
Analysis of Software Project Reports for Defect

Prediction Using KNN

Rajni Jindal, Ruchika Malhotra and Abha Jain

Abstract— Defect severity assessment is highly essential for

the software practitioners so that they can focus their attention

and resources on the defects having a higher priority than the

other defects. This would directly impact resource allocation and

planning of subsequent defect fixing activities. In this paper, we

intend to predict a model which will be used to assign a severity

level to each of the defect found during testing. The model is

based on text mining and machine learning technique. We have

used KNN machine learning method to predict the model

employed on an open source NASA dataset available in the PITS

database. Area Under the Curve (AUC) obtained from Receiver

Operating Characteristics (ROC) analysis is used as the

performance measure to validate and analyze the results. The

obtained results show that the performance of KNN technique is

exceptionally well in predicting the defects corresponding to top

100 words for all the severity levels. Its performance is less for

top 5 words, better for top 25 words and still better for top 50

words. Hence, with these results, it is reasonable to claim that the

performance of KNN is dependent on the number of words

selected as independent features. As the number of words

increases, the performance of KNN also gets better. Apart from

this, it has been noted that KNN method works best for medium

severity defects as compared to the other severity defects.

Index Terms—Receiver Operating Characteristics, Text

mining, Machine Learning, Defect, Severity, K-Nearest

Neighbour

I. INTRODUCTION

Now-a-days, various defect reporting/ tracking systems such as

Bugzilla, CVS etc. are maintained for open source software

repositories. These systems play an important role in tracking

the defects which may be introduced in the source code [14].

These defects are then reported in a defect management

system (DMS) for further analysis. Although, the issues of

software are tracked using defect tracking systems which store

the reported defects along with their details.
 However, the data present in such systems is generally in
unstructured form. Hence, text mining techniques in
combination with machine learning techniques are required to
analyze the data present in the defect tracking system.

Manuscript received March 14, 2014; March 31, 2014

Prof. Rajni Jindal is with Indira Gandhi Delhi Technical
 University for Women, Delhi, India (email: rajni.jindal@yahoo.co.in)

Dr. Ruchika Malhotra (Corresponding Author phone: 91-011-26431421)

is with Delhi Technological University, Delhi, India (email:
 ruchikamalhotra2004@yahoo.com)

Abha Jain is with Delhi Technological University, Delhi, India (email:

 me_abha@yahoo.com)

In the present scenario, an automated tool is required to collect

the data from software repositories so that it can be analyzed

and interpreted in order to make generalized conclusions. The

defects in the software may be associated with various severity

levels. For instance, catastrophic defects are the most severe

defects and a failure caused by such defects may lead to a

whole system crash [1], [5].

 In this paper, we mine the information from the NASA’s

database called PITS (Project and Issue Tracking System), by

developing a tool that will first extract the relevant

information from PITS using text mining techniques. After

extraction, the tool will then predict the defect severities using

machine learning techniques. The defects are classified into

five categories of severity by NASA’s engineers as very high,

high, medium, low and very low. In this work, we have used

K-nearest neighbor (KNN) technique to predict the defects at

various levels of severity. The prediction of defect severity

will help the researchers and software practitioners to allocate

their testing resources on more severe areas of the software.

The performance of the predicted model will be analyzed

using Area Under the Curve (AUC) obtained from Receiver

Operating Characteristics (ROC) analysis.
 The rest of this paper is organized as follows: Section 2
reviews the key points of available literature in the domain.
Section 3 describes the research method used for this study,
which includes the data source and model evaluation criteria.
Section 4 presents the result analysis. Section 5 concludes the
paper and outlines directions for future work.

