
MIPS, ARM and SPARC- an Architecture
Comparison

Sarah El Kady, Mai Khater, and Merihan Alhafnawi

Abstract—This paper provides an insightful comparison be-
tween three of the most popular and widely-used Reduced
Instruction Set Architecture (RISC) processors- MIPS, ARM
and SPARC. In order for the reader to acknowledge the differ-
ences between those three architectures and fully understand
the significance of each one, a comparison between the three
architectures is very important. Given that MIPS, ARM and
SPARC are used in many different applications, this paper
provides a comparison to be able to cover as many software
and hardware applications used by these three architectures
as possible. After reading this paper, the reader would have
had enough information on the three RISC processors, the
differences between them, and where they are most effectively
used. This in turn will help in determining which ISA of
the selected three is most suitable for the reader’s required
application.

Index Terms—registers, memory access time, stack imple-
mentation, architecture, exception handling.

I. INTRODUCTION

ONE sometimes finds it challenging to choose which
Instruction Set Architecture to use for implementing a

specific hardware and/or software application. This paper at-
tempts to cover as many applications as possible by providing
a comparison between three ISAs that are used in different
fields. With the lack of some significant information about
specific processors like SPARC and the rapid change of the
hardware technologies in the market, how can one decide
which processor is the most efficient performance-wise and
cost-wise with one’s desired application? Accordingly, this
paper will provide sufficient information to help make this
decision. Crucial as it is, programmers need to decide on
which factors are most important in their application. That
is, which factors, if increased or decreased, will affect the
performance, the cost or other factors of the application
negatively or positively? Through knowing information about
the three ISA and acknowledging their differences, program-
mers are then able to make this decision confidently, which
could result in bettering their application and its usability.
This information will be demonstrated through a comparative
study between three of the most renowned ISAs worldwide:
MIPS, ARM, and SPARC. This paper presents the interesting
features and background of MIPS, ARM, and SPARC by

Manuscript received March 15, 2014; revised April 03, 2014. This work
was supported by the Office of the Dean of the Undergraduate Studies by
The American University in Cairo.

S. El Kady is with the Department of Computer Science and Engi-
neering, The American University in Cairo, Cairo, Egypt (E-mail: sara-
helkady@aucegypt.edu).

M. Khater is with he Department of Computer Science and En-
gineering, The American University in Cairo, Cairo, Egypt (E-mail:
maimagdi@aucegypt.edu).

M. Alhafnawi is with the Department of Computer Science and Engi-
neering, The American University in Cairo, Cairo, Egypt (E-mail: meri-
han@aucegypt.edu).

being divided into sections that highlight the main differences
between each of them.

II. HISTORY

This section provides an introduction to the three ISAs
through speaking briefly about their history (MIPS, ARM and
SPARC, respectively). The Microprocessor without Inter-
locked Pipeline Stages known as MIPS is one of many RISC
processors. RISC processors commonly use a load/store
architecture where the only instructions that can deal with
the memory are load and store. MIPS was invented in the
early 1980s in Stanford University. When researchers started
to develop MIPS, it was to support embedded systems and
connectivity. However, currently, it started to support the
mobile market as well. Multiple versions of MIPS have been
developed over the years; starting from MIPS I up to MIPS V.
In addition, there were other two types of MIPS architectures
developed: MIPS-32 and MIPS-64.

The ARM processor was developed by a British com-
pany called Acorn Computer in 1985. The companys target
back then was low cost PCs. Later, Acorn introduced an
advanced RISC machines and changed ARM from (Acorn
RISC Machines) to Advanced RISC Machines. Now, ARM
is a leading architecture in many market segments, especially
cost sensitive embedded systems. [1]

The scalable Processor Architecture known as SPARC
ISA was developed by Sun Microsystems in 1987. SPARC
has a wide range of CPU implementation compatibility,
many compilers tool, a licensable standard UNIX operating
systems, and window system and graphical user interface
(GUI) and many other features. In addition to that, it is
considered a solution for high-performance [2].

III. APPLICATIONS AND MARKET

This section is very helpful in determining where MIPS,
ARM and SPARC are used and where their places are in the
market.

