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Abstract— The article presents a method of kinematical 

analysis of planar multilink linkage with a changeable closed 
loop, which is designed for a plane-parallel motion of the 
output lever and can be used as an actuator for a lifting 
mechanism. Methods of kinematical analysis developed in this 
paper allow to evaluate the quality of synthesis scheme of the 
mechanism that performs the given function of displacement of 
the output link, and to receive the kinematical characteristics 
for the designed layout. 
 

Index Terms— Direct and inverse kinematics, linkages, 
lifting mechanism. 
 

I. INTRODUCTION 

The development of mechanical engineering is connected 
with the complex scheme solution; therefore there is a 
necessity in development of special research techniques. In 
particular, the multi-lever linkages consisting of complex 
structures are applied in modern automation machinery. 
Traditionally, an actuating mechanism is based on the 
structure of 2nd or 3rd class kinematical groups according to 
the existing classification of the linkages, but they do not 
give an opportunity to produce complex trajectories which 
are specified by high standards of modern machinery. 

The objective of this investigation is the analysis of 
kinematical abilities of multi-lever planar linkages with an 
adjustable closed loop and its usage in modern actuators. 
The advantage of those mechanisms is their mechanical 
structure which determines the energy, dynamical and 
kinematical characteristics simplifying of operation of the 
control system [1].  

According to modern trends the theory of machines and 
mechanisms pays strong attention to the study of the rational 
mechanism structure, in particular, to the mechanisms with 
closed non-anthropomorphic layout. The kinematical 
scheme of the most industrial manipulators has an open 
kinematical loop with the series of connected links and 
actuators located directly into the moving joint.   

The major problem in designing of lifting machinery and 
manipulators with the open kinematical loop is in providing 
real time control under the increased range of the velocity 
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and loads. The essential part of the working cycle for lifting 
manipulator consists of the mode of intensive acceleration 
and deceleration. As the result, this operation consumes 
most power of the actuator that leads to low efficiency for 
the open loop kinematical scheme. 

The open kinematical scheme of the manipulator does not 
provide enough stiffness because of its open console 
construction [2]. Inertia forces of the actuators and links 
impose extra load and we need the actuators with higher 
power. Each next link loads the following one dynamically 
and impacts the given law of motion. The fluctuations 
appears due to low stiffness of the system especially under 
high speed and the force load application which affects the 
positioning accuracy in the end. In addition, the location of 
the actuators into the joint limits its operation travel and 
affects accuracy and positional errors. 

The mass of the object of manipulation is often less than 
the mass of the manipulator and links, which leads to 
significant reduction in efficiency. For minimizing the 
power of the actuators the layout with the actuators installed 
on the basement of the industrial robot are proposed. The 
advantage of this arrangement is in application of lower 
power electrical motors, manipulators dimensions reduction 
and improving of dynamic characteristics. 

Major research efforts have been devoted to the 
development of planar and spatial manipulators with parallel 
topology [3]. The manipulators with closed kinematical 
chains carry a load as the space frames providing high 
lifting capacity and stiffness. The location of drives on the 
basement of the manipulator gives an opportunity to 
increase the link velocity and position accuracy reducing 
accumulation errors under the simultaneous operation of 
several motors. Such systems have high specific load and a 
good dynamic performance that accelerates its 
implementation in the industry.  

There are technological processes in construction 
activities, road building that use material handling on the 
flat surface with a different space attitude. For instance, 
brick laying and wall leveling are these kinds of operation. 
The effective lifting machine moves in the plane that is 
parallel to the working floor providing the preset position 
against the surface processed. 

For the lift actuator it is proposed to use planar linkages 
with a changeable closed loop (fig. 1), since its rational 
abilities provide energetic, dynamical and kinematical 
parameters, which simplify the quality control system 
significantly [4]. 

The purpose of this article is the analysis of the design of 
the multi-level planar linkages with an adjustable closed 
loop.  
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Fig. 1. Scheme of the actuator of the lifting mechanism  

 
The main task expresses as the following: 

 direct kinematical analysis of the mechanism to 
calculate the position, velocity and acceleration 
parameters of links; 
 inverse kinematical analysis of the mechanism to 

derive the variation of the generalized coordinates 
under given position of the output link. 