II. LITERATURE REVIEW

Nowadays, the analysis of defect project reports available in

various open source software repositories has become the

most essential step towards the successful completion of an

error free software project. These defect reports are contained

within the defect database and correspond to the defects which

are encountered in the real-life systems. The defects occurring

in such real-life systems are detected during testing by

developer or anyone who is involved in the development of

the product and are reported in a defect management system

(DMS) or a bug tracking system. Later on, these defects are

notified to the one responsible for the identification of its

cause and its correction [18]. Each defect has its separate

defect report which contains the detailed information about

that defect. This information generally includes; ID of the

defect, summary of the defect and associated severity of the

defect. Till date, few authors have analyzed the defect project

reports available in different open source software repositories

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

mailto:ruchikamalhotra2004@yahoo.com

for software defect prediction i.e. for predicting whether a particular part of the software is defective or not.

A very effective tool based on Natural Language Processing

(NLP) was developed by Runeson et al. [18] and Wang et al.

[22] that was used to detect duplicate reports. Cubranic and

Murphy [4] analyzed an incoming bug report and proposed an

automated method that would assist in bug triage to predict the

developer that would work on the bug based on the bug

description. Canfora and Cerulo [3] discussed how software

repositories can help developers in managing a new change

request, either a bug or an enhancement feature. Also, a lot of

empirical work has been carried out in predicting the fault

proneness of classes in object-oriented (OO) software systems

using a number of OO design metrics [2], [5], [7], [8], [11],

[12], [15], [16], [23], [25]. Although, these studies were based

on finding the relationship between OO metrics and fault

proneness of classes, but did not focus on the severity of

faults. Till date, there are only a few studies which were based

on finding the relationship between OO metrics and fault

proneness of classes at different levels of severity of faults.

 The most efficient work in the field of fault severity has

been done by the authors Singh et al. [21]. They have analyzed

the performance of models at high, medium and low severity

faults and found that the model predicted at high severity

faults has lower accuracy than the models predicted at medium

and low severities. The validation of the proposed models was

done using various OO metrics like CBO, WMC, RFC, SLOC,

LCOM, NOC, DIT on the public domain NASA dataset KC1

using DT and ANN as the machine learning methods and LR

as the statistical method. The conclusion drawn was that DT

and ANN models outperformed the LR model and that CBO,

WMC, RFC and SLOC metrics are significant across all

severity of faults and DIT metric is not significant across any

severity of faults. LCOM and NOC are not found to be

significant with respect to LSF. Somewhat same results were

also concluded in the paper by Zhou and Leung [24]. They

have investigated the fault-proneness prediction performance

of OO design metrics with regard to ungraded, high, and low

severity faults by employing statistical (LR) and machine

learning (Naïve Bayes, Random Forest, and NNge) methods.

From both the above papers, it was summarized that the

design metrics are able to predict low severity faults in fault-

prone classes better than high severity faults in fault-prone

classes. Bayesian approach was also used by the author Pai

[17] in his work to find the relationship between software

product metrics and fault proneness. Shatnawi and Li [20]

focused on identifying error-prone classes in post-release

software evolution process. They studied the effectiveness of

software metrics and examined three releases of the Eclipse

project. They observed that, the accuracy of the prediction

decreased from release to release and that there are only a few

metrics which can predict class proneness in three error-

severity categories.

 The work proposed in this paper is similar to the work done

by Menzies and Marcus [13]. The authors have presented an

automated method named SEVERIS (SEVERity Issue

assessment) which is used to assign severity levels to the

defect reports by using the data from NASA’s Project and

Issue Tracking System (PITS). Their method is based on the

automated extraction and analysis of textual descriptions from

issue reports in PITS by using various text mining techniques.

 They have used a rule learning method as their

classification method to assign the features with proper

severity levels, based on the classification of the existing

reports. Similar work has also been done by Sari and Siahaan

[19]. They have also developed a model for the assignment of

the bug severity level. They have used the same pre-

processing tasks (tokenization, stop words removal and

stemming) and feature selection method (InfoGain), but, have

used SVM as their classification method. Lamkanfi et al. [10]

have also analyzed the textual description using text mining

algorithms in order to propose a technique that is used to

predict the severity of a reported bug against three open –

source projects viz. Mozilla, Eclipse and GNOME using

Bugzilla as their bug tracking system and Naïve Bayes as their

classifier.