A. MIPS

Unlike SPARC, MIPS has many market applications. All
these applications are cheaper when a processor like MIPS
is used in embedded systems and networking where complex
processes take place.

One of the advantages of MIPS is that it has many open
source implementations. This makes MIPS a more popular
choice among beginners who are trying to code in assembly
language. However, the simplicity of MIPS ISA compared to
other architectures is what makes it the most popular choice
among beginners. Thus, many educational institutions use
it to teach their students about assembly language before
introducing them to other ISAs.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

MIPS Management (MM) is a MIPS application that
ensures that programs running on MIPS are performing
well [3]. Nowadays, MM ensures lower demands on system
resources by reducing the amount of CPU resources used.
This, in turn reduces the cost of running applications using
CPU cycles that are not in use which makes it very beneficial
in avoiding faults. For example, it is very helpful in coding
online transactions. In addition to that, MIPS has an MMU
(Memory Management Unit) chip that helps in utilizing the
memory resulting in the reduction of unnecessary memory
loss and cost of memory consumption. Lately, MIPS has been
integrated closely with networking and mobile applications
because of its effective costs and less power consumption
[4].

MIPS has started to slightly fall behind ARM starting 2011
due to the fact that ARM had worked hard to develop itself
in the area of mobile application development - the market
interest nowadays. However, MIPS was revived by targeting
the Chinese market and dedicating more core processors.

B. ARM

Many believe that ARM has secured its future for many
years ahead of its time. This is due to the wide spread of
its processors in all areas of technology and its strategy in
updating these processors to meet the new functionalities
demanded by the market.

As the high performance, low implementation size and
low power consumption are key features of all ARM archi-
tectures, ARM has developed two main profiles: the ARMv8-
A architecture profile for high performance markets such as
mobile and enterprise, and the ARMv8-R architecture profile
for embedded applications in automotive and industrial con-
trol. In addition to that, ARM has two different Cortex series:
firstly, the Cortex-M series which offers an ideal solution for
most embedded applications. Secondly, the Cortex-A series
which is widely used in telemedicine, security and avionics
[1].

Keeping up with the markets demands, ARM has de-
veloped multiple extensions supporting java acceleration.
Those extensions include Jazelle, security (TrustZone), Sin-
gle Instruction Multiple Data (SIMD), and advanced SIMD
(NEON) technologies.

Education-wise, the widespread of ARM’s processors and
ISAs in the market forced many universities to change some
of their courses curriculum and include ARM for students to
acquire the necessary up-to-date knowledge.

C. SPARC

Unlike MIPS and ARM, SPARC is not used for edu-
cational purposes. It is mainly used by programmers and
computer architects who deal with server applications and
lower level programming. SPARC was owned by Sun Mi-
crosystems for almost 25 years until it was acquired by
ORACLE Corporation in 2010. During those 25 years, Sun
published many applications for the SPARC based computer.
In its early years, Sun released the SPARCstation1 which
tripled the performance of the first SPARC based single
processor. Later on, Sun developed Solaris which is the
operating system for SPARC computers. In 2004, SPARC
launched the Dual-Core UltraSPARC IV which was the first

multi-core SPARC processor. Following that, it launched the
first UltraSPARC of the T-series which was an 8-core system
on a chip. In 2010, when SPARC was acquired by ORACLE,
SPARC was commonly used in SUN ORACLE Station.
Since then, ORACLE worked very hard on the SPARC
processors to improve the utilization of the system and its
efficiency and that was shown in the new versions of the
M-Series and T-series UltraSPARC that was just launched.
In addition to that, ORACLE launched different types of
servers. For instance, SPARC servers, which run on Solaris
and have a very high-performance. Those are: Sun Blade
Servers, which integrate both x86 and SPARC-based servers,
and Sun Netra Carried-Grade Servers which are designed for
the 4G infrastructure [5].

IV. ARCHITECTURAL DIFFERENCES

This section highlights the major distinctions among the
three processors in the architectural context.

A. MIPS

MIPS provides low overhead and power efficiency. Sir
Hossein Yassaie, CEO of Imagination Technology, pointed
out, in the Imagination Press in 2013 in Seoul, that MIPS
is less complicated than other processors since it uses less
instructions when achieving a specific task, making it a less
power consuming processor [6].

