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Abstract— Defect severity assessment is highly essential for 

the software practitioners so that they can focus their attention 

and resources on the defects having a higher priority than the 

other defects. This would directly impact resource allocation and 

planning of subsequent defect fixing activities. In this paper, we 

intend to predict a model which will be used to assign a severity 

level to each of the defect found during testing. The model is 

based on text mining and machine learning technique. We have 

used KNN machine learning method to predict the model 

employed on an open source NASA dataset available in the PITS 

database.  Area Under the Curve (AUC) obtained from Receiver 

Operating Characteristics (ROC) analysis is used as the 

performance measure to validate and analyze the results. The 

obtained results show that the performance of KNN technique is 

exceptionally well in predicting the defects corresponding to top 

100 words for all the severity levels. Its performance is less for 

top 5 words, better for top 25 words and still better for top 50 

words. Hence, with these results, it is reasonable to claim that the 

performance of KNN is dependent on the number of words 

selected as independent features. As the number of words 

increases, the performance of KNN also gets better. Apart from 

this, it has been noted that KNN method works best for medium 

severity defects as compared to the other severity defects. 

Index Terms—Receiver Operating Characteristics, Text 

mining, Machine Learning, Defect, Severity, K-Nearest 

Neighbour 

I. INTRODUCTION  

Now-a-days, various defect reporting/ tracking systems such as 

Bugzilla, CVS etc. are maintained for open source software 

repositories. These systems play an important role in tracking 

the defects which may be introduced in the source code [14]. 

These defects are then reported in a defect management 

system (DMS) for further analysis. Although, the issues of 

software are tracked using defect tracking systems which store 

the reported defects along with their details.  
    However, the data present in such systems is generally in 
unstructured form. Hence, text mining techniques in 
combination with machine learning techniques are required to 
analyze the data present in the defect tracking system. 
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In the present scenario, an automated tool is required to collect 

the data from software repositories so that it can be analyzed 

and interpreted in order to make generalized conclusions. The 

defects in the software may be associated with various severity 

levels. For instance, catastrophic defects are the most severe 

defects and a failure caused by such defects may lead to a 

whole system crash [1], [5]. 

    In this paper, we mine the information from the NASA’s 

database called PITS (Project and Issue Tracking System), by 

developing a tool that will first extract the relevant 

information from PITS using text mining techniques. After 

extraction, the tool will then predict the defect severities using 

machine learning techniques. The defects are classified into 

five categories of severity by NASA’s engineers as very high, 

high, medium, low and very low. In this work, we have used 

K-nearest neighbor (KNN) technique to predict the defects at 

various levels of severity. The prediction of defect severity 

will help the researchers and software practitioners to allocate 

their testing resources on more severe areas of the software. 

The performance of the predicted model will be analyzed 

using Area Under the Curve (AUC) obtained from Receiver 

Operating Characteristics (ROC) analysis. 
    The rest of this paper is organized as follows: Section 2 
reviews the key points of available literature in the domain. 
Section 3 describes the research method used for this study, 
which includes the data source and model evaluation criteria. 
Section 4 presents the result analysis. Section 5 concludes the 
paper and outlines directions for future work. 

 

II. LITERATURE REVIEW 

Nowadays, the analysis of defect project reports available in 

various open source software repositories has become the 

most essential step towards the successful completion of an 

error free software project. These defect reports are contained 

within the defect database and correspond to the defects which 

are encountered in the real-life systems. The defects occurring 

in such real-life systems are detected during testing by 

developer or anyone who is involved in the development of 

the product and are reported in a defect management system 

(DMS) or a bug tracking system. Later on, these defects are 

notified to the one responsible for the identification of its 

cause and its correction [18]. Each defect has its separate 

defect report which contains the detailed information about 

that defect. This information generally includes; ID of the 

defect, summary of the defect and associated severity of the 

defect. Till date, few authors have analyzed the defect project 

reports available in different open source software repositories 
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for software defect prediction i.e. for predicting whether a particular part of the software is defective or not.  

A very effective tool based on Natural Language Processing 

(NLP) was developed by Runeson et al. [18] and Wang et al. 