II. DIRECT KINEMATICS  

Kinematic investigation of the actuator of lifting 
mechanism is carried out with the joint methods namely the 
change of input link and vector methods. As a result, the 
solution of direct kinematics gives opportunity to construct 
diagrams of motion, velocity and acceleration of joints. 

Structural formula of the mechanism is given taking into 
account the conditional input link as follow:  

       II (6, 7) → II (8, 9)       
I (1)  →  ↑                  (1) 
        II (2, 3)            

The vector closure equation for the circuit ODA is 
obtained and projected on the Ox and Oy axes of the xOy 
plane connected with the fixed joint O of the input rocker 1. 

0


OAOAADADODOD elelel ,     (2) 

where OAADOD eee


,,  - the unit vectors of the sides OD, AD 

and OA on the xOy plane; 
OAADOD lll ,,  - kinematic length 

side OD of the input lever 1, link 4 (lAD is a generalized 
coordinates for the investigated mechanism) and the 
distance between A and D supports hinges respectively. 

The unknown parameter lAD is expressed from the 
equation (2) which describes the displacement of the rod 
cylinder 5 by the formula: 

OAOAODODADAD elelel


 .      (3) 

The dependence between the rotation angle of the input 
link OB and the generalized coordinate is determined by the 
projection of the vector equation (3) on the Ox axis: 


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 ,    (4) 

where OA, lOA parameters have known by kinematic 
synthesis and they are equal to ,0OA .AOA Хl   

Coordinates of joints D and B of the triangle link 1 are 
defined by using the correlation for the coordinate 

transformation and the expression (4) for the OD  angle: 
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where the lowercase characters indicate coordinates in the 
inertial coordinate system which center coincides with the 
position of an eponymous joint. The uppercase characters 
identify the coordinate value in absolute coordinate system 
attached to the rack. In this way xB, yB are the coordinates 
describing the joint B position in the coordinate system 

22 Byx ; XB, YB, are the same but in the absolute coordinate 

system xOy that is placed in the fixed joint O. 
The rotation angle of the link AD is found as the tangent 

of vector AD gradient to the axis Ox: 









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
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AD

AD
AD XX

YY
arctg .       (7) 

By vector equation of the close loop ADF: 

0


ADADFDFDAFAF elelel ,    (8) 

we can find the unknown angle AF in the form of 
generalized coordinate lAD function: 

;
2

arccos
222
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ADAF
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where ADFDAF eee


,,  - the unit vectors formed by sides AF, 

FD and AD on the xOy plane; ADAFFD lll ,,  - the kinematic 

lengths of link 3, the direction FD of link 2 and the link AD 
that is served as a rod cylinder. 

Coordinates of the joint F of the triangle rocker ADF are 
obtained as projections on the Ox and Oy axes on the xOy 
plane: 
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The angle FD and the joint E position are calculated as 
follows: 
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The vector equation of the close loop BEC is rewritten as: 

0


ECECBCBСEBEB elelel ,    (13) 

where EBECBC eee


,,  - the unit vectors of the sides BC and 

EC and the segment EB, joining the points E and B, 
correspondently; EBECBC lll ,,  - the kinematic length of the 6-

th link’s side BC, the 7-th link’s side EC and segment EB. 
We find the analytical expression for the calculation of 

the EC side’s rotation angle relatively the Ox axis. 

,
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where lEB  is obtained like as the distance between B and E 
points: 

,)()( 22
EBEBEB YYXXl   

the gradient of vector EB  is equal: 
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Point E coordinates that are described the joint E position 
of the triangle link 3 as a function of previous found 
parameters (12) and (15) are calculated from the expression: 
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Using the vector closure equation for the circuit GPL: 

0


GLGLPLPLGPGP elelel ,     (17) 

we might get the rotation angle of the 8-th link on the xOy 
plane: 
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where GPGLPL eee


,,  are the unit vectors formed by the 

side PL of the triangle link 9, the lever 8 and the segment 
GP connected points G and P on the xOy plane; 

GPGLPL lll ,,  are the kinematic length of the links 

mentioned above and are equal as follow: 
22 )()( CPCPGP YYXXl  ; 
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The L joint’s position of the output link 9 is determined 
in the following way: 
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The operating platform PLQ of the lifting mechanism 
turns on the angle that is defined as: 



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arctan .      (20) 

Thus, the discovered equations allow to find the 
coordinates of all moving joints and an analytical 
expressions for the velocity and the acceleration after their 
differentiation. 