B. ARM

One of the features that distinguishes ARM is its very
dense 16-bit compressed instruction set ”Thumb” that exe-
cutes instructions unconditionally. Many of Thumb’s instruc-
tion formats are less regular than those of ARM’s. Also,
one of ARM’s architectural differences is that the cores
used can switch between two execution states: ARM or
the 16-bit thumb. Some ARM cores introduce the Thumb-2
instruction set, which is basically a mixture of 32 bit and
16 bit instructions maintaining the instruction density yet
keeping it more flexible [7], [8].

C. SPARC

There are three main differences among SPARC and other
RISC architectures, such as MIPS and ARM. The first
architectural difference is the Register File Model, which
unlike SPARC’s peers, is not a flat 32-register. Quoting Ben
J. Catanzaro It is a set of overlapping register windows
arranged as a circular buffer. This circular file model is very
efficient in the handling of dynamic linking. The second ar-
chitectural difference is Annulling Delayed Branches which
means that the instruction that is in the delay slot of the
branch (unless it is a branch instruction) will be copied in
the delay slot and will not be executed until the branch is
taken. Last but not least is SPARC’s Software Environment
which is considered a low-cost RISC computer that is based
on open standards [9].

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

TABLE I
REGISTERS CONVENTION COMPARISON

MIPS ARM SPARC

Number of Registers
/ width

32 registers/32-bits 37 registers/32-bits 37 registers/32-bits

Register Division Registers are reserved for special op-
erations.

• Two-special purpose registers:
Hi/LO: they store the results of
the integer multiply and divide
instructions

• 30-General Purpose registers:
from $0 to $31.

1) $0: hardwired to zero
2) $31: link registers.
3) $29: stack pointer.

Registers are divided into groups:
• 31 General-purpose Registers:

– Unbanked registers: from
r0 to r7

– Banked registers: from r8
to r14

• Status Registers:
1) Current Program Status

Register (CPSR)
2) the last five are called

saved program status
register (SPSR)

Registers are divided into four
groups:

• In Registers: from %i0 to %i7.
• Global Registers: from %g0

to %g7. %g0 is always hard-
wired to zero.

• Local Registers: from %l0 to
%l7. They are user freely in
any code.

• Out Registers: from %o0 to
%o7

V. REGISTERS CONVENTION

This section highlights the major distinctions among the
three processors in the architectural context. To elaborate
more on the registers conventions of each ISA, we present
Table I which compares the registers from three perspectives:
Number of Registers, Registers width, and registers division.
Note that MIPS registers are referred to with a dollar sign ($),
ARM registers are referred to with the real register number
and SPARC registers are referred to with the percentage sign
(%).

VI. OPERATING MODES

This section covers the different operating modes for the
three different ISAs. Each operating mode is allowed to
access certain registers and to use certain instructions.

A. MIPS

MIPS has only two operating modes: the kernel (supervi-
sor) mode and the user mode. In the kernel mode, when the
status bit is set to 0, the operating mode is switched to the
kernel mode and can access and change all registers. This
mode has the privilege over other modes and gets switched
to in case of an error, interruption, exception or at power up.
In the user mode, when the status bit is 1, the operating mode
switches to the user mode. This mode is accessed by users
and has a lower privilege than that of the kernel mode. It also
prevents different users from interfering with one another
[10].

B. ARM

ARM has seven basic operating modes, starting with the
processor mode which has two operating modes under it, the
user mode and the privileged mode. The user mode is where
most applications’ contents or operating systems’ tasks run.
The privileged mode has under it two operating modes, the
system mode and the exception mode: the system mode is
the privileged mode which uses the same registers as used
by the user mode. The exception mode has five operating
modes under it: the first operating mode is the Supervisor

(SVC) which is entered under two conditions, when on rest
or when Software Interrupt Instruction (SWI) is executed, the
second mode is Abort (ABT) mode which is used to handle
memory access violations, the third mode is the Undefined
(UND) mode which is used to handle undefined instructions,
the fourth mode is the Interrupt (IRQ) mode which is entered
when a high priority interrupt is raised. Last but not least,
the Fast Interrupt (FIQ) mode which is entered when a high
priority interrupt is raised [11].