[22] that was used to detect duplicate reports. Cubranic and 

Murphy [4] analyzed an incoming bug report and proposed an 

automated method that would assist in bug triage to predict the 

developer that would work on the bug based on the bug 

description. Canfora and Cerulo [3] discussed how software 

repositories can help developers in managing a new change 

request, either a bug or an enhancement feature. Also, a lot of 

empirical work has been carried out in predicting the fault 

proneness of classes in object-oriented (OO) software systems 

using a number of OO design metrics [2], [5], [7], [8], [11], 

[12], [15], [16], [23], [25]. Although, these studies were based 

on finding the relationship between OO metrics and fault 

proneness of classes, but did not focus on the severity of 

faults. Till date, there are only a few studies which were based 

on finding the relationship between OO metrics and fault 

proneness of classes at different levels of severity of faults.  

    The most efficient work in the field of fault severity has 

been done by the authors Singh et al. [21]. They have analyzed 

the performance of models at high, medium and low severity 

faults and found that the model predicted at high severity 

faults has lower accuracy than the models predicted at medium 

and low severities. The validation of the proposed models was 

done using various OO metrics like CBO, WMC, RFC, SLOC, 

LCOM, NOC, DIT on the public domain NASA dataset KC1 

using DT and ANN as the machine learning methods and LR 

as the statistical method. The conclusion drawn was that DT 

and ANN models outperformed the LR model and that CBO, 

WMC, RFC and SLOC metrics are significant across all 

severity of faults and DIT metric is not significant across any 

severity of faults. LCOM and NOC are not found to be 

significant with respect to LSF. Somewhat same results were 

also concluded in the paper by Zhou and Leung [24]. They 

have investigated the fault-proneness prediction performance 

of OO design metrics with regard to ungraded, high, and low 

severity faults by employing statistical (LR) and machine 

learning (Naïve Bayes, Random Forest, and NNge) methods. 

From both the above papers, it was summarized that the 

design metrics are able to predict low severity faults in fault-

prone classes better than high severity faults in fault-prone 

classes. Bayesian approach was also used by the author Pai 

[17] in his work to find the relationship between software 

product metrics and fault proneness. Shatnawi and Li [20] 

focused on identifying error-prone classes in post-release 

software evolution process. They studied the effectiveness of 

software metrics and examined three releases of the Eclipse 

project. They observed that, the accuracy of the prediction 

decreased from release to release and that there are only a few 

metrics which can predict class proneness in three error- 

severity categories.   

    The work proposed in this paper is similar to the work done 

by Menzies and Marcus [13]. The authors have presented an 

automated method named SEVERIS (SEVERity Issue 

assessment) which is used to assign severity levels to the 

defect reports by using the data from NASA’s Project and  

Issue Tracking System (PITS). Their method is based on the 

automated extraction and analysis of textual descriptions from 

issue reports in PITS by using various text mining techniques.  

    They have used a rule learning method as their 

classification method to assign the features with proper 

severity levels, based on the classification of the existing 

reports. Similar work has also been done by Sari and Siahaan 

[19]. They have also developed a model for the assignment of 

the bug severity level. They have used the same pre-

processing tasks (tokenization, stop words removal and 

stemming) and feature selection method (InfoGain), but, have 

used SVM as their classification method. Lamkanfi et al. [10] 

have also analyzed the textual description using text mining 

algorithms in order to propose a technique that is used to 

predict the severity of a reported bug against three open –

source projects viz. Mozilla, Eclipse and GNOME using 

Bugzilla as their bug tracking system and Naïve Bayes as their 

classifier.  
 
 

III.   RESEARCH METHODOLOGY 

In this section, we present our research method. We first 
introduce the data source which elaborates on the dataset being 
used in our study followed by the text classification framework 
that we have used in order to extract the relevant words from 
the defect descriptions. Finally, we describe our model 
evaluation criteria.  

A. Data Source  

    We have collected the defect data from an open source 

NASA’s dataset called PITS (Project and Issue Tracking 

System). There are various projects that come under PITS 

database all of which were supplied by NASA’s Software 

Verification and Validation (IV & V) Program. We have used 

PITS B project wherein the data has been collected for more 

than 10 years and includes all the issues that have been found 

in the robotic satellite missions and human rated system. The 

focus of our study is to investigate the predictiveness of the 

model with regard to the severity of defects. Therefore, we are 

interested in the number of defects at each severity level as 

shown in Table I. 

    NASA’s engineers have classified severity 1 defects as Very 

High, severity 2 defects as High, severity 3 defects as Medium, 

severity 4 defects as Low and severity 5 defects as Very Low. 

We are interested only in the last four severity levels i.e. 

severity 2, severity 3, severity 4 and severity 5 as it can be seen 

from table 1 that there are no severity one issues in the defect 

data. This is so because these defects are of very high severity 

level and therefore possibility of such defects in the software 

become very rare.  

