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Abstract - Microarray gene expression datasets comprise of 
a large number of genes in contrast to a small number of 
samples, thus having a high dimension of variables. Analysis of 
microarray data can lead us to many useful conclusions. In 
many microarray data analyses, selecting a small subset of 
genes which are of significance for a particular type of disease 
is an important issue but selection of such genes become 
difficult due to many irrelevant genes and noisy genes. The 
process of gene selection helps to extract the most informative 
genes, which consequently aid to build a robust prediction 
model using those genes. In this study, we employ a hybrid 
Chemical Reaction Optimization (CRO) based filter-wrapper 
methodology, which uses an information gain gene ranking 
heuristic to simultaneously extract informative gene subsets 
and build robust cancer classification models. The 
performance of the proposed method was tested on three 
benchmark gene expression datasets obtained from the Kent 
Ridge Biomedical datasets collection and the LIBSVM data 
repository. CRO results demonstrate its capability to select 
relevant genes with high confidence in comparison to the 
results reported earlier. 

 
Index terms - Cancer Classification, Chemical Reaction 

Optimization, Gene Ranking Heuristics, Gene Selection. 
 

I. INTRODUCTION 
 
ICROARRAY gene expression experiments provide the 
expression levels of thousands of genes. Computational 

analyses of such datasets present exciting opportunities for 
studying cancer and various genetic diseases. Gene 
expression datasets have a complex structure owing to lesser 
number of samples in comparison to an extremely large 
attribute/feature space having high noise levels, irrelevant 
attributes, missing values, several outliers and sample 
variance. Computational analysis of such data can help 
derive informative genes which may be responsible for a 
certain disease. The problem of gene selection thus concerns 

itself with, identifying a subset of relevant genes (or input 
variables), that can help in building a robust classification 
model for the target disease [1].  

Several methods have been developed for the purpose of 
gene selection. Two important categories of gene selection 
methods are wrappers and filters [1]. Wrappers employ a 
learning algorithm to score the quality of gene subsets based 
on their predictive power (by internally calling a 
classification function). Bio-inspired algorithms like the Ant 
Colony Optimization and Genetic Algorithm in conjunction 
with a classifier like Support Vector Machines (SVM) may 
fall into this category [1-5]. On the other hand, filters rank 
genes based on their statistical properties with reference to 
the dataset. Methods like statistical tests and mutual 
information come under this category. 

Using these two kinds of methodologies in a combined 
fashion should give us a better way of analyzing data and 
finding the solutions to our problem more accurately. 

This study proposes the use of a hybrid gene-selection 
methodology employing a Chemical Reaction Optimization 
(CRO) based filter-wrapper approach. As part of a wrapper 
approach, CRO explores the gene-expression profile search 
space to iteratively obtain relevant and informative gene 
subsets, powered by a gene ranking heuristic, which 
consequently helps in the construction of robust 
classification models. CRO is recently proposed optimization 
technique based on behavior of molecules in a chemical 
reaction [6]. In present study, CRO has been used along with 
Support Vector Machine (SVM) and information gain 
attributes evaluation to extract a set of informative genes 
from a set of large number of genes [8, 15].  

Modified CRO algorithm for analysis of gene expression 
data thus presents a useful tool to identify informative genes 
from a large pool of genes. This algorithm has been 
implemented in Java and a Java-based application has been 
written which will be available soon. 

 
II. MATERIALS AND METHODS 

 
A. Chemical Reaction Optimization (CRO) 

 
Chemical Reaction Optimization is a recently proposed 

meta-heuristic for optimization purposes which has been 
inspired by processes of molecular interactions in chemical 
reactions [6]. In a chemical reaction, the reactants form final 
products after passing through a number of intermediate 
stages. Throughout the process, the reactants transition to 
various forms in elementary chemical changes. The stable 
final products are achieved at the lowest potential energy. 
Thus, every reacting system seeks to achieve the minimum of 
free energy.  

M
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CRO attempts to mimic this process where molecules may 
be modeled as solutions and can thus move through a certain 
number of intermediate transitions. The complete framework 
of CRO has been described extensively in [6-8]. The salient 
properties of a chemically reacting system are described 
briefly here. A molecule in CRO has some properties. These 
are the molecular structure (solution), potential energy 
(objective function measure), kinetic energy (measure of 
tolerance for accepting an inferior solution), number of hits 
(present total number of moves), minimum structure (present 
optimal solution), minimum value (present optimal function 
value), and minimum hit number (number of moves when 
the current optimal solution is found). If  is denoted as the 
molecule and f, the objective function, then 

 
)( fPE   

 
Typically, a molecular transition is accepted if, 

' PEPE   where  may transform to ' . If the given 

condition is not satisfied, then a change is allowed 
with ' PEKEPE  . KE  is the kinetic energy of the 

molecule, which is employed to facilitate the transition. KE 
is used as a tolerance measure to allow the transition of an 
existing molecule to a less favorable molecule. In this way, 
CRO allows the system to accept solutions, which can aid in 
escaping a local minimum. Typically, a central energy buffer 
is maintained in this context which stores an initial amount of 
energy. CRO may therefore allow a less favorable transition 
to occur by removing the required KE from the energy 
buffer. Thus throughout the process of CRO, molecules 
typically attempt to achieve a low PE . The various stages of 
CRO are described further. 