C. SPARC

SPARC executes the instructions in only two modes: the
supervisor mode and the user mode. The supervisor mode
is used to access the processor state registers, such as the
Window Invalid Mask (WIM), and the input/output devices.
Also, in the supervisor mode, there is a full access to the
memory and its system tables making it privileged in almost
all architectures. The user mode is used to write to and read
from the processor state register and has a limited access
to the memory since a load or a store instruction cannot be
executed in it. Additionally, to know whether the processor
is in the user mode or in the supervisor mode, the processor
status word is used to determine the current state of the
processor [12] [13].

VII. ADDRESSING MODES

This section compares the different addressing modes used
in each ISA since the method the address is calculated with
differs slightly from one ISA to another.

A. MIPS

MIPS support five addressing modes:
Register Addressing: This mode is mainly used in calculat-
ing the effective address of the jump register (jr) instruction.
Immediate Addressing: This mode does not access memory
and thus is relatively faster than other modes. The immediate
is of size equal to 16-bits.
PC-Relative Addressing: This mode is used to determine
when the branch instruction occurs by summing the offset

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

value with the PC.
Pseudo-direct Addressing: This mode is used in the jump
instruction where the value of the offset is 6-bits and the
target of the instruction jumped to is 26-bits. The upper four
bits of the PC and the least two significant bits, which are
00, are all concatenated with the 26-bit immediate resulting
in a 32-bit instruction.
Base Addressing: This mode is used in store word and load
word instructions. It is known as the indirect addressing since
the register acts as a pointer to some memory location whose
address could be found in the register [10].

B. ARM

ARM supports multiple addressing modes, including
modes that allow direct bit shifting. There are four main
addressing modes to calculate the effective address:
Pre-indexed Addressing: In this mode, the
source/destination address is stored in a register offset
by another value. Figure 1 (a), shows how the load
operation is used to calculate the pre-indexed effective
address.
Pre-indexed Addressing with Write Back: In this mode, it
is sometimes useful to save the new address in a register. To
indicate that this effective address is being written back, add
an exclamation mark (!) at the end of the load instruction.
Figure 1 (b) describes the operation of the write back.
Post-Indexed Addressing: This mode is similar to Pre-
Indexed Addressing with Write back. However, the address
is modified and saved only after the load/store operation.
Figure 1 (c) illustrates the effective address calculation in
the post-indexed addressing mode [14].
Program Counter Relative Addressing: This mode allows
the ARM architecture developers to address memory relative
to the Program Counter (r15).

(a) Pre-indexed addressing mode (b) Pre-indexed addressing mode
with write back

(c) Post-indexed addressing mode

Fig. 1. ARM Addressing Modes

C. SPARC

SPARC supports two addressing modes to compute the
effective address: the register indirect with index mode and

the register indirect with immediate addressing mode.
The Register indirect with index: This mode computes the
effective address by adding the contents of the base register
to those of the index register. The effective address cannot
be equal to only the base register but the index register could
be made equal to zero and by that the effective address will
be equal to the base register. E.g.: Ld [%o1], %o2
The Register indirect with immediate: This mode com-
putes the effective address by sign extending the 13-bit
immediate to 64 bits and then adds the contents of the base
register to it [7]. The effective address could be made equal
to the base register by making the constant equal to zero.
E.g.: Ld [%o1+30], %o2

VIII. CONDITIONAL EXECUTION

This section compares the three ISAs with respect to their
abilities to execute instructions conditionally. Conditional
execution saves most of the CPU time as it does not execute
an instruction unless its flag is set to the appropriate value
(i.e. no unneeded instructions will be executed).

A. ARM

In ARM, almost all instructions contain a condition field
which determines whether the CPU will execute those in-
structions or not. Non-executed instructions consume one
cycle. NOP (No Operation) instruction cannot be collapsed;
it should complete its cycle normally. This feature in ARM
allows very dense in-line coding without branches. The time
penalty of not executing several conditional instructions is
frequently less than that of branching overheading. This
conditional execution is implemented using 4 bits (Condition
field).

