bodies that can be represented agpropriate classification can be obtained on the geometric
continuous families of nested bodies. Recall that, accordibgsis. In this framework, we treat a growing body as a bundle
to the definitions given above, the manifolds that represesftsmooth manifolds; the topological structure of the bundle,
bodies have no boundaries. Certainly, physical bodies hameparticular, the dimensions of the base and a typical fiber,
boundaries. The boundary points are not included in tlepends on the accretion process. See [8], [11] for details.
open setB, but their union is the se?®B = B \ B, which It is conventional in rational mechanics [5, p. 35] that
represents the boundary of the bdBy We can assume thatbodies are presented in the physical spé&@es shape®,, C
0% is a smooth manifold whose dimension is the dimensiagh On the one hand, shap8s, are connected subsets of the
of B minus one. Finally, we believe that the inclusion ophysical space, and on the other hand, every shape is the
material can be represented as a continuous adjunctionimbge of a configuration:, : %8, — B, and belongs to

:k/’,

ISBN: 978-988-19253-5-0 WCE 2014
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the World Congress on Engineering 2014 Vol II,
WCE 2014, July 2 - 4, 2014, London, U.K.

the class of admissible configurations that equip the body
B, with the structure of a smooth manifold. We associate
two shapes with each element of the family (1), the reference
shapeBZ = '8, and the actual shag®, = 5,%B,. Thus,
the family (1) induces the corresponding families of reference
and actual configurations as well as families of reference and
actual shapes. From now on, we use exactly these definitions
of configurations and shapes. Note that the reference shape Natural local shapes Continuous field of
is not stress free in general. frames (nonholonomic)

Note that the conventional notation for the position of g, 5  corespondence Between Local Shapes and Space wétiuaé
material pointX, in the reference configuration 5 > Parallelism
X, = x%(X), and z, is used for the position in the

actual configuration; i.e7€ 3> x, = ».(X). The com- _

[e3

9o : Xao +— T, is the deformation The derivative in OPerator [12],

the mappingcp, Which exists owing to the Qiﬁerentiability Toh = K-V (Koh)Ka,

of the configurations and their inverses, is known as the o “

deformation gradientwhich is actually not a gradient at all) It is clear that the material connection is actually a geometric

F =0z"/0X"e,,@e" = 0z™/0X"0,, @dz". We always representation of the implant fiel&,. The non-Euclidean

assume thaf/ = det F' > 0. features of such a connection are represented by the torsion
In general, the configuration of a growing body is a smootensor field%,,,

mapping of the material manifold equipped with a material

connection onto the physical manifold, whose connection is Ta(h,p) = (Lap)h — (Tah)p — [k, p].

substantially different. ) _ . Here[-, -] denotes the Lie bracket, which represents the com-

_We assume th_at the bOd'é_Ba are materially unlfo_rm, mutator of tangent vector fields [12], [17]. One can express
simple and elastic [5], so their response can be defined e relations in terms of the natural frameinduced by
the response functional, a certain coordinate map, say?, on the manifolds3,, in

T,=6(H,). (3) the form [14]

Here®(...) is the response functional, which is nonlinearin €3 = (Ka)%30,, (I'a)s, = (Kgl)éw (Ko)5,

the general case. We assume t&dt . .) does not explicitly (To)?, = (Ta)?, — (T )5

depend on the evolution parameterThe tensofl’,, is some v v v

kind of stress tensor field. (To be definite, we use the terwhere theeg combine to form a nonholonomic system of
Cauchy stress¢s Assume thatS satisfy the principle of frames corresponding to the “implantation” By,,.

frame indifference and has been calibrated, The connection turns the manifdld,, into a Cartan space
B ) B (space with absolute parallelism, teleparallel space [17])
6(0)=0,  lim |&(H)|=oo. (Fig.2). Indeed, using the operatoFs,, we can define a

