

Abstract—Security in wireless sensor networks is an

emerging field of research. Networked sensors have tremendous

potential to provide very attractive, low-cost solutions to a

variety of real-world problems. As sensors nodes edge closer

towards wire-spread deployment, security issues become a

crucial concern. However, sensors nodes have inherently

constrained characteristics; those incur unique constraints to

wireless sensor networks, such as low-computational

capabilities, small memory, and limited energy resources. An

appropriate cryptographic keys exchange techniques is,

therefore, the linchpin of good security in wireless sensor

networks. In this paper, we describe the design of

cryptographic public-key exchange protocol that allow key

agreement between sensor nodes implemented in an FPGA-type

embedded architecture based on modified Diffie-Hellman

protocol adapted to the specific context of wireless sensor

networks.

Index Terms—Wireless sensor network, security, keys

exchange, VHDL, FPGA

I. INTRODUCTION

IRELESS sensor networks are exciting emerging

domain of deeply networked systems of low-power

wireless sensor nodes with a tiny amount of CPU and

memory, and large federated networks for high-resolution

sensing of the environment phenomena, signal processing,

embedded computing, and communicating to other nodes [1]

[2] [3].

This promising technology has a variety of purposes,

functions, and capabilities, advancing under the push of

recent technological advances and pull of myriad of

potential solutions for both military and civilian real-world

problems. In many applications, sensor nodes may interact

with sensitive data and/or operate in hostile unattended

environments. As networked sensors grow in applications

area, the need for security in them becomes vital. However,

sensors nodes have severe resource constraints. These

constraints make wireless sensor networks different from

traditional networks, and the security approaches used in

these conventional networks cannot be directly applied to

wireless sensor networks, because they require much more

resource for their extensive computations. As well as the

unreliable communication channel, and collaborative nature

of sensor nodes in an infrastructure-less network make

security defenses even harder [3] [4] [5] [6] [7].

Manuscript received March 04, 2014; revised March 19, 2014.

Kahina CHELLI, University of Mouloud MAMMERI Tizi-Ouzou

15000 Algeria; e-mail kahinachelli@gmail.com

II. PROBLEM AND MOTIVATION

Wireless sensor nodes are vulnerable to resource

consumption attacks. Energy is the biggest constraint to

wireless sensor capabilities due to their autonomy, physical

size, and low-cost of production. Those involve the use of

low-computing power. For example, one common sensor

type TelosB has a 16-bit, 8 MHz RISC CPU with only 10K

RAM, 48K program memory, and 1024K flash storage. This

microcontroller low-timing is optimized to respond to the

energy economy constraint of sensor nodes. Thus, a wireless

sensor networks will execute multiple applications

concurrently. Adversaries can repeatedly send packets to

drain the node’s batteries and waste network bandwidth. As

well, the mobility and the size of sensor nodes coupled with

their variety of the deployment environments physically

insecure make security mechanisms an absolute necessity to

the defense of wireless sensor networks [1] [4] [5] [6] [8]

[10] [11].

One challenging security aspect that receives a great deal

of attention in a wireless sensor networks is cryptographic

keys exchange, that is an important cryptographic primitive

upon which the security of the network is built. In this

context, we propose a hardware protocol based on the

efficiency of Diffie-Hellman key exchange protocol and

Montgomery algorithms.

III. PRESENTATION OF OUR HARDWARE PROTOCOL

In this section we describe our protocol. Diffie-Hellman

algorithm is used and modified to reduce hardware

resources.

A. The Diffie-Hellman protocol

Diffie-Hellman protocol [12] is the first public key

algorithm which was invented by Whitfield Diffie and

Martin Hellman in 1976. Its security relies on the difficulty

of computing discrete logarithms in a finite field. It allows

two entities to establish a secret key over an insecure

channel. Its principle is as follows:

To share a secret cryptographic key among two entities A

and B:

--The two entities agree on two primes numbers M and g

such that M > g > = 2 and (M-1) / 2 is also prime. The two

numbers M and g are public and can be common to a group

of entities. The choice of M can have a significant impact on

the security of this protocol. More importantly, M must be

large and g is a primitive root modulo M;

--The entity A chooses a secret random number x in [2,

M-2], and sends to the entity B the calculation result: X = g
x

Hardware Keys Exchange Protocol in Wireless

Sensor Networks

Kahina CHELLI

W

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

mod M;

--The entity B chooses a secret random number y in [2,

M-2], and sends to the entity A the calculation result Y = g
y

mod M;

--The entity A computes the secret key Ka = Y
x
 mod M,

and the entity B computes the secret key Kb = X
y
 mod M.

The values Ka and Kb are both equal to g
(x y)

 mod M. An

intruder that listens to traffic cannot calculate this value,

because the interceptor knows only the values M, g, X, and

Y. To calculate the secret parameters, the intruder must

solve the discrete logarithms x = ln (X) / ln (g), and y = ln

(Y) / ln (g), which are very complex to achieve within a

reasonable time.