In code, all instructions can be made to execute condi-
tionally by adding a postfix that sets the condition field
with the appropriate bits to execute a certain condition. For
instance, if you want to execute the ADD instruction only
if the zero flag is set, then the instruction will be written as
ADDEQ r0, r1, r2 and will be translated to the following:
if zero flag is set, then r0=r1+r2. Otherwise, do not execute
the addition. The default is that data processing instructions
(i.e. Arithmetic instructions) do not affect the condition flags,
but if programmers want to update the condition flag, they
can use the letter S after the instruction. For instance, the
previous instruction will be ADDS r0, r1, r2 which will be
translated to r0=r1+r2 and then set the desired flag. Data
processing instructions are the largest family of instructions
sharing the same instruction format which support the RISC
architecture. These instructions include arithmetic operations,
comparisons, logical operations, and data movement between
registers [15].

B. SPARC

SPARC has the condition code update opportunity. A
conditional flag is determined by a single bit when the
instruction is encoded. There are four conditional flags: Z
(Zero), N (Negative), C (Carry), and V (over flow). The zero
flag (Z bit) is used when the result in the operation is zero
and is diminished when the result is otherwise. Similarly, the
Negative flag (N bit) is set when the result of the operation
is negative and removed when the result is positive. The

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

overflow flag (V bit) is used when the signed integer result
cannot be represented in 32 bits and is cleared when the
result can be stored in 32 bits. Finally, the carry flag (C
bit) is set when the operation generates a carry out of the
most significant bit, and cleared otherwise. To use any of
the condition codes, add ”cc” to the end of the arithmetic
operation. For example, if you want to add the carry bit,
you can use this instruction: ADDc Rs1, Rs2, Rd but if
you want to add the carry bit and check on something
before adding the two registers, you can use this instruction:

ADDccc Rs1, Rs2, Rd

IX. EXCEPTION HANDLING

This section shows what happens in case of the occurrence
of an exception and how each ISA handles it.

A. MIPS

Exception handling in MIPS is supported by the copro-
cessor 0. When an interruption occurs, the content of the
PC gets stored in the Exception Program Counter (EPC).
Then PC gets the new value which is the address of the
instruction to which the interruption is going to be handled.
Afterwards, the operating mode switches from the user mode
to the kernel mode. Finally, after handling the exception, the
return address is incremented by 4 to avoid executing the
same instruction again and the PC gets the address of this
instruction and continues executing normally [16].

There are four main registers that handle exceptions in
MIPS: register 8 (BadVAdder) which holds the memory
address at which the exception occurred, register 12 (Status)
which enables the bits, masks the interruption and states
when an interruption happens, register 13 (Cause) which
holds the type of exception happened and pending interrupt
bits, and register 14 (EPC) which has the address of the
instruction that caused the exception [17].

B. ARM

ARM exception handling is only made in the ARM mode;
however, for Thumb-2 cores, the switch between the modes
is not needed. When an interrupt occurs, the core copies
the Current Program Status Register (CPSR) into the Saved
Program Status Register (SPSR) then sets the appropriate
CPSR bits to change to ARM state, change to exception
mode and disable interrupts. Finally, the PC is set to the
interrupt vector address [8].

C. SPARC

In SPARC, when an exception or a trap occurs, the trap
enable known as (ET) gets cleared and the processor switches
to the supervisor mode by changing the current processor
execution state to be stored in the previous state bit. Then,
the current window pointer (CWP) is decremented and the
program counter (PC), NPC and Processor State Register
(PSR) are saved in the first three local registers (%l0 to %l2)
and the code of the trap handling is stored in %l3 to %l7.

X. STACK IMPLEMENTATION

This section starts with a brief description of what the
stack is and then proceeds to a Table 2 where the comparison,
in terms of stack implementation, is shown in details.

A stack is a data structure that is used for the storage
of data. The data can be saved or obtained via operations
done on the stack, named stack pushing and stack popping,
respectively. The following two figures (Figures 2 and 3)
illustrate the mechanism of pushing and popping [18].

TABLE II
STACK IMPLEMENTATION COMPARISON

MIPS ARM SPARC

Direction
of the
Stack
growth

The Stack
grows
downward

ARM supports
both ascending
and descending
stack

The stack
grows
downward

Push
and Pop
Instruc-
tions

Does not
support
push/pop
instructions.
Instead, it
manipulates
the stack
pointer
(register
29.

No explicit
push/pop
instructions
but it can
manipulate the
stack pointer
to do so

No explicit
push/ pop
instructions
but can be
implemented
using the stack
pointer(sp)

Fig. 2. Stack popping. The stack pointer (SP) copies the data, in the address
given, in a register first, and then moves the stack pointer.

Fig. 3. Stack pushing. The stack pointer (SP) is moved in order to place
the contents of register 3 (R[3]) into the address that the stack pointer is
pointing to.

XI. CONCLUSION

Due to the incredible pace in which new technologies
in computer architecture emerge, more development and
enhancements are predicted to happen in the near future.
This will make the choice of which ISA to use harder as
the options would be increasing and the specifications of all
the ISAs would become similar to some extent. Given that
finding a resource that would address these three particular
ISAs in a comparative study is very hard, this paper was
written to provide a tool for the reader not only to see the
differences between MIPS, ARM, and SPARC, but also to
be able to choose which processor to use for the required
job at hand.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

ACKNOWLEDGMENT

Our greatest gratitude goes to Professor Khaled El Ayat
for his insightful observations and extensive help and support
in revising this paper.
We would like to express our sincere thanks to Dr. Yousra
El Kabani for her assistance in reviewing our paper and her
constant encouragement and help.
Thanks to Professor Howaida Ismail for providing us with
all the needed knowledge and for her incredible suggestions
in improving this paper.
We would finally like to thank Professor Mohamed Moustafa
for providing us with helpful comments.

REFERENCES

[1] A. I. Center., ARM Information Center. N.p., n.d.
[2] B. J. Catanzaro, Ed., The SPARC Technical Papers. New York, NY,

USA: Springer-Verlag New York, Inc., 1991.
[3] C. Corporation, Best Practices For Improving Application Performance

and Lowering Cost by Managing MIPS., 2012.
[4] L. Kwiatkowski and C. Verhoef, Reducing operational costs through

MIPS management. Department of Computer Science, Vrije Univer-
siteit Amsterdam, 2012.

[5] O. CORPORATION, ORACLE SPARC 25 Years of SPARC Innovation.,
2014.

[6] J. Bae, Imagination Technologies brings MIPS Architecture to the fore.,
2013.

[7] S. P. Dandamudi, Guide to RISC Processors for Programmers and
Engineers. Springer Science+Business Media, Inc., 2005.

[8] M. McDermott, EE382N-4 Embedded Systems Architecture The ARM
Instruction Set Architecture.” Lecture. EE345M/EE380L Course Ma-
terial, Spring 2014. The University of Texas at Austin, 2014.

[9] O. CORPORATION, Sun Servers, Integrated Systems, ORACLE. Or-
acle.com., 2014.

[10] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2003.

[11] A. Denault, Other Architectures (ARM, IA-64,etc) Lecture. Index of
CS 573. School of Computer Science, McGill, 2005.

[12] R. P. Paul, SPARC Architecture, Assembly Language Programming,
and C, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall PTR,
1999.

[13] D. L. Weaver and T. Germond, The SPARC Architecture Manual,
9th ed. Englewood Cliffs, NJ, USA: PTR Prentice Hall, 2003.

[14] M. Shalan, ARM ISA. Department of Computer Science and Engi-
neering, The American University in Cairo, 2013.

[15] Samsung, S3C4510B. Samsung.
[16] D. Chiarulli, 4a: Exception and Interrupt handling in the MIPS

architecture. University of Pittsburg, 2014.
[17] R. Teodorescu, Instruction Set Architecture of MIPS Processor Pre-

sentation B. The Ohio State University, 2008.
[18] C. Lin, Understanding the Stack. Department of Computer Science,

University of Maryland, 2003.

AUTHORS

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