In a chemical reaction, molecules may collide with each 
other or container walls. In this context, there may be four 
types of elementary chemical reactions molecules may go 
through, which are, on-wall ineffective collision, 
decomposition, inter-molecular ineffective collision, and 
synthesis. 

 
On-Wall Effective Collision 

 This may happen when a molecule hits the wall and 
bounces back. An ineffective collision indicates that 
changes in molecular structure are minimal. Thus the 
molecule representing a solution would change in its 
neighborhood, based on equation (1). 

 

' PEKEPE                              (1) 

Decomposition 
 A decomposition occurs when a molecule encounters a 

collision with the wall and decomposes into two pieces. The 
resultant molecules are expected to be very different from 
the original molecule. The decomposition is possible if 
condition (2) is satisfied. 

21  PEPEKEPE          (2) 

Here 1 and 2 are the resultant molecules. Generally, this 
case becomes unlikely since , 1 and 2 can have similar 

PE values. Thus, a central energy buffer is accessed for 
extracting KE to facilitate the decomposition. 

 
Intermolecular Ineffective Collision 

This process involves the collision of two molecules, 
which have bounced back. The collision results in states, 
where a condition needs to satisfy equation (3). 

 

'2'12121  PEPEKEKEPEPE         (3) 

 
Synthesis 

In a synthesis, two molecules vigorously combine to 
create a resultant molecule if equation (4) is satisfied. 

 

'2121  PEKEKEPEPE           (4) 

 
B. CRO based Gene Selection (CRO-GS) 

 
As stated initially, a simplistic chemical reaction 

optimization (CRO) model has been adopted for 
simultaneous gene selection and cancer classification, in this 
study. Gene selection involves extracting a subset of 
informative genes from the given samples available as part 
of our datasets [1]. This section illustrates the use of a CRO 
based technique in the form of a filter-wrapper algorithm in 
conjunction with Support Vector Machines (SVM) [9] for 
extracting informative gene subsets.  

CRO-GS involves initializing a number of molecules (or 
solutions), where each molecule is encoded as a feature 
vector having a predefined size. The size of the vector may 
be decided by the user. For example, for a total of 1000 
features and a predefined subset size of 10, a feature vector 
(or a molecule in this case) will have 10 entries. Each entry 
can have a feature index (selected from 1...1000) as its 
value. Thus, if X is a molecule, then a possible configuration 
of X may correspond to {1, 10, 13, 17, 67, 78, 89, 90, 391, 
992}, where each element indicates the corresponding 
feature in the dataset. Initially, a population of molecules is 
generated randomly. The potential energy (PE) of each 
molecule is computed using relation (5). 

CVAPEmol 100                         (5) 

In (5), CVA is the 10 fold SVM cross validation 
classification accuracy of the concerned molecule (based on 
the feature subset it encodes). PEmol corresponds to the 
objective function value (as discussed before) for a molecule. 
In the gene selection problem, CRO attempts to minimize 
PEmol.  

Additionally, before a chemical reaction is initiated the 
central energy buffer is initialized with a value (considered as 
a CRO parameter). The chemical reaction iteration stage in 
CRO-GS is controlled by a decision against the CRO 
collision rate parameter. The flow of the CRO control may 
thus move into unimolecular collisions or inter-molecular 
interactions, depending on the condition. For a unimolecular 
collision, a molecule may be randomly selected from the 
current set. A neighboring molecule is then obtained by 
selecting a random position in the feature vector ( the 
molecule) and replacing the corresponding feature index 
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value by probabilistically selecting a feature index from the 
entire set of features based on a gene ranking heuristic 
(described in section C). Next, the potential energy (PE) of 
the new molecule is computed using equation (5). Using 
equation (1), we compare the PEs of the original and the 
neighboring molecules, following which either an on-wall 
ineffective collision or a decomposition may be initiated.  

For intermolecular collisions, two molecules may 
randomly be selected and the neighboring molecules for each 
of them are generated using a similar procedure as described 
before. If the sum of the PEs of newer molecules is less than 
the earlier ones (refer equation 3), then an intermolecular 
ineffective collision is initiated and the related changes are 
carried out. Otherwise, a synthesis of the two molecules 
takes place where a new molecule is generated by combining 
the two molecules. This is done by probabilistically selecting 
a feature index from either of the two molecules, while 
iterating through each position of the new molecule. Thus the 
new molecule is a combination of the two existing 
molecules, by selecting a feature index from either of the two 
at the corresponding feature vector position.  