III. RESEARCH METHODOLOGY

In this section, we present our research method. We first
introduce the data source which elaborates on the dataset being
used in our study followed by the text classification framework
that we have used in order to extract the relevant words from
the defect descriptions. Finally, we describe our model
evaluation criteria.

A. Data Source

 We have collected the defect data from an open source

NASA’s dataset called PITS (Project and Issue Tracking

System). There are various projects that come under PITS

database all of which were supplied by NASA’s Software

Verification and Validation (IV & V) Program. We have used

PITS B project wherein the data has been collected for more

than 10 years and includes all the issues that have been found

in the robotic satellite missions and human rated system. The

focus of our study is to investigate the predictiveness of the

model with regard to the severity of defects. Therefore, we are

interested in the number of defects at each severity level as

shown in Table I.

 NASA’s engineers have classified severity 1 defects as Very

High, severity 2 defects as High, severity 3 defects as Medium,

severity 4 defects as Low and severity 5 defects as Very Low.

We are interested only in the last four severity levels i.e.

severity 2, severity 3, severity 4 and severity 5 as it can be seen

from table 1 that there are no severity one issues in the defect

data. This is so because these defects are of very high severity

level and therefore possibility of such defects in the software

become very rare.

 We went through this dataset and extracted the summary of

each defect from all the reports. We then analyzed these

textual descriptions and applied the text mining techniques to

extract the relevant words from each report. At a later stage,

machine learning method was used to assign the severity level

to each defect based on the classifications of existing reports.

As we know that the standard machine learning methods work

well only for the data with fewer number of attributes.

Therefore, before we can apply machine learning to the results

of text mining, we have to reduce the number of words,

referred to as the dimensions (i.e. attributes) in the data.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

Hence, we applied different methods of text mining for

dimensionality reduction in the following order: tokenization,

stop word removal, stemming, feature selection and

weighting.

TABLE I. NUMBER OF DEFECT REPORTS OF PITS B DATASET AT

EACH SEVERITY LEVEL

 Severity 1 Severity 2 Severity 3 Severity 4 Severity 5

Pits B 0 23 523 382 59

1) Pre-processing

Pre-processing is the first and foremost step of text mining

which is done in order to remove the irrelevant words from the

document. Irrelevant words are the words which are not

important for the learning task and rather their usage can

substantially degrade performance of machine learning

methods. The three most popular methods which are used for

pre-processing are tokenization, stop words removal and

stemming. Tokenization is the process of converting a stream

of characters into a sequence of tokens. We have done

tokenization by replacing the punctuation with blank spaces,

removing all the non-printable escape characters and

converting all the words to lowercases. Thereafter, all the stop

words like prepositions, conjunctions, articles, common verbs,

nouns, pronouns, adverbs and adjectives were removed from

the dataset by using a list of English stop words. Finally,

stemming was performed which removes words with the same

stem and keeps the stem as the feature. For example, the

words “train”, “training”, “trainer” and “trains” can be

replaced with “train”. All the words obtained after

preprocessing were called as ‘features’.

2) Feature selection

Even after performing a series of pre-processing tasks, the

number of words in the document can still be very large.

Therefore, feature selection method is used in order to further

reduce the dimensionality of the feature set. There are a

number of such methods available in the literature like

document frequency, term frequency, mutual information,

information gain, odds ratio, χ2statistic, term strength etc.

These methods use an evaluation function that is applied to a

single word. Thereafter, all these words are ranked by their

independently determined scores, and then the top scoring

words are selected.