    We went through this dataset and extracted the summary of 

each defect from all the reports. We then analyzed these 

textual descriptions and applied the text mining techniques to 

extract the relevant words from each report. At a later stage, 

machine learning method was used to assign the severity level 

to each defect based on the classifications of existing reports. 

As we know that the standard machine learning methods work 

well only for the data with fewer number of attributes. 

Therefore, before we can apply machine learning to the results 

of text mining, we have to reduce the number of words, 

referred to as the dimensions (i.e. attributes) in the data. 
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Hence, we applied different methods of text mining for 

dimensionality reduction in the following order: tokenization, 

stop word removal, stemming, feature selection and 

weighting.  

 

TABLE I.  NUMBER OF DEFECT REPORTS OF PITS B DATASET AT 

EACH SEVERITY LEVEL 

 

 Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 

Pits B 0 23 523 382 59 

 

1) Pre-processing 

Pre-processing is the first and foremost step of text mining 

which is done in order to remove the irrelevant words from the 

document. Irrelevant words are the words which are not 

important for the learning task and rather their usage can 

substantially degrade performance of machine learning 

methods. The three most popular methods which are used for 

pre-processing are tokenization, stop words removal and 

stemming. Tokenization is the process of converting a stream 

of characters into a sequence of tokens. We have done 

tokenization by replacing the punctuation with blank spaces, 

removing all the non-printable escape characters and 

converting all the words to lowercases. Thereafter, all the stop 

words like prepositions, conjunctions, articles, common verbs, 

nouns, pronouns, adverbs and adjectives were removed from 

the dataset by using a list of English stop words. Finally, 

stemming was performed which removes words with the same 

stem and keeps the stem as the feature. For example, the 

words “train”, “training”, “trainer” and “trains” can be 

replaced with “train”. All the words obtained after 

preprocessing were called as ‘features’. 

 

2) Feature selection  

Even after performing a series of pre-processing tasks, the 

number of words in the document can still be very large. 

Therefore, feature selection method is used in order to further 

reduce the dimensionality of the feature set. There are a 

number of such methods available in the literature like 

document frequency, term frequency, mutual information, 

information gain, odds ratio, χ2statistic, term strength etc. 

These methods use an evaluation function that is applied to a 

single word. Thereafter, all these words are ranked by their 

independently determined scores, and then the top scoring 

words are selected.  

    In this paper, InfoGain measure is used to rank all the 

features obtained after pre-processing and then the top ‘N’ 

scoring features are selected based on the rank. According to 

the InfoGain measure, the best words are those that most 

simplifies the target concept, which is in our case, the 

distribution of severities [13]. Suppose a data set has 80% 

severity=5 issues and 20% severity=1 issues. Then that data 

set has a class distribution C0 with classes c(1) = severity5 and 

c(2) = severity1 with frequencies n(1) = 0.8 and n(2) = 0.2. 

The number of bits required to encode an arbitrary class 

distribution C0 is B(C0) defined as follows: 

 

 

        (1) 

Where,       

                        (2) 
 

If A is a set of attributes, then the number of bits required to 

encode a class after observing an attribute is: 
 
 

(3) 

 

            Where,  

                             

                                                          (4) 

The highest ranked attribute Ai is the one with the largest 

information gain; i.e., the one that most reduces the encoding 

required for the data after using that attribute; i.e. 

 

                                  (5) 

   
3) Weighting and Normalizing 

Now, these ‘N’ features can be represented as t1, t2, . . . , tN.  

The ith document is then represented as an ordered set of N 

values, called an N-dimensional vector which is written as 

(Xi1, Xi2, . . . , XiN ) where Xij is a weight measuring the 

importance of the jth term tj in the ith document. The complete 

set of vectors for all documents under consideration is called a 

vector space model or VSM.  

    There are various methods which can be used for weighting 

the terms. We have used TFIDF approach for calculating the 

weights, which stands for Term Frequency Inverse Document 

Frequency. Term frequency is simply the frequency of the jth 

term, i.e. tj, in document i. This value makes the terms that are 

frequent in the given document more important than the 

others. The second value i.e. inverse document frequency is 

given by log (n/nj) where nj is the number of documents 

containing term tj and n is the total number of documents. This 

value makes the terms that are rare across the collection of 

documents more important than the others.  