Using this key exchange protocol in wireless sensor

networks has many advantages. Sensor nodes may exchange

their secret key on an insecure channel. Thus, it ensures

retroactive security. That is to say, in case of disclosure the

secret key of the system, only the current exchange is

affected, but not the future. It allows also scalability insofar

as the exchanges are peer to peer without central authority.

Unfortunately, the direct application of this protocol is

difficult for wireless sensor networks, because it is typically

too computationally intensive for tiny sensor nodes. In other

words, the arithmetic operations on this protocol are

complex because they are on cyclic multiplicative groups of

prime order on numbers of several hundred-bit. However, it

is feasible with the rights selection of algorithms.

The solution that we propose is FPGA-type embedded

architecture that allows discharging the microprocessor of

cryptographic keys computational tasks, so optimizes the

resource allocation. It’s based on Montgomery

multiplication and exponentiation algorithms which are very

smart, fast and efficient algorithms. They replace the

division by a shift and modulus-addition operation that

reduce the computational complexity and generate a

tremendous gain in energy. This solution tolerates the use of

small keys combined with an appropriate keys exchange

frequency.

B. Network model and attacker

Our protocol is based on the following assumptions: We

consider a large-scale distributed architecture, where nodes

are deployed in a random manner and may be mobile or

static. The sensor nodes can be homogeneous or

heterogeneous. We assume that the attacker can be passive

(network traffic analysis, etc.) or active (injecting data,

compromised sensors, etc.). We also assume that the

information previously transmitted via the network is not

interesting for the adversary. That is to say, the adversary is

interested to the transmitted data at the present time.

C. Protocol design

Our hardware key exchange protocol is a digital circuit

which is responsible of cryptographic keys computational

tasks. The Fig.1 shows the position of our circuit in a sensor

module. The description of the circuit is given in the

following section.

The particularities of the novel protocol

--Reducing the number of bits of all the parameters of

Diffie-Hellman protocol, the public parameters M, g, X and

Y, and also the private parameters x and y. We set the size

of all these parameters on 160-bit. We use g = 2 as primitive

root. Nothing prevents to take g the smallest value

appropriate. In addition, it reduces the cost of the modular

exponentiation, which is a costly operation for tiny sensor

nodes.

--Increasing the keys exchange frequency among the

sensor nodes. The security fault induced by reducing the

number of bits is filled by an appropriate frequency of keys

exchange, so that the attacker may not have the prescribed

time to crack the secret key.

Our key exchange protocol

Two nodes A and B want to establish a secret

cryptographic key agree on the big prime number M that can

represent in 160-bit:

--The module of node A generates a random secret

number x in [2, M-2], and sends to node B the calculation

result X = 2
x
 mod M;

--The module of node B generates a random secret

number y in [2, M-2], and sends to node A the calculation

result Y = 2
y
 mod M;

--The module of node A calculates the secret key Ka = Y
x

mod M, and the module of node B calculates the secret key

Kb = X
y
 mod M.

For the generation of the secret numbers x and y, we use

Blum-Blum-Shub Pseudorandom number Generator (BBS)

[13]. It is one of the most efficient pseudorandom number

generators. This generator works as follows:

--Choose two large prime numbers p and q that are

congruent to 3 modulo 4. The product of these numbers is n

= p * q, called Blum integer.

--Choose another random integer x that is prime to n and

compute x0 = x
2
 mod n, this number is the seed of the

generator.

--The i
th

 pseudorandom bit is the least significant bit of xi

where: xi = (xi-1)
2
 mod n.

The security of this generator is based on the mathematics

underlying factoring large integer that is intractable.

Our protocol is mainly performed by modular

exponentiation which is a succession of modular

multiplication. Among the most widely used algorithms for

these arithmetic operations are Montgomery’s algorithms

which are efficient methods to perform modular

multiplication and exponentiation in hardware [14].

Montgomery modular multiplication
Montgomery algorithm for modular multiplication allows

multiplying two integers modulo m avoiding division by m.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

http://www.springerreference.com/index/chapterdoi/10.1007/978-1-4419-5906-5_131
http://www.springerreference.com/index/chapterdoi/10.1007/978-1-4419-5906-5_131
http://www.springerreference.com/index/chapterdoi/10.1007/978-1-4419-5906-5_131

Algorithm.1: Montgomery modular multiplication

Inputs: integers m = (mn−1…m1m0)2, x = (xn−1…x1x0)2, y =

(yn−1…y1y0)2, with 0 ≤ x, y < m and R = 2
n
 with gcd (m, 2) =

1, m’= −m
−1

 mod 2.

Output: x*y*R
−1

 mod m.

1. A←0. (Notation: A = (anan−1…a1a0)2)

2. For i from 0 to (n − 1) do the following:

 2.1 ui ← (a0 + xi y0) m’ mod 2 ;

 2.2 A ← (A + xi y + ui m) / 2;

3. End for;

4. If A ≥ m then A←A – m;

5. Return (A).

The radix-2 Montgomery modular multiplication

presented in algorithm.1 computes x*y*R
−1

 mod m, where x

and y are the operands, m is the modulus and R is a power of

two.