 In this paper, InfoGain measure is used to rank all the

features obtained after pre-processing and then the top ‘N’

scoring features are selected based on the rank. According to

the InfoGain measure, the best words are those that most

simplifies the target concept, which is in our case, the

distribution of severities [13]. Suppose a data set has 80%

severity=5 issues and 20% severity=1 issues. Then that data

set has a class distribution C0 with classes c(1) = severity5 and

c(2) = severity1 with frequencies n(1) = 0.8 and n(2) = 0.2.

The number of bits required to encode an arbitrary class

distribution C0 is B(C0) defined as follows:

 (1)

Where,

 (2)

If A is a set of attributes, then the number of bits required to

encode a class after observing an attribute is:

(3)

 Where,

 (4)

The highest ranked attribute Ai is the one with the largest

information gain; i.e., the one that most reduces the encoding

required for the data after using that attribute; i.e.

 (5)

3) Weighting and Normalizing

Now, these ‘N’ features can be represented as t1, t2, . . . , tN.

The ith document is then represented as an ordered set of N

values, called an N-dimensional vector which is written as

(Xi1, Xi2, . . . , XiN) where Xij is a weight measuring the

importance of the jth term tj in the ith document. The complete

set of vectors for all documents under consideration is called a

vector space model or VSM.

 There are various methods which can be used for weighting

the terms. We have used TFIDF approach for calculating the

weights, which stands for Term Frequency Inverse Document

Frequency. Term frequency is simply the frequency of the jth

term, i.e. tj, in document i. This value makes the terms that are

frequent in the given document more important than the

others. The second value i.e. inverse document frequency is

given by log (n/nj) where nj is the number of documents

containing term tj and n is the total number of documents. This

value makes the terms that are rare across the collection of

documents more important than the others.

 Now, before we use the set of N-dimensional vectors, we

will first need to normalize the values of the weights. It has

been observed that ‘normalizing’ the feature vectors before

submitting them to the learning algorithm is the most

necessary and important condition.

B. Model Evaluation

 As we all know, defect-prone documents are treated as the

positive instances in the context of defect prediction [9]. On

this basis, we can categorize the defect prediction results into

four different types as defined below:

- TP (True Positive): defect-prone documents that are

classified correctly;

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

- FN (False Negative): defect-prone documents that are

wrongly classified to be defect- free;

- TN (True Negative): defect-free documents that are

classified correctly;

- FP (False Positive): defect-free documents that are

wrongly classified to be defect-prone.

 To measure the performance of the predicted model, we

have used the following performance evaluation measures:

1) Sensitivity

It measures the correctness of the predicted model and is

defined as the percentage of the documents correctly predicted

to be defect prone. It is also referred to as Recall.

Mathematically we can define sensitivity as,

 (6)

2) Receiver Operating Characteristics (ROC) analysis

ROC curve is defined as a plot of sensitivity on the y-

coordinate versus its 1-specificity on the x- coordinates [6].

The main objective of constructing ROC curves is to obtain

the required optimal cut-off point that maximizes both

sensitivity and specificity. An overall indication of the

accuracy of a ROC curve is the area under the curve (AUC).

Values of AUC range from 0 to 1 and higher values indicate

better prediction results.

3) Validation method used

The validation method used in our study is Hold-out validation

(70-30 ratio) in which the entire dataset is divided into 70%

training data and remaining 30% as test data. There are two

methods by which we can assign the cases. Either we can

randomly assign the cases based on relative number of cases

or else we can use a partitioning variable. We have not

randomly assigned the cases, but have rather used a

partitioning variable to assign the cases. In other words, we

have used a variable that splits the given dataset into training

and testing samples in 70-30 ratio. This variable can have the

value either 1 or 0. All the cases with the value of 1 for the

variable are assigned to the training samples and all the other

cases are assigned to the testing samples.

 To get more generalized and accurate results, we have done

validation using 10 separate partitioning variables. A single

variable is used at a time on the basis of which the given

dataset will be divided randomly in the ratio of 70-30. The

corresponding training samples will be used by KNN in order

to predict the model and the remaining testing samples will be

used to validate the model. The same process is repeated for

10 runs corresponding to each partitioning variable.