The tensotH ., is a smooth tensor field representing the loc&}l€ Of parallel transport orB,. The implant field K,
distortion. It can be written in the form of multiplicativedef'nes arbitrary affine transformations of the natural frame

decomposition 0, at all points of8, and so the frame fieldg becomes
H. —F. oK (4) nonholonomic. The rule of parallel transport can be stated as
(0% (0% )y . . . . .
follows. A vector is transported parallelly if its projections
where F',, is the conventional deformation gradient, i.e., thento the frameses remain invariant. Since the field<,
linearization of the mapping, : BY — B,, which can be defines the inhomogeneity, we see that this situation has
represented by the relative gradiévit.» as follows [5]: a vivid physical interpretation; i.e., and observer traveling
Fo=V, 7. 5) with th(? moving frame sees no inhomoge_neij[ies, .just as a
ol geodesic observedoes not “feel” any gravitation field in
It is important to note that the tensor field, is compatible general relativity; e.g., see [14]. Actually, one can represent
in the following sense: there exists a vector field whodbe local shapes as a continuous family of stressed reference
gradient givesF,. Note that this property does not holdshapes (Fig.3).
in general for the second factor on the right-hand side in (4),We have already pointed out that the response functional
namely, for the smooth tensor fiel&,. This field was & does not depend on explicitly. Formally, this means
dubbed theimplant fieldin [14]. Indeed,K, is a field of that, for everya < 8 € I, the response of the bodg,, at
linear transformations acting on the undistorted incompatitdefixed interior material point € 95, is equal to that of its
infinitesimal parts and joining them without gaps into auccessofBz. From the physical viewpoint, this means that
global reference configuration. the properties of already accreted material do not change as
By virtue of its incompatibility, the implant fieldK', the growth process continues. The “implantation” parameters
induces an inhomogeneity that can be represented bycaresponding to a material point are completely determined
non-Euclidean material connection, which is a certain tyf the accretion time and remain unchanged ever after. In
of affine connection admissible on the manifdél,. In other words, the inhomogeneity arises owing to the growth
abstract terms, this connection can be defined as a fieldppbcess on the boundary and does not develop further in the
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Family of global shapes which can be interpreted as a function of three arguments

F, K,andX [14],
WZ (K, F,X) = Jg' Wi (H,X) = Jg' Wi (KF,%).

Physical Soacs One can express the Piola stress teff3pf corresponding

IIIII.IIIITIII EEEEEENEEEEN EEEEEEEEEEEER tO%R bytheformula

Material manifold
Moving frame as T%R 8W;:R J_lK* QW;‘C
a sequence of global x aF* = JKg . aH* .

configurations
The stress tensdl'Z¢ corresponding tos- can be defined
fiberwise as follows:

Fig. 3. Representation for Local Shapes as a Family of Refer&hapes e GW;C
T7° = JH

bulk. In terms of [15], this means that remodeling does not 1h€ boundary value problem for an accreted solid is
occur in the bulk. Thus, we exclude processes like plasticiftermined by the equations of equilibrium 1a(z) with
or shrinkage from consideration. We shall refer to growingeundary(t) whose parametrically depends on time,

bodies under such condition asnrearranged . OWZC(H, %)
A layerwise growing body isionrearrangedf Vi [JK K OH" ‘H_KF] +b=0, (8
Va<pel VeeB, Tpx)=Ta(n) (6) and the boundary conditions dit),
. OWxe(H, X
Note that the property of nonrearrangement in the bulk is 7" [JKlK -%‘H_KF] =p.
typical of surface growth models as opposed to so-called T aw
volume growth models [15]. At first glance, the formal statement of the boundary value

Itis not difficult to take into account the natural geometrigqpiem differs from the classical one only in that the bound-
definition of Cartan connection and its torsi@n, but this 5y of the domain depends parametrically on time. However,
can require some additional calculations. Thus, in many casggre is a more profound difference: the elastic potential
it is preferable to deal directly with the implant fiell.  jepends on the distortion tensor field, whose determination
inducing certain type of connection. To this end, we caRqyires additional conditions. The particular form of these
choose ¢ereditaryfamily of reference shapes, i.e., a familygngitions depends on the geometric structure of the adhering
that satisfies the following relation: elements, that is, essentially, on the structure of the bundle

Va<Bel B,= %éi"a%m of material manifolds. If the growth of a body is due to

a continuous influx of prestressed material surfaces to this

where [, is the restriction of the mapping:f' to the pody, then this condition can be written in the form
domainB, C B3. This means that the family of reference
shapes can be treated as a sequence of continuations of the get [ ;1 7« OWZ(H, X) ‘ }
BE to the set3{*. From the mechanical viewpoint, this means = " | " ¥ OH* H=-KF
that the shapé8% continuously increases by the addition of
a flux of material surfaces to its boundary, while the statdere P = (E —n ® n) is the projection onto the tangent
of already adhered material particles remains unchang@t&_ne to2(¢). This equation expresses the fact that the fibers
Obviously. these shapes are not stress free and can belign with the specified tension determined by the surface
equilibrium only under special external fields of bulk forcetensorT, i.e., two-dimensional tensor of second rank defined
and surface forces on the boundary (Eshelby forces). In tigig the tangent space to the adhering material surface.
case, the condition (6) can be represented in terms of thdf the growth results from continuous adherence of pre-

P =T.

