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Abstract- This paper theoretically investigates current 
distribution, radiation patterns, directivity, radiation resistance, 
input impedance, of finite-length dipole antenna using simulation 
software Matlab-7. Matlab codes are developed for comparison 
of input impedance and the simulated values are compared with 
the computed values obtained from numerical methods such as 
Method of Moments. The simulated values agree with values 
obtained from numerical methods. 
ܛܕܚ܍܂	ܠ܍܌ܖ۷ െ	Current distribution, Directivity, Method of 

Moments, Radiation pattern. 

 

I.INTRODUCTION 
In radio and telecommunications a dipole antenna   

is the simplest and most widely-used class of antenna. 
Electrical size of antenna is the physical dimension  defined 
relative to wavelength. A finite length dipole is one whose 
overall dimension is in the range of ૜ࣅ/૛ ൐ ݈ ൒  ࣅ) [1]	૛/ࣅ
=free space wave length) and it’s radius a is very thin (a ≪λ). 
Yahya et al [1] analyses antenna pattern and gain for different 
designs of full-wave dipole antenna by changing feed 
positions. William A. Davis [2] presents the fundamental 
concepts of wire antenna analysis using  modified version of 
the program Mini-Numerical Electro-magnetics 
Code(MiniNec) . Branislav M. et al [3] presents a large-
domain Galerkin-type Method of Moments (MoM) for the 
analysis of Electromagnetic (EM) structures composed of 
arbitrarily excited and loaded dielectric and conducting bodies 
of arbitrary shapes. The method is based on the integral-
equation formulation in the frequency domain. G. K. Avdikos 
et al [4] demonstrates that the MoM, if well designed and 
carefully optimized, can be a highly efficient and reliable tool 
for the analysis and design of a wide class of complex 3-D EM 
structures. The current distribution, the input impedance and 
radiation pattern of finite length dipole are also presented in 
analytical as well as numerical method such as MoM. To get 
the solutions of Pocklington’s integro-differential equation it 
can be excited by either magnetic frill generator or delta-gap 
voltage source model.  Hallén’s integral equation can be 
solved   by only delta-gap voltage source model. In both cases, 
piecewise constant sub-domain functions and point-matching 
techniques are used [9]–[12]. 
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We propose to simulate and study the parameters of finite 
length dipole like current distribution, radiation pattern, 
radiation resistance, and directivity in unbound medium. Both, 
however, use piecewise constant sub-domain functions and 
point-matching. The program computes the current 
distribution, normalized amplitude radiation pattern, and input 
impedance. 
 

II. METHOD OF ANALYSIS: 

A. Current Distribution: 

For a finite length dipole oriented along z-axis of length l   
current equation can be represented by [5]: 
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B. Far Zone Electric and Magnetic Field 
 

The expression for total Electric and Magnetic fields of 
centre-fed finite length dipole antenna given by [5]: 

ࣂࡱ ≃
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Where  k= 
૛࣊


  (wave  number)  and   ൌ ૚૛૙  (intrinsic  wave 

impedance)  

C. Radiation Intensity 

The radiation intensity of the  dipole may be found as:  
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D. Directivity 

The parameter that is used as a “figure of merit” for the 
directional properties of the antenna is the directivity and can 
be written as: 
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Equation (5) can be rewritten as: 
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D. Radiation Resistance, Reactance and Input Resistance and 
Reactance. 

The radiation resistance (࢘ࡾሻ and Input resistance (࢔࢏ࡾሻ 
are given by:   
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Where 0.5772=ࢽ (Euler’s constant) and ࢏࡯ሺ࢞ሻ  and  ࢏ࡿሺ࢞ሻ are 
cosine and sine integral    
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 Similarly reactance can be expressed as:  
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 And input reactance can be written as:  

ܖܑ܆ ൌ  ૛ሻ                                                  (9)/࢒࢑૛ሺ࢔࢏࢙/࢓ࢄ

E. Pocklington’s Integral Equation   

Assuming that the wire is very thin (a≪ ) Pocklington’s 
integro differential equation [9] can be expressed as [5] 
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where G(z, zᇱ) is  Green’s function given by: 
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Where ρ is the radial distance to the observation point and a is 
the radius. 

Eqn.(10) can be used to determine the equivalent 
filamentary line-source current of the wire, and thus current 
density on the wire, by knowing the incident field on the 
surface of the wire.  Assuming that the wire is very thin       
(a≪ ) such that (10a) reduces to: 

 G(z,ܢᇱ)=G(R)=
ࡾ࢑࢐షࢋ

૝ࡾ࣊
                                                  ( 10c)   

We can express eqn.(10) in a more simple form as given in 
[13] 
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where for observations along the center of the wire (ρ = 0) 

ࡾ ൌ ඥࢇ૛ ൅ ሺࢠ െ   ᇱሻ૛                                              (10e)ࢠ

F. Hallén’s Integral Equation 

Hallén’s integral equation for a perfectly conducting wire 
given by [5] 
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If a voltage ࢏ࢂ is applied at the input terminals of the wire, 
it can be shown that the constant ࡯૚ =࢏ࢂ/૛. The constant ܤଵ is 
determined from the boundary condition that requires the 
current to vanish at the end points of the wire. 