III. INVERSE KINEMATICS  

The inverse kinematics of the lifting machine’s actuator 
defines the rotation angles of the moving joints under the 
given position of output link and known parameters of the 
links that provides the established position of the operating 
platform. 

There are different methods for solving the inverse 
kinematics, for example, the inverse transformation method 
or the geometric approach that has advantages than other 
existing methods. 

An advantage of analytical methods for the inverse 
kinematics solving is to obtain an arbitrary accuracy of 
calculation. It should take into account that a few lever 
linkages have a kinematic description in analytical way. It 
will be possible if its scheme satisfies with one of the 
following conditions: 

 axes of three adjacent joints intersect at one point; 

 axes of three adjacent joints are parallel. 
The second requirement fulfilled in the investigated 

actuator of the lifting mechanism that is enough for the 
existence inverse kinematics analytical solution. But the 
situation in which the number of equations will be more 
than the number of unknown variables is possible, and, as a 
result, the solution will not be unique. In this case we should 
find all possible assemblies of the mechanism. 

A difficult task is to determine the generalized 
coordinates in an explicit form since the motion equations 
are nonlinear. There are a lot of methods for simplifying the 
inverse kinematics in particular the inverse transformation 
method which consists of the determination rotation angles 
of the links by using matrix equations for a separate circuit.  

Denavit and Hartenberg proposed matrix method of a 
successive construction of the coordinate system which is 
related with each link in the kinematic chain in order to 
describe the rotational and translational links between 
adjacent levers. The meaning is to form a homogeneous 
transformation matrix with dimension 4х4 and to set the 
coordinate system position of the current link in the 
coordinate system of preceding link. This provides the 
ability to consistently convert coordinates of the output link 
from its reference system into the basic coordinate system 
relating to the input crank. 

Parameters di, i ai and i (i – number link of the 
mechanism) determine the position of the coordinate system 
related to the (i) link of a linkages in the previous (i-1) 
system, where: 
 the angle i rotates the (i-1) system around the axis zi 

counterclockwise until the axis хi-1 will be 
unidirectional and parallel to the axis хi; 

 the distance di is a displacement of the rotated (i-1) 
system along the axis zi-1 before the coincidence the 
axis хi-1 with axis хi; 

 the distance аi is a shift (i-1)-th system along the axis 
хi before the combination the (i-1)-th and (i)-th 
coordinate system origin; 

 the angle i rotates of (i-1) system around the axis хi  
counterclockwise till coincidence the axes zi-1 and zi. 

Each of four elementary motions is described by 
corresponding particular transfer matrix. We find a final 
matrix by multiplying the particular transfer matrices that 
represents the conversion from (i) system coordinate into  
(i-1) connected with the corresponding links of the linkages. 

Based on the final matrix the expression for determining 
the generalized coordinate is written as a function of the 
given position of the input link of a linkages. 

The coordinate systems of the lifting mechanism actuator 
are illustrated in figure 2. Kinematic scheme of the lifting 
mechanism contains eleven rotational kinematic pairs and 
one progressive so such parameters as ai and i are constant 
and i и di should be found. 

The investigated lifting mechanism has a complex 
structure; therefore, we divide it into four loops: 

)(1 FADFАDК  ;        (21) 

) (2 MAPМBPOBК  ;     (22) 

) (3 MAPМCPECDEODК  ;     (23) 
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) (4 MALMGLCGECDEODК  .   (24) 

 

 
Fig. 2. Calculation scheme of the actuator of the lifting mechanism 

 
The first loop is used to establish the relationship between 

the motion of rod 4 of cylinder 5 and connecting rod 3. The 
remaining loops allow to obtain the system equations which 
solution determines the interaction between other movable 
links of the mechanism. 