Before performing a modular multiplication using the

Montgomery algorithm, the operands need to be transformed

into Montgomery representation. The Montgomery

representation of two integers x and y denoted by x_mont

and y_mont can be computed as follow:

X_mont = montgomeryMultiplication (x, R
2
)

= x*R
2
*R

-1
 mod M

= x*R mod M (1)

Y_mont = montgomeryMultiplication (y, R
2
)

= y*R
2
*R

-1
 mod M

= y*R mod M (2)

After computing the Montgomery multiplication of two

operands in Montgomery representation, the result is also in

Montgomery representation and can be converted back by

multiplication with R
−1

, which comes down to Montgomery

multiplication with 1. This can be illustrated as follow:

Result= montgomeryMultiplication (result_mont, 1)

= x* y * R * 1 * R
-1

 mod M

= x * y mod M (3)

Montgomery modular exponentiation

When using the Montgomery multiplier for modular

exponentiation (see algorithm.2) P0 and Z0 have to be

converted to M-residue before running the loop and Z has to

be converted back at the end of the algorithm.

Algorithm.2: Montgomery modular exponentiation

Inputs: integers x = (xn-1…x1, x0)2, e = (en-1…e1, e0)2, m =

(mn-1...m1, m0)2 ;

Output: P = x
e
 mod m

1. P0:= montgomeryMultiplication (1, R
2
);

2. Z0:= montgomeryMultiplication (x, R
2
);

3. For i in 0 to n-1 loop

 3.1. Z:= montgomeryMultiplication (Z, Z);

 3.2. If e(i) = 1 then

 3.4. P:= montgomeryMultiplication (P, Z);

4. End for;

5. P:= montgomeryMultiplication (1, P);

6. End.

IV. HARDWARE IMPLEMENTATION OF OUR KEY EXCHANGE

PROTOCOL

A. Synoptic diagram of the circuit

Fig.2 gives the synoptic diagram of our circuit. It

composed of three modules, one module to generate

pseudorandom number and two modules to perform modular

exponentiation.

Our circuit has been described in VHDL. Each module is

described independently using Algorithmic State Machine

approach (ASM). We present the generator module, the

modular multiplication module and the modular

exponentiation module.

The pseudorandom number generator module

This module is responsible for generating the private

parameter for each sensor node. It has two inputs signals

clock and reset, and 160-bit output that represent the

pseudorandom number. The diagram and interface signals of

the generator are given in Fig.3.

The ASM corresponding to BBS generator is shown in fig.4.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

Montgomery modular multiplication Module

Fig.5 shows the diagram and interface signals for the

Montgomery modular multiplier. It has two 160-bit inputs X

and Y, signal clock, two signals of reset command and start,

and 160-bit output that represent the result of the modular

multiplication in Montgomery representation.

The corresponding ASM of Montgomery modular

multiplier is shown in fig.6.

Montgomery modular exponentiation Module

Fig.7 gives the schema and interface signals for the

modular exponentiation module. It has two 160-bit inputs x

and e, signal clock, two signals of reset command and start,

and 160-bit output that represent the result of the modular

exponentiation in natural representation.

The corresponding ASM of Montgomery modular

exponentiation is given in fig.8.

According to the ASM shown in Fig.9, two temporary

registers are initially loaded by P0 and Z0. Then the

algorithm loops from the least significant bit of e to the most

significant bit. Each iteration i, the new value of Z is

computed. If e (i) = '1' the register is updated with the new

value P = P * Z. Otherwise the register remains unchanged.

V. VHDL SIMULATION

In this part, we have simulated the various modules using

8-bit.

Fig.10 gives the VHDL simulation of pseudorandom

number generator module. For functional simulation, we

created an instance of this generator having the following

parameters:

N = p*q = 7*19 = 133, x = 100, x0 = 100
2
 mod 133 = 25,

x1 = 25
2
 mod 133 = 93, x2 = 93

2
 mod 133 = 4, x3 = 4

2
 mod

133 = 16, x4 = 16
2
 mod 133 = 123, x5 = 123

2
 mod 133 =

100, x6 = 100
2
 mod 133 = 25, x7 = 25

2
 mod 133 = 93, x8 =

93
2
 mod 133 = 4.

The pseudorandom number is: 100101102 = 15010 = 96H.

After a reset, the circuit is initialized and starts

processing. The end of processing is indicated by the

passage of signal clock at 1. The random value generated is

supplied to the bus Zi as shown in Fig.10.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

Fig.11 illustrates the VHDL simulation of Montgomery

modular multiplication module. To instantiate the multiplier,

we consider parameters in Montgomery representation as

follow:

X = 08H, Y = 1BH and the final result mult_out = A4H.

Fig. 12 gives the VHDL simulation of Montgomery modular

exponentiation. We instantiate the module with the

following parameters:

X = 10H, E = 0CH and the final result exp_out = 0CH.

VI. CONCLUSION AND PERSPECTIVE

Wireless sensor networks remain one of the most exciting

and challenging research domains of our time. Among the

problems posed at present in