    Now, before we use the set of N-dimensional vectors, we 

will first need to normalize the values of the weights. It has 

been observed that ‘normalizing’ the feature vectors before 

submitting them to the learning algorithm is the most 

necessary and important condition. 

 

B. Model Evaluation 

    As we all know, defect-prone documents are treated as the 

positive instances in the context of defect prediction [9]. On 

this basis, we can categorize the defect prediction results into 

four different types as defined below: 

- TP (True Positive): defect-prone documents that are 

classified correctly; 
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- FN (False Negative): defect-prone documents that are 

wrongly classified to be defect- free; 

- TN (True Negative): defect-free documents that are 

classified correctly; 

- FP (False Positive): defect-free documents that are 

wrongly classified to be defect-prone. 

 

    To measure the performance of the predicted model, we 

have used the following performance evaluation measures: 

 

1) Sensitivity 

It measures the correctness of the predicted model and is 

defined as the percentage of the documents correctly predicted 

to be defect prone. It is also referred to as Recall. 

Mathematically we can define sensitivity as, 

 

 

                                        
                                                                                      (6) 

  

2) Receiver Operating Characteristics (ROC) analysis                 

ROC curve is defined as a plot of sensitivity on the y- 

coordinate versus its 1-specificity on the x- coordinates [6]. 

The main objective of constructing ROC curves is to obtain 

the required optimal cut-off point that maximizes both 

sensitivity and specificity. An overall indication of the 

accuracy of a ROC curve is the area under the curve (AUC). 

Values of AUC range from 0 to 1 and higher values indicate 

better prediction results.  

 

3) Validation method used 

The validation method used in our study is Hold-out validation 

(70-30 ratio) in which the entire dataset is divided into 70% 

training data and remaining 30% as test data. There are two 

methods by which we can assign the cases. Either we can 

randomly assign the cases based on relative number of cases 

or else we can use a partitioning variable. We have not 

randomly assigned the cases, but have rather used a 

partitioning variable to assign the cases. In other words, we 

have used a variable that splits the given dataset into training 

and testing samples in 70-30 ratio. This variable can have the 

value either 1 or 0. All the cases with the value of 1 for the 

variable are assigned to the training samples and all the other 

cases are assigned to the testing samples.  

    To get more generalized and accurate results, we have done 

validation using 10 separate partitioning variables. A single 

variable is used at a time on the basis of which the given 

dataset will be divided randomly in the ratio of 70-30. The 

corresponding training samples will be used by KNN in order 

to predict the model and the remaining testing samples will be 

used to validate the model. The same process is repeated for 

10 runs corresponding to each partitioning variable. 

 

 

 

 

IV.   RESULT ANALYSIS 

In this section, we have analyzed the results corresponding to 

the top-5, 25, 50 and 100 words in order to predict the best 

model that gives the highest accuracy using sensitivity, AUC 

and the cut-off point as the performance measures. Tables II- 

V present and summarize the results with respect to high, 

medium, low and very low severity levels.  

TABLE II.  RESULTS OF KNN FOR TOP-5 WORDS 

  
High Severity  

Defects 

Medium 
Severity 
 Defects 

Low Severity  
Defects 

Very Low 
Severity  
Defects 

Runs AUC Sens 
Cut-
Off 

AUC Sens 
Cut-
Off 

AUC Sens 
Cut-
Off 

AUC Sens 
Cut-
Off 

1 0.495 00.0 0.214 0.544 66.0   0.357 0.550 59.0 0.214 0.493 10.5 0.214 

2 0.496 00.0   1.000 0.548 66.7 0.357 0.556 43.3 0.357 0.495 16.7 0.214 

3 0.568 14.3 0.214 0.555 37.5 0.500 0.581 58.9 0.214 0.528 17.6 0.214 

4 0.559 12.5 0.214 0.520 48.0 0.500 0.554 53.7 0.214 0.473 04.8 0.214 

5 0.495 00.0 0.214 0.538 40.1 0.500 0.564 58.1 0.214 0.492 10.5 0.214 

6 0.498 00.0 0.214 0.564 50.7 0.500 0.550 49.6 0.214 0.437 05.0 0.357 

7 0.568 14.3 0.214 0.475 32.4 0.500 0.512 56.0 0.214 0.464 05.9 0.214 

8 0.582 16.7 0.214 0.596 47.3 0.500 0.584 62.0 0.214 0.489 09.1 0.357 

9 0.561 12.5 0.214 0.515 43.1 0.500 0.531 55.8 0.214 0.477 04.2 0.214 

10 0.628 33.3 0.214 0.545 58.9 0.357 0.539 52.4 0.214 0.542 20.0 0.214 

 