IV. RESULT ANALYSIS

In this section, we have analyzed the results corresponding to

the top-5, 25, 50 and 100 words in order to predict the best

model that gives the highest accuracy using sensitivity, AUC

and the cut-off point as the performance measures. Tables II-

V present and summarize the results with respect to high,

medium, low and very low severity levels.

TABLE II. RESULTS OF KNN FOR TOP-5 WORDS

High Severity

Defects

Medium
Severity
 Defects

Low Severity
Defects

Very Low
Severity
Defects

Runs AUC Sens
Cut-
Off

AUC Sens
Cut-
Off

AUC Sens
Cut-
Off

AUC Sens
Cut-
Off

1 0.495 00.0 0.214 0.544 66.0 0.357 0.550 59.0 0.214 0.493 10.5 0.214

2 0.496 00.0 1.000 0.548 66.7 0.357 0.556 43.3 0.357 0.495 16.7 0.214

3 0.568 14.3 0.214 0.555 37.5 0.500 0.581 58.9 0.214 0.528 17.6 0.214

4 0.559 12.5 0.214 0.520 48.0 0.500 0.554 53.7 0.214 0.473 04.8 0.214

5 0.495 00.0 0.214 0.538 40.1 0.500 0.564 58.1 0.214 0.492 10.5 0.214

6 0.498 00.0 0.214 0.564 50.7 0.500 0.550 49.6 0.214 0.437 05.0 0.357

7 0.568 14.3 0.214 0.475 32.4 0.500 0.512 56.0 0.214 0.464 05.9 0.214

8 0.582 16.7 0.214 0.596 47.3 0.500 0.584 62.0 0.214 0.489 09.1 0.357

9 0.561 12.5 0.214 0.515 43.1 0.500 0.531 55.8 0.214 0.477 04.2 0.214

10 0.628 33.3 0.214 0.545 58.9 0.357 0.539 52.4 0.214 0.542 20.0 0.214

 TABLE III. RESULTS OF KNN FOR TOP-25 WORDS

High Severity

Defects
Medium Severity

Defects
Low Severity

Defects
Very Low

Severity Defects

Runs AUC Sens
Cut-
Off

AUC Sens
Cut-
Off

AUC Sens
Cut-
Off

AUC Sens
Cut-
Off

1 0.596 25.0 0.214 0.708 70.1 0.357 0.646 39.3 0.357 0.533 21.1 0.214

2 0.691 40.0 0.214 0.739 73.7 0.357 0.697 48.6 0.357 0.595 33.3 0.214

3 0.620 28.6 0.214 0.682 69.4 0.357 0.650 46.8 0.357 0.548 23.5 0.214

4 0.795 62.5 0.214 0.726 71.1 0.357 0.669 51.2 0.357 0.587 28.6 0.214

5 0.659 33.3 0.214 0.729 70.4 0.357 0.681 51.3 0.357 0.566 26.3 0.214

6 0.684 40.0 0.214 0.696 70.9 0.357 0.653 51.3 0.357 0.632 40.0 0.214

7 0.701 42.9 0.214 0.690 69.9 0.357 0.666 45.7 0.357 0.575 29.4 0.214

8 0.590 20.0 0.214 0.708 63.2 0.357 0.639 49.6 0.357 0.530 25.0 0.214

9 0.699 44.4 0.214 0.754 71.4 0.357 0.692 51.6 0.357 0.567 25.0 0.214

10 0.822 66.7 0.214 0.738 67.4 0.357 0.677 50.9 0.357 0.573 25.0 0.214

TABLE IV. RESULTS OF KNN FOR TOP-50 WORDS

High Severity

Defects
Medium Severity

Defects
Low Severity

Defects
Very Low

Severity Defects

Runs AUC Sens
Cut-
Off

AUC Sens
Cut-
Off

AUC Sens
Cut-
Off

AUC Sens
Cut-
Off

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

1 0.698 50.0 0.214 0.746 70.7 0.357 0.709 49.6 0.357 0.701 52.6 0.214

2 0.678 40.0 0.214 0.762 73.0 0.357 0.762 57.9 0.357 0.663 44.4 0.214

3 0.682 42.9 0.214 0.758 65.0 0.357 0.668 47.6 0.357 0.674 52.9 0.214