The parameters of the lifting mechanism joints of the 
loops, mentioned above, are presented at the table 1. 

Writing the generalized coordinates for each joint of 
circuit K1 (fig. 2), we obtain the homogeneous coordinate 
transformation matrix: 
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where    iiiiii SinSSCosCС   , . 

Then we calculate the matrix T1 as multiplying the 
appropriate transmission matrix A1

1, A2
1 and  A3
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TABLE 1 

KINEMATIC PARAMETERS OF LIFTING MECHANISM JOINTS FOR FOUR 

LOOPS 
Pairs Type of 

the pair 
i di i ai sin(i) cos(i) 

)(1 FADFАDК   
0-4 slide 0 d4 0 0 0 1 

4-2.2 rotate 22 0 0 а22 0 1 
2.2-3 rotate 3 0 0 а3 0 1 

) (2 QAPQBPOBК   
0-1.2 rotate 12 0 0 а12 0 1 

1.2-6.1 rotate 61 0 0 а61 0 1 
6.1-9.1 rotate 91 0 0 а91 0 1 

) (3 QAPQCPECDEODК 
 

0-1.1 rotate 11 0 0 а11 0 1 
1.1-2.1 rotate 21 0 0 а21 0 1 
2.1-7.2 rotate 72 0 0 а72 0 1 
7.2-6.2 rotate 62 0 0 а62 0 1 
6.2-9.1 rotate 91 0 0 а91 0 1 

) (4 QALQGLCGECDEODК   
0-1.1 rotate 11 0 0 а11 0 1 

1.1-2.1 rotate 21 0 0 а21 0 1 
2.1-7.1 rotate 71 0 0 а71 0 1 
7.1-8 rotate 8 0 0 а8 0 1 
8-9.2 rotate 92 0 0 а9 0 1 

 
We obtain the coordinate transformation matrix for 

circuit K2 correspondingly: 
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The matrix T2 for the loop, mentioned above, will be 
equal: 
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where using the trigonometric functions for sum and 

differences of angels we simplify elements 2
ijt  for i, j = 

1,…,3. 
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The coordinate transformation for the circuit K3 could be 

found as follows: 
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The final transformation matrix T3 assumes the form: 
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The transformation matrices for points D and E of the 
circuit K4 are similar, i.e. 3

1
4

1 АА   and 3
2

4
2 АА  . The 

elementary motion for coordinate systems associated with 
points С, G, L and Q can be written as: 
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The transformation matrix Т4 is calculated in the same 
way: 
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where  928712111
4
11   Сt ; 
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Because the result of matrices (27) and (28) for loops K3 
and K4 are equal, we find the joint Q position of the output 
link in the local coordinate system of the triangle beam 
ODB by equaling the corresponding elements of Т3 and Т4 
matrix: 
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where    ;9287121916272211   CCf   
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T-transformation which relates to the output link PQL 
defines coordinate system origin with the position vector 

 Тzyx pppp ,,  where T – transpose operation. The 

orientation of the working body of the lifting mechanism in 
space is defined by the unit vector (а, о, n) directed along 
the system Px9y9z9. Thus, the matrix T can be written as: 
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To find the difference between the elements of the 
matrices (23) to the corresponding elements of matrix (28) 
we equal them to the elements of matrix (29). As a result we 
obtain twelve equations for calculation the vector of the 
angle and movement in the joint: 
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  (31) 

Substituting in the first and third equation of the system 
(31) to the expression (29), we determine the formula for 
b11, …, b22: 
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Using the Kramera’s method, we obtain the formula for 
the computation unknown parameters С11, …, S11: 
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where     26112161121 fSfCl   ; 

    16112261122 fSfCl   ; 

    26112161123 fSfCl   . 

The resulting solution is unstable due to the following 
reasons: 
 function arccos() and arcsin() are inconvenient 

because the calculation accuracy of their value 
depends on the argument; 

 equalities (32) and (33) will be neither determined or 
given the low accuracy if the trigonometric functions 
take values close to zero.  