The above stages constitute a single iteration of a chemical 
reaction. This process may continue for a maximum number 
of iterations. At the end of the final iteration, the molecule 
with the least PE (or cross validated error rate) is selected as 
the most optimal gene subset. 

A representative version of the CRO-GS gene selection 
algorithm is stated in Fig. 1.  

 

 
 

Figure 1: CRO-GS Algorithm for Gene Selection. 
 

C. Heuristic Gene Ranking 
 

Due to the massive search space of possible gene subsets, 
we make use of the Information gain (IG) filter to provide a 
ranking of all genes [10]. The infogain gene ranking is 
subsequently used to create a neighboring molecule. 
Information Gain (IG) is an entropy-based measure, which 
selects the gene that has the best capability to differentiate 

the samples into separate classes. A gene with a higher IG is 
considered more relevant. A neighboring molecule is 
generated by replacing a feature at a random position in an 
original molecule. To do this, we may probabilistically select 
a good feature based on non-zero infogain values provided 
by the gene ranking. A probabilistic selection of a gene using 
the infogain gene ranking is illustrated in Fig. 2. As shown, 
the 17th feature is replaced by the 100th feature (accessed 
through the gene ranking) based on a threshold decision.  

 

 
 

Figure 2: Neighbor generation using Infogain gene ranking 

 
D. Support Vector Machines 

 
Support Vector Machines (SVMs) [8] help construct a 

classification model by employing a maximum margin linear 
hyper-plane to solve binary linear classification problems. 
For non-linear problems, SVM transforms the input data to 
higher dimensional features and then attempts to apply a 
linear hyper-plane. SVM also employs appropriate kernel 
operations allowing computations in the input space to deal 
with intractability. For our purposes, we employ the 
LIBSVM [11] software suite for evaluation of the molecules 
(feature vectors) in each iteration. 

In CRO, a population of molecules tries to go through four 
possible transitions mentioned before based on their potential 
energies in an iterative manner to reach to the final optimal 
set of genes. The CRO based data flow architecture is 
illustrated in Figure 3. 

 

III. RESULTS AND DISCUSSIONS 
 
In order to test the performance of CRO, we conducted 

extensive simulations of the hybrid CRO filter-wrapper 
algorithm for three benchmark cancer gene expression 
datasets, obtained from the Kent Ridge Biomedical datasets 
repository [12] and the LIBSVM repository [11] (made 
available from various other sources). The dimensions of the 
datasets are tabulated in Table I. 

Based on our simulations, one can say that comparable 
results for all three datasets were observed, while considering 
a maximum of 100 initial molecules and 10000 iterations. 
Generally, at the end of 100 generations, the fitness values of 
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the gene subsets would converge and not show much 
improvement. Parameter tuning was also carried out 
extensively for CRO and SVM to arrive at optimal results. 
The algorithm parameters for CRO - SVM are as shown in 
Table II. 

 

 
 

Figure 3. CRO-GS Data Flow Architecture 
 

 
TABLE I 

DATA DIMENSIONS 

Cancer Dataset No. of Genes No. of classes No. of Samples for I & II 

Colon 2000 2 
62 

(40 & 22) 

Breast 7129 2 
44 

(22 & 22) 

Leukemia 7129 2 
72 

(25 & 47) 

 
TABLE II 

CRO-GS PARAMETERS 

CRO Parameters Values 

Collision Rate 0.1 

Decomposition threshold 1500 

Synthesis threshold 10 

Step Size 0.2 

Initial KE in buffer 10000 

SVM kernel Type Radial basis function (rbf) 

SVM gamma -g 0.02 

SVM cost -c 50 

 

Consequently, we obtained the gene subsets that reported 
the least 10 fold CV error rate. To obtain consistent CRO 
parameter estimates as given in Table II, we carried out 30 
runs for each dataset. According to results in Table III, CRO-

GS performs well in comparison to previously reported 
algorithms for all the three datasets. The CRO-GS based 
gene subset sizes selected were 20 for Colon, 6 for Breast 
and 20 for Leukemia. For colon cancer, CRO-GS reported 
95.16% (10 fold CVA) which compares well against ACO-
RF (95.47%), ACO-SVM (96.77%), and BBO-SVM 
(98.39%) reported earlier [3, 5]. For the duke breast cancer 
data, with a 10 fold CVA of 97.36% CRO-GS has performed 
well in contrast to some of the more powerful models based 
on Bagging (92%), BBO-SVM (99.56%) and Ensemble 
(94%) techniques [13, 5]. CRO-GS with leukemia reported a 
10 fold CVA of 100%, which was compared with a baseline 
SVM model (97.06%), BBO-SVM (99.60%) and ACO-AM 
(96%), reported earlier [14, 5]. 

 
TABLE III 

CRO-GS RESULTS 

Cancer Dataset Colon Duke Breast Leukemia 

10 fold CVA 95.16% 97.36% 100% 

 
Comparison of these results with other methods certainly 

entail CRO-GS as a promising methods to identify 
informative genes from cancer microarray data and use these 
informative genes in turn to make a robust classification 
model for differentiating between cancer types. Main 
contribution of this methodology would be to identify a set of 
genes, which might be playing an important role in a certain 
kind of diseases and to build a robust classification model to 
classify different classes of a disease. 

 
IV. CONCLUSION 

 
The hybrid CRO-GS demonstrates good results 

consistently on comparison with the highest accuracies for 
colon cancer, breast cancer and leukemia cancer datasets. In 
general, CRO is robust and flexible for discrete 
optimization. One can significantly speedup the algorithm 
by possible parallel implementations where the 
classification accuracies for individual candidate solutions 
(or molecules) may be computed in parallel. 

 
 

REFERENCES 
 

[1] I. Guyon and A. Elisseeff, “An introduction to variable and feature 
selection,” The Journal of Machine Learning Research, vol. 3, 
pp.1157–1182, 2003. 

[2]  D. Patil, R. Raj, P. Shingade, B. Kulkarni, and V. K. Jayaraman, 
“Feature selection and classification employing hybrid ant colony 
optimization/random forest methodology,” Combinatorial chemistry 
& high throughput screening, vol. 12, no. 5, pp. 507–513, 2009. 

[3]  S. Sharma, S. Ghosh, N. Anantharaman, and V. K. Jayaraman, 
“Simultaneous informative gene extraction and cancer classification 
using aco-antminer and aco-random forests,” in Proceedings of the 
International Conference on Information Systems Design and 
Intelligent Applications 2012 (INDIA 2012) held in Visakhapatnam, 
India, January 2012. Springer, 2012, pp. 755–761. 

[4]  A. Gupta, V. K. Jayaraman, and B. D. Kulkarni, “Feature selection 
for cancer classification using ant colony optimization and support 
vector machines.” 2007. 

[5]  S. Nikumbh, S. Ghosh, and V. K. Jayaraman, “Biogeography-based 
informative gene selection and cancer classification using svm and 
random forests,” in Evolutionary Computation (CEC), 2012 IEEE 
Congress on. IEEE, 2012, pp. 1–6. 

Proceedings of the World Congress on Engineering 2014 Vol I, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



[6]  A. Y. Lam and V. O. Li, “Chemical-reaction-inspired metaheuristic 
for optimization,” Evolutionary Computation, IEEE Transactions on, 
vol. 14, no. 3, pp. 381–399, 2010. 

[7]  J. Xu, A. Y. Lam, and V. O. Li, “Chemical reaction optimization for 
task scheduling in grid computing,” Parallel and Distributed Systems, 
IEEE Transactions on, vol. 22, no. 10, pp. 1624–1631, 2011. 

[8]  A. Y. Lam and V. O. Li, “Chemical reaction optimization: A 
tutorial,” Memetic Computing, vol. 4, no. 1, pp. 3–17, 2012. 

[9]  B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm 
for optimal margin classifiers,” in Proceedings of the fifth annual 
workshop on Computational learning theory. ACM, 1992, pp. 144–
152. 

[10]  J. Han, M. Kamber, and J. Pei, Data mining: concepts and 
techniques. Morgan kaufmann, 2006. 

[11]  C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector 
machines,” ACM Transactions on Intelligent Systems and 
Technology (TIST), vol. 2, no. 3, p. 27, 2011. 

[12]  J. Li and H. Liu, “Kent ridge bio-medical data set repository,” 
Institute for Infocomm Research. http://sdmc. lit. org. 
sg/GEDatasets/Datasets.html, 2002. 

[13]  A. Blanco, M. Mart ́n-Merino, and J. De Las Rivas, “Combining 
dissimilarity based classifiers for cancer prediction using gene 
expression profiles,” BMC Bioinformatics, vol. 8, no. Suppl 8, p. S3, 
2007. 

[14]  G. Cong, K.-L. Tan, A. K. Tung, and X. Xu, “Mining top-k covering 
rule groups for gene expression data,” in Proceedings of the 2005 
ACM SIGMOD international conference on Management of data. 
ACM, 2005, pp. 670–681. 

[15]  M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. 
Witten, “The weka data mining software: an update,” ACM SIGKDD 
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Proceedings of the World Congress on Engineering 2014 Vol I, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014