Q(t)

R

implant K, as follows: stressed surfaces, then the equation for the distortion tensor
K can be obtained from the relations of the theory of
Va< el VYeeB, Hy(z)=Hgx). material surfaces (theory of solids with material bound-

Furthermore, if the family® (1) admits differentiation with ary [16]). The effect of material surface adhering leads
respect to the paramet&[ then condition (6) can be rewrit-to an infinitesimal Change in the stress—strain state of the

ten in terms of the field equation, accreted solid, but since the elementary adhesion act occurs
. on an infinitesimal time interval, the stress rate proves to be
K =0, () finite. This rate can be found from the equations of contact

where the symboK denotes the mapping : I > o ~ interaction between the 3D body and the adhering material

K, and the dot stands for differentiation with respect to th@irface. The equilibrium equation for the physical boundary
parameter. (which is a bounding surface of the body in its actual state

from the geometric viewpoint and a thin film in a membrane
IV. BOUNDARY VALUE PROBLEM IN THE HYPERELASTIC Stress state from the mechanical viewpoint) can be written
CASE asV,- T +bs =n,, ~Tﬁp~‘ , WhereV is the surface
' Q(t

Let us introduce the elastic potentidl 7%, that is, the nabla operator anbl is the sur<face density of external forces
elastic energy per unit volume in the reference staig acting on{2(¢). To complete the statement of the boundary
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value problem, we should pose a condition on the curvilinearSince the pullback of forms commutes with the exterior
boundaryof(t) of the surface(t). This condition can be derivative, it is possible to use in the definition of a
of the formﬁ.T‘ — f. Hereq is the external unit derivative® on elements of the spacE*& @ Q"' such

LN o that the following diagram commutes [18]
normal to the curve)()(t) in the tangent plane and is a »

linear density of forces distributed ai(t). T*E @ QF1(BR) 2 T*E @ QF—1(B)

V. NOTE ON THE REPRESENTATIONS OF STRESSES l@ la

In classical linear algebra, associated with a vector space T*E ® QF(BF) —— TrEw QF(B)
is the dual space, i.e., the space of linear functionals (cov- v
ectors). The distinction between vectors and covectors Iis terms of exterior calculus, the balance equations appear
commonly ignored in continuum mechanics. However, i the following form:
supe_rstructure on a vector space in the form of_a Ilqear T +G®e=0, DP+goe—0.
functional space seems more natural from the physical view-
point. If all the variables of vector nature are defined ihlere ¢ is the volume form corresponding to a certain
the same vector space, which is usually equipped with garametrization of physical space. We again point out that
inner product, then there is a quite justified wish to treat thbe above-mention considerations remain valid on a manifold
velocity vector and the force vector as elements of the saméh a non-Euclidean connection. All one needs to define
vector space, whose inner product is a scalar, i.e., powglress covector-valued forms in such cases is a volume 3-
exerted by the force on the velocity. On the other hantrm.
taking into account their equivalence as elements of the same
vector space one can formally consider their sum which is REFERENCES
deprived of any physical meaning. The situation is fixed b)fl] K. L. Choy, “Chemical vapour deposition of coatingstogress in
the argument that the force should be a covector and the Materials Sciencevol. 48, pp. 57170, 2003.
velocity should be a vector. The covector representation d#l ’l\\/l/létgréii:ItSaSi sanr?n Jér V;lbll\gayerlon Implantation and Synthesis of
the force treat it as a linear functional whose action on th%] E. Kroner, “Kllg(gméine kbntinuumstheorie der versetzungen und
velocity vector gives a scalar, i.e., power. Of course, the sum  eigenspannungenArch. Rat. Mech. Analvol. 4, no. 1, pp. 273-334,
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