                         TABLE III.   RESULTS OF KNN FOR TOP-25 WORDS 

  
High Severity 

Defects 
Medium Severity 

Defects 
Low Severity 

Defects 
Very Low 

Severity Defects 

Runs AUC Sens 
Cut-
Off 

AUC Sens 
Cut-
Off 

AUC Sens 
Cut-
Off 

AUC Sens 
Cut-
Off 

1 0.596 25.0 0.214 0.708 70.1 0.357 0.646 39.3 0.357 0.533 21.1 0.214 

2 0.691 40.0 0.214 0.739 73.7 0.357 0.697 48.6 0.357 0.595 33.3 0.214 

3 0.620 28.6 0.214 0.682 69.4 0.357 0.650 46.8 0.357 0.548 23.5 0.214 

4 0.795 62.5 0.214 0.726 71.1 0.357 0.669 51.2 0.357 0.587 28.6 0.214 

5 0.659 33.3 0.214 0.729 70.4 0.357 0.681 51.3 0.357 0.566 26.3 0.214 

6 0.684 40.0 0.214 0.696 70.9 0.357 0.653 51.3 0.357 0.632 40.0 0.214 

7 0.701 42.9 0.214 0.690 69.9 0.357 0.666 45.7 0.357 0.575 29.4 0.214 

8 0.590 20.0 0.214 0.708 63.2 0.357 0.639 49.6 0.357 0.530 25.0 0.214 

9 0.699 44.4 0.214 0.754 71.4 0.357 0.692 51.6 0.357 0.567 25.0 0.214 

10 0.822 66.7 0.214 0.738 67.4 0.357 0.677 50.9 0.357 0.573 25.0 0.214 

 

TABLE IV.   RESULTS OF KNN FOR TOP-50 WORDS 

  
High Severity 

Defects 
Medium Severity 

Defects 
Low Severity 

Defects 
Very Low 

Severity Defects 

Runs AUC Sens 
Cut-
Off 

AUC Sens 
Cut-
Off 

AUC Sens 
Cut-
Off 

AUC Sens 
Cut-
Off 

Proceedings of the World Congress on Engineering 2014 Vol I, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



1 0.698 50.0 0.214 0.746 70.7 0.357 0.709 49.6 0.357 0.701 52.6 0.214 

2 0.678 40.0 0.214 0.762 73.0 0.357 0.762 57.9 0.357 0.663 44.4 0.214 

3 0.682 42.9 0.214 0.758 65.0 0.357 0.668 47.6 0.357 0.674 52.9 0.214 

4 0.582 25.0 0.214 0.798 75.0 0.357 0.739 47.2 0.357 0.834 76.2 0.214 

5 0.813 66.7 0.214 0.810 75.7 0.357 0.757 54.7 0.357 0.681 47.4 0.214 

6 0.632 30.0 0.214 0.754 70.9 0.357 0.697 53.0 0.357 0.712 55.0 0.214 

7 0.754 57.1 0.214 0.796 71.0 0.357 0.739 58.6 0.357 0.675 47.1 0.214 

8 0.564 20.0 0.214 0.748 70.1 0.357 0.708 53.8 0.357 0.660 50.0 0.214 

9 0.742 55.6 0.214 0.728 67.9 0.357 0.681 50.8 0.357 0.562 25.0 0.214 

10 0.648 33.3 0.214 0.759 70.2 0.357 0.670 57.3 0.357 0.721 55.0 0.214 

 