4 0.582 25.0 0.214 0.798 75.0 0.357 0.739 47.2 0.357 0.834 76.2 0.214

5 0.813 66.7 0.214 0.810 75.7 0.357 0.757 54.7 0.357 0.681 47.4 0.214

6 0.632 30.0 0.214 0.754 70.9 0.357 0.697 53.0 0.357 0.712 55.0 0.214

7 0.754 57.1 0.214 0.796 71.0 0.357 0.739 58.6 0.357 0.675 47.1 0.214

8 0.564 20.0 0.214 0.748 70.1 0.357 0.708 53.8 0.357 0.660 50.0 0.214

9 0.742 55.6 0.214 0.728 67.9 0.357 0.681 50.8 0.357 0.562 25.0 0.214

10 0.648 33.3 0.214 0.759 70.2 0.357 0.670 57.3 0.357 0.721 55.0 0.214

TABLE V. RESULTS OF KNN FOR TOP-100 WORDS

High Severity

Defects
Medium Severity

Defects
Low Severity

Defects
Very Low Severity

Defects

Runs AUC Sens
Cut-
Off

AUC Sens
Cut-
Off

AUC Sens
Cut-
Off

AUC Sens
Cut-
Off

1 0.734 50.0 0.214 0.751 72.1 0.357 0.698 54.7 0.366 0.713 57.9 0.214

2 0.687 40.0 0.214 0.779 67.8 0.357 0.749 60.7 0.357 0.665 50.0 0.214

3 0.692 42.9 0.214 0.775 72.5 0.357 0.710 86.3 0.214 0.705 58.8 0.214

4 0.610 25.0 0.214 0.785 75.0 0.357 0.699 50.4 0.357 0.813 76.2 0.214

5 0.822 66.7 0.214 0.795 78.3 0.357 0.724 49.6 0.357 0.680 47.4 0.214

6 0.689 40.0 0.214 0.749 70.3 0.357 0.675 77.4 0.214 0.707 50.5 0.214

7 0.775 57.1 0.214 0.781 75.0 0.357 0.721 55.2 0.357 0.638 41.2 0.214

8 0.732 50.0 0.214 0.778 74.7 0.357 0.722 51.2 0.357 0.547 27.3 0.214

9 0.732 50.0 0.214 0.760 72.2 0.357 0.708 54.9 0.357 0.600 41.7 0.214

10 0.732 50.0 0.214 0.776 67.4 0.357 0.742 65.7 0.357 0.716 53.3 0.214

From table II, it becomes clear that the performance of the

model is consistent for all the severity levels when AUC is

considered for evaluation. This is so because the values of

AUC lie in the range of 0.4 to 0.6 for all the 10 consecutive

runs, irrespective of the severity levels. However, there is a

huge difference in the model prediction if we look at the

sensitivity column. The maximum value of sensitivity for

medium and low severity level is 66.7%, whereas its

maximum value corresponding to high and very low severity

level is just 33.3%. This trend suggests that model can predict

medium severity defects better than the defects having either

high or very low severity level when the number of words is

less. As we increase the number of words to 25, we can see

from table III that the prediction capability of the model is

again the best for the medium severity defects with AUC in

the range of 0.68 to 0.74 and is worst for very low severity

defects with the maximum value of AUC being 0.6. Also, the

sensitivity values for very low severity defects are just in the

range of 21.1% to 40.0%. This trend is suggesting that there

should be maximum focus on the defects having medium

severity level when the number of words considered is

nominal.