G. Source Modeling 

We have used two methods to model the excitation to 
represent ࢏ࢠࡱ  (ρ = a, 0 ≤ φ ≤ 2π,−l/2 ≤ z ≤ +l/2) at all points on 
the surface of the dipole: One is  referred to as the (H) delta-
gap excitation and the other as the   (I) magnetic-frill generator 
[17]. 

H. Delta Gap 

The delta-gap source modeling is the simplest and most 
widely used of the two, but it is also the least accurate, 
especially for impedances. Usually it is most accurate for 

smaller width gaps. For the delta-gap model, the feed gap   

is replaced by a narrow band of strips of equivalent magnetic 
current density given by 
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   I. Magnetic-Frill Generator 

In magnetic-frill generator model [17], the feed gap is 
replaced with a circumferentially directed magnetic current 
density that exists over an annular aperture with inner radius a, 
which is chosen as the radius of the wire, and an outer radius 
b. In our model, the dipole is fed by transmission lines, 
therefore the outer radius b of the equivalent annular aperture 
of the magnetic-frill generator is found by using the 
expression for the characteristic impedance of the transmission 
line. Over the annular aperture of the magnetic-frill generator, 
the electric field is represented by the Transverse 
Electromagnetic (TEM) mode field distribution of a coaxial 
transmission line given by [5] 

ࢌࡱ ൌ ࣋ෝࢇ
࢙ࢂ

૛࣋ᇲ࢔࢒ሺࢇ/࢈ሻ
ࢇ     ൑ ᇱ࣋ ൑                                                                                  (13)                              ࢈

where  ࢙ࢂ is the voltage supplied by the source. 

 The 1/2 factor is used because it is assumed that the source 
impedance is matched to the input impedance of the antenna. 
The 1/2 should be replaced by unity if the voltage	ܑ܄ present at 
the input to the antenna is used, instead of the voltage ܛ܄ 
supplied by the source. Corresponding equivalent magnetic 
current density ࢌࡹ for the magnetic-frill generator used to 

represent the aperture is given by[5]: 
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The fields generated by the magnetic-frill generator of 
eqn.(13) on the surface of the wire is given by  [5] 
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Where  ࡾ૙ ൌ ૛ࢠ√ ൅                                                                                                              ૛                                               (15a)ࢇ

The fields generated on the surface of the wire is 
computed using eqn.(14) and can be approximated by [5] 
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     III.METHOD OF MOMENTS 
An antenna structure is broken into “segments” and the 

currents on the segments are then evaluated. The “moment” is 
numerically the size of the currents times the vector, 
describing the little segment (length and orientation).                                  
A set of “basis functions” are assumed into which the current 
distributions are decomposed. The “ MoM” starts from 
deriving the currents on each segment, or the strength of each 
moment, by using a coupling Green’s function [14]. This 
Green’s function incorporates electrostatic coupling between 
the moments, by knowing the spatial change of the currents, 
buildup of charges at points on the structure is computed. The 
MoM was developed by R.F Harrington[6]  
 

IV.RESULTS AND DISCUSSION 
 

We have plotted current distribution eqn.(1a)-(1b) as 
shown in Fig.1-2 for half-wave and full-wave dipole antenna 
by using analytical method. The plot of radiation resistance, 
reactance and input resistance eqn.(6)-(9) is shown in Fig.3-4  
for a dipole radius 	1.5 ൈ 10ି଺ m. It can be seen that for small 
length and radius, input reactance approaches very large value, 
while for about half wavelength and one and half wavelength 
dipole antenna, input reactance approaches minimum value. 
The plot of directivity eqn.(5a) is shown in Fig.5. Number of 

lobes increases as dipole length increases beyond .  

Maximum directivity is obtained at dipole length 1.25. We 
have compared the results using the two-source modeling 
(delta-gap and magnetic-frill generator) for Pocklington’s and 
Hallen’s integral equations, and plotted the variation of the 
current distribution on a dipole ,as shown in Fig. 6-8 for l = 