TABLE V.      RESULTS OF KNN FOR TOP-100 WORDS 

  
High Severity 

Defects 
Medium Severity 

Defects 
Low Severity 

Defects 
Very Low Severity 

Defects 

Runs AUC Sens 
Cut-
Off 

AUC Sens 
Cut-
Off 

AUC Sens 
Cut-
Off 

AUC Sens 
Cut-
Off 

1 0.734 50.0 0.214 0.751 72.1 0.357 0.698 54.7 0.366 0.713 57.9 0.214 

2 0.687 40.0 0.214 0.779 67.8 0.357 0.749 60.7 0.357 0.665 50.0 0.214 

3 0.692 42.9 0.214 0.775 72.5 0.357 0.710 86.3 0.214 0.705 58.8 0.214 

4 0.610 25.0 0.214 0.785 75.0 0.357 0.699 50.4 0.357 0.813 76.2 0.214 

5 0.822 66.7 0.214 0.795 78.3 0.357 0.724 49.6 0.357 0.680 47.4 0.214 

6 0.689 40.0 0.214 0.749 70.3 0.357 0.675 77.4 0.214 0.707 50.5 0.214 

7 0.775 57.1 0.214 0.781 75.0 0.357 0.721 55.2 0.357 0.638 41.2 0.214 

8 0.732 50.0 0.214 0.778 74.7 0.357 0.722 51.2 0.357 0.547 27.3 0.214 

9 0.732 50.0 0.214 0.760 72.2 0.357 0.708 54.9 0.357 0.600 41.7 0.214 

10 0.732 50.0 0.214 0.776 67.4 0.357 0.742 65.7 0.357 0.716 53.3 0.214 

 

From table II, it becomes clear that the performance of the 

model is consistent for all the severity levels when AUC is 

considered for evaluation. This is so because the values of 

AUC lie in the range of 0.4 to 0.6 for all the 10 consecutive 

runs, irrespective of the severity levels. However, there is a 

huge difference in the model prediction if we look at the 

sensitivity column. The maximum value of sensitivity for 

medium and low severity level is 66.7%, whereas its 

maximum value corresponding to high and very low severity 

level is just 33.3%. This trend suggests that model can predict 

medium severity defects better than the defects having either 

high or very low severity level when the number of words is 

less. As we increase the number of words to 25, we can see 

from table III that the prediction capability of the model is 

again the best for the medium severity defects with AUC in 

the range of 0.68 to 0.74 and is worst for very low severity 

defects with the maximum value of AUC being 0.6. Also, the 

sensitivity values for very low severity defects are just in the 

range of 21.1% to 40.0%. This trend is suggesting that there 

should be maximum focus on the defects having medium 

severity level when the number of words considered is 

nominal.  

    A similar kind of trend can be seen from table IV, where the 

model has performed exceptionally well in predicting the 

medium severity defects as values for both AUC and 

sensitivity are highest as compared to other severity levels. 

But, it is evident from table V, that performance of the model 

is consistent with respect to all the four severity levels when 

considering AUC as the performance evaluation measure. 

However, the sensitivity values indicate that the model 

predicted with respect to medium and low severity defects 

should be preferred over the model predicted with respect to 

high and very low severity defects. 

    But if we compare the performance of the model in terms of 

the number of words considered for model prediction, then 

there is a very clear indication of the fact that the model 

performs exceptionally well when top 100 words were 

considered, and that its performance drastically reduces when 

the number of words considered for classification is less. 

Performance of the model is worst when top 5 words were 

taken into account, is still better for top 25 and 50 words, and 

best for top 100 words. Hence, with these results, it is 

reasonable to claim that the performance of KNN is dependent 

on the number of words selected as independent features. As 

the number of words increases, the performance of KNN also 

improves. Apart from this, we have also observed that KNN 

method works best for medium severity defects as compared 

to the other severity defects. 

 
 

V.   CONCLUSION 

Due to the widespread use of open source software 

repositories, the use of defect tracking systems has become 

inevitable. The issues of the software are tracked using such 

systems which store the defects along with their details. Such 

defects introduced in the software may be of varying severity 

levels ranging from mild to catastrophic. Thus, defect tracking 

systems play an important role to capture the defect data. 

However, a common issue in such systems is that they are 

useful for storing day-to-day information. Moreover, the 

information contained within such systems is generally of 

unstructured form.  

    Hence in this paper, text mining and machine learning 

techniques were used to analyze the defect data present in 

such systems. We have used text mining techniques to mine 

the information from the database and thereafter KNN 

machine learning method was used to predict the defect 

severities. The results were validated using NASA dataset 

available in the PITS database and were analyzed using Area 

Under the Curve (AUC) obtained from Receiver Operating 

Characteristics (ROC) analysis. The obtained results showed 

that the performance of KNN is exceptionally well in 

predicting the defects corresponding to top 100 words for all 

the severity levels. Its performance is poor for top 5 words, 

better for top 25 words and still better for top 50 words. 

Hence, with these results, we concluded that the performance 

of KNN is dependent on the number of words selected as 

independent features. Apart from this, we have also observed 
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that KNN method works best for medium severity defects as 

compared to the other severity defects. 

    Although we analyzed only one project of PITS in our study 

so far, we believe that the research results can be generalized 

to the other projects available in the PITS database. So, our 

future work involves replication of this work in other projects 

of PITS. 
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