 A similar kind of trend can be seen from table IV, where the

model has performed exceptionally well in predicting the

medium severity defects as values for both AUC and

sensitivity are highest as compared to other severity levels.

But, it is evident from table V, that performance of the model

is consistent with respect to all the four severity levels when

considering AUC as the performance evaluation measure.

However, the sensitivity values indicate that the model

predicted with respect to medium and low severity defects

should be preferred over the model predicted with respect to

high and very low severity defects.

 But if we compare the performance of the model in terms of

the number of words considered for model prediction, then

there is a very clear indication of the fact that the model

performs exceptionally well when top 100 words were

considered, and that its performance drastically reduces when

the number of words considered for classification is less.

Performance of the model is worst when top 5 words were

taken into account, is still better for top 25 and 50 words, and

best for top 100 words. Hence, with these results, it is

reasonable to claim that the performance of KNN is dependent

on the number of words selected as independent features. As

the number of words increases, the performance of KNN also

improves. Apart from this, we have also observed that KNN

method works best for medium severity defects as compared

to the other severity defects.

V. CONCLUSION

Due to the widespread use of open source software

repositories, the use of defect tracking systems has become

inevitable. The issues of the software are tracked using such

systems which store the defects along with their details. Such

defects introduced in the software may be of varying severity

levels ranging from mild to catastrophic. Thus, defect tracking

systems play an important role to capture the defect data.

However, a common issue in such systems is that they are

useful for storing day-to-day information. Moreover, the

information contained within such systems is generally of

unstructured form.

 Hence in this paper, text mining and machine learning

techniques were used to analyze the defect data present in

such systems. We have used text mining techniques to mine

the information from the database and thereafter KNN

machine learning method was used to predict the defect

severities. The results were validated using NASA dataset

available in the PITS database and were analyzed using Area

Under the Curve (AUC) obtained from Receiver Operating

Characteristics (ROC) analysis. The obtained results showed

that the performance of KNN is exceptionally well in

predicting the defects corresponding to top 100 words for all

the severity levels. Its performance is poor for top 5 words,

better for top 25 words and still better for top 50 words.

Hence, with these results, we concluded that the performance

of KNN is dependent on the number of words selected as

independent features. Apart from this, we have also observed

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

that KNN method works best for medium severity defects as

compared to the other severity defects.

 Although we analyzed only one project of PITS in our study

so far, we believe that the research results can be generalized

to the other projects available in the PITS database. So, our

future work involves replication of this work in other projects

of PITS.

REFERENCES

[1] K.K. Aggarwal, Y. Singh, A. Kaur and R. Malhotra, “Empirical analysis
for investigating the effect of object-oriented metrics on fault proneness:

A replicated case study,” Software Process: Improvement and Practice,

vol. 16, no.1, pp. 39-62, 2009.
[2] C. Catal and B. Diri, “A systematic review of software fault prediction

studies,” Expert Systems with Applications,vol.36, pp. 7346-7354, 2009.

[3] G. Canfora and L. Cerulo, “How Software Repositories can Help in
Resolving a New Change Request,” Workshop on Empirical Studies in

Reverse Engineering, 2005.

[4] D. Cubranic and G.C. Murphy, “Automatic bug triage using text

categorization,” Proceedings of the Sixteenth International Conference on

Software Engineering and Knowledge Engineering, 2004.

[5] K.E. Emam and W. Melo, “The Prediction of Faulty Classes Using Object-
Oriented Design Metrics,” Technical report: NRC 43609, 1999.

[6] K.E. Emam, S. Benlarbi, N. Goel and S. Rai, “A validation of object-

oriented metrics,” NRC Technical report ERB-1063, 1999.
[7] I. Gondra, “Applying machine learning to software fault-proneness

prediction,” The Journal of Systems and Software, vol.81, pp. 186-195,
2008.