We chosen the arctangent function for the computation of 
the 11 angle since its values belong to the interval 
0112: 
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If we denote the denominator of (35) by τ1 and the 
numerator by τ2, the angle 11 will be determined by taking 
into account the relevant accessories as follow: 



























.0,0,090-

,0,0,09180-

,0,0,01890

,0,0,090

2111

2111

2111

2111

1

2
11










если

если

если

если

arctg
 

The analytical expressions for calculation generalized 
coordinate allow to provide the given working body 
position of the lifting mechanism. The results of the inverse 
kinematics will be used to develop a control system of the 
mechanism. 

IV. THE NUMERICAL EXPERIMENT 

Numerical solution of the kinematical synthesis and 
analysis of the lifting mechanism (Fig. 1) is conducted by 
the mathematical software application Model Vision 
Studium (MVS). The software application is an integrated 
graphical environment for quickly creating interactive visual 
models of complex dynamical systems that conducts 
computational experiments allowing to set the equation in 
the usual mathematical form, to obtain the time and the 
phase diagram, modify, visualize, and get animation of the 
object of study. 

In accordance with the obtained numerical values of the 
kinematical parameters of the lifting mechanism [5], and 
mathematical model of kinematic analysis described in 
Section 2, it simulates operation of the actuator and the 
visual model. 

Figures 3 and 4 show that the travel of the rod in the 
hydraulic cylinder is 265 mm that leads to lifting of the 
output lever of the investigated multi-unit linkage to 
1803.27 mm. Synthetic scheme and the values of 
kinematical parameters are obtained by solving the problem 
of kinematical synthesis. When the generalized coordinates 
change within the range from 585 mm to 850 mm there are 
no breaks in the kinematical chain.  
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Fig. 3. Diagram of moving joint. 

 

300,0

700,0

1100,0

1500,0

1900,0

2300,0

560,0 610,0 660,0 710,0 760,0 810,0 860,0

l DA, mm

SL, mm

 
Fig. 4. Diagram of motion of the output link. 

 
The angle of heel of the working platform diagram of the 

multilink planar linkage is shown in Fig. 5. 
The results show that the output link of the mechanism 

has the maximum inclination in 2,51 degrees along the 
horizontal axis of the mount coordinate system. 

Figures 6 and 7 show the absolute values of analogue of 
velocity and acceleration of the links and actuator lift 
mechanism. 
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Fig. 5. Diagram of the angle of heel lift of work platform. 
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Fig. 6. Diagrams of values of velocities of the lifting mechanism. 
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The analysis of the kinematic diagrams of velocity and 

acceleration of links of the lifting mechanism shows the 
high quality of motion transmission, the highest values of 
these characteristics are reached when the stage begins to 
move. 

 

 
Fig. 7. Diagrams of values of accelerators of the lifting mechanism. 

 

 
Fig. 8. The preset position of the actuator 

 
The preset position of the actuator of the lifting 

mechanism is shown in the fig. 8 setting motion of the 

working platform  Тxpp 0,1000, . The working body 

orientation in space with plane-parallel motion of the output 
link gives the unit vector (а, о, n). 

IV. CONCLUSION 

Generally, the lifting machines are constructed on the 
base of scissors lift lever system called Nuremberg scissors 
and a lifting cargo platform. The key disadvantages of the 
lifting systems, mentioned above, are the following: limited 
lifting capacity; low stability at the highest position of the 
platform; low operation parameters and durability; structure 
complexity and high material capacity. 

The proposed structure of the lifting machine is based on 
the multi-lever plane mechanism with a changeable closed 
loop, with increased lateral and longitudinal stiffness 
providing lifting action by only one hydraulic actuator.  

The results of calculation show that the operating 
platform moves within the vertical working area from 0,3 m 
through 1,8 m. The parallel level motion of the platform has 
a negligible inclination in 2,51 degrees and does not impact 
the operational capacity of the system. The estimated load 
capacity of the proposed mechanism is up to 200 kg. It can 

be folded for transportation and used for both internal and 
external construction work.  

The kinematic characteristics of the lifting mechanism 
designed in this paper are necessary not only to assess the 
quality of the synthesis scheme of the mechanism, but also 
for solving problems related to the strength calculation and 
construction of its parts, evaluating the dynamic properties 
of a mechanism that will be the subject of further 
researches.  
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