λ/2 and  and for dipole radius a =1.5x 10-3m based on the 
sinusoidal distribution. From the figure it is observed that 
current is zero at the centre which implies an infinite 
impedance, in actual antenna design; the impedance is not 
infinite but is very large value. The results of input impedance 
catculated by numerical method integral equation solution is 
listed in the Table-1 also directivity calculated for different 
length of dipole antenna in linear and decibel scale (dB) is 
listed in Table-2 below. It can be seen that Hallén’s method 
excited by delta gap source gives fairly accurate result of input 
impedance, for moderate number of segments. While 
Pocklington’s magnetic frill method gives good approximation 
of input impedance for very high value of sub-sections.Plot of 
3-D and 2-D Radiation pattern is shown in Fig.9-12. It is 
apparent from the plot that number of lobes increases as length 

of the dipole increases beyond . 
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Fig-1 Current for /2 length dipole (phase Φ=0,
࣊

૝
 ,
૜࣊

૝
 and π)             

 

Fig-2 Current for  length dipole (phase Φ=0,
࣊

૝
 ,
૜࣊

૝
 and π)           

   
Fig.3 Plot of ࢊࢇ࢘ࡾ and ࢔࢏ࡾ for  dipole antenna ( l ≤	૜ࣅሻ 

 

Fig.3 Plot of ࢓ࢄ and ࢔࢏ࢄ for  dipole antenna ( l ≤	૜ࣅሻ 

 

Fig.5 Directivity plot for /2,  ,1.25 and 1.5 length dipole   

 

Fig-6 Current for /2 length dipole using Hallen’s equation dela gap method 
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Fig-7 Current for /2 length dipole using Hallen’s  and Pocklington’s dela gap 
method  

 

 

Fig-8 Current for 1.0  length dipole using Pocklington’s equation Magnetic 
Frill  generator no of segments N=101. 

 

 

Fig-9 Radiation Pattern (3-D ) of    /2 length dipole  Antenna 

 

Fig-10  3-D Radiation Pattern  of    /2 length dipole  Antenna 

 

 

Fig-11  Radiation Pattern  of    /2 length dipole  Antenna  

 

 

 

Fig-12  2-D Radiation Pattern  of  1.5  length dipole  Antenna  
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Table-1 Comparisons of Input Impedance

Seg. 
No 

Dipole 
Length  
in  ࣅ 

Radius in  ࣅ 

 

Input Impedance (Ω) by Delta 
Gap   Voltage (Hallén’s 
Equation) 

Input Impedance (Ω) by 
Delta Gap Voltage  
( Pockington Equation) 

Input Impedance (Ω) by 
Magnetic-Frill 
 (Pockington Equation) 

Eqn.(7) & (8) 
 
 

 j  7.5 128.4 +j  25.9   110.0 +j  50.7 73.1+j42.5- 124.3 ࣅ0.01 ࣅ 0.5 51
31 --do-- --do-- 108.5 +j  27.4 112.5 +j  36.3 102.4 +j  43.1  
 do-- 71.9 - j0.2   80.1 +j33.3   24.8 +j10.3   64.73+j62.6-- ࣅ 0.48 51
81 --do-- --do-- 73.1 +j 3.8   74.3 - j 0.6    35.5 - j0.3    
51 --do-- 0.00582.6 ࣅ + j15.6   83.4 + j14. 78.1+ j15.3    
 j 314.0 193.9 -j 359.1 281.2 -j 383.7  199.1+j125.4- 139.7 ࣅ0.01 ࣅ 51
  j 371.0 298.7 -j 411.0 277.8 -j 325.5- 223.2 ࣅ0.01 ࣅ 31
  do-- 34.3 -j 167.3 72.0 -j 237.4 224.6 -j 375.5-- ࣅ 101
 do-- 145.5 +j 6.5 143.1 +j 13.2 134.6 +j 30.1 105.5+j45.54-- ࣅ 1.5 101
  do-- 116.3 +j13.4 128.9 +j 4.6   73.2 +j 3.7-- ࣅ 1.5 31
  do-- 128.6 +j 18.9 120.2 -j 11.5 97.0 -j 6.0-- ࣅ 1.5 51
 

Table-2 Comparisons of Directivity (in linear scale and dB) 

Length of Dipole Directivity 
(dimension less) 

Directivity (dB) 

/2 2.1509 1.641 
 3.822 2.41 

1.25 5.1621 3.28 
1.5 3.4757 2.32 

 

V. CONCLUSION	 
We have graphically represented current distribution, 

radiation resistance, reactance, input resistance and reactance 
and directivity of finite length dipole at far field region. We 
have used Pocklington’s integro-differential equation and 
Hallén’s integral equation to find the current distribution on 
conducting wires, and then the values of input impedance 
obtained from two methods are compared. In all the cases 
theoretical results are found to be closely agrees with the 
experimental results.  
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Abstract: First line “ and graphically “ omitted  ,underline and fontsize of 
“radiation resistance” changed ,coma after “input impedance” omitted ,”finite-
length dipole  antenna” ,”s”  omitted ,MoM ,omitted 

Introduction: “MoM” replaced  by Method of Moments ,EM replaced by  
Electromagnetic. 

Conclusion: Third line “relation “ omitted,  Last four  lines omitted 
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