[8] T. Gyimothy, R. Ferenc and I. Siket, “Empirical validation of object-

oriented metrics on open source software for fault prediction,” IEEE
Transactions on Software Engineering, vol.31, no.10, pp. 897-910, 2005.

[9] Y. Jiang, B. Cukic and Y. Ma,“Techniques for evaluating fault prediction

models,” Empirical. Software. Engineering, vol.13, no. 15, pp. 561-595,
2008.

[10] A. Lamkanfi, D. Serge, E. Giger and B. Goethals, “Predicting the

Severity of a Reported Bug,” 7th IEEE working conference on Mining
Software Repositories (MSR), pp. 1-10, 2010.

[11] R. Malhotra and Y. Singh, “On the Applicability of Machine Learning

Techniques for Object- Oriented Software Fault Prediction,” Software
Engineering: An International Journal, vol.1, no.1, pp. 24-37, 2011.

[12] R. Malhotra and A. Jain, “Fault Prediction Using Statistical and Machine

Learning Methods for Improving Software Quality,” Journal of
Information Processing Systems,vol. 8, no.2, pp. 241- 262, 2012.

[13] T. Menzies and A. Marcus, “Automated Severity Assessment of Software

Defect Reports,” IEEE International Conference on Software
Maintenance (ICSM), 2008.

[14] G. Myers, T. Badgett, T. Thomas and C. Sandler, “The Art of Software

Testing,” second ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004.
[15] N. Ohlsson, M. Zhao, M and M. Helander , “Application of multivariate

analysis for software fault prediction,” Software Quality Journal, vol.7,

pp.51-66, 1998.
[16] H. Olague, L. Etzkorn, S. Gholston and S. Quattlebaum, “Empirical

validation of three software metrics suites to predict fault-proneness of

object-oriented classes developed using highly iterative or agile software
development processes,” IEEE Transactions on Software Engineering,

vol.33, no.8, pp. 402-419, 2007.

[17] G. Pai, “Empirical analysis of software fault content and fault proneness
using Bayesian methods,” IEEE Transactions on Software Engineering,

vol. 33, no. 10, pp. 675-686, 2007.

[18] P. Runeson, M. Alexandersson and O. Nyholm, “Detection of Duplicate
Defect Reports Using Natural Language Processing,” 29th IEEE

International Conference on Software Engineering (ICSE),pp. 499 –

508, 2007.
[19] G.I.P. Sari and D.O. Siahaan, “An attribute Selection For Severity level

Determination According To The Support Vector Machine

Classification Result,” Proceedings of The 1st International Conference
on Information Systems For Business Competitiveness (ICISBC), 2011.

[20] R. Shatnawi and W. Li, “The effectiveness of software metrics in

identifying error-prone classes in post-release software evolution
process,” The Journal of Systems and Software,vol. 81, pp. 1868-1882,

2008.

[21] Y. Singh, A. Kaur and R. Malhotra,“Empirical validation of object-

oriented metrics for predicting fault proneness models,” Software
Quality Journal, vol.18, pp. 3-35, 2010.

[22] X. Wang, L. Zhang, T. Xie, J. Anvik and J. Sun, “An Approach to

Detecting Duplicate Bug Reports using Natural Language and Execution
Information,” Association for Computing Machinery, 2008.

[23] P. Yu, T. Systa, and H. Muller, “Predicting fault-proneness using OO

metrics: An industrial case study,” In Proceedings of Sixth European
Conference on Software Maintenance and Reengineering, Budapest,

Hungary, pp.99-107, 2002.

[24] Y. Zhou, and H. Leung,“Empirical Analysis of Object-Oriented Design
Metrics for Predicting High and Low Severity Faults,” IEEE

Transactions on Software Engineering, vol. 32, no. 10, pp. 771-789,

2006.
[25] Y. Zhou, B. Xu, and H. Leung,“On the ability of complexity metrics to

predict fault-prone classes in object -oriented systems,” The journal of

Systems and Software, vol.83, pp.660-674, 2010.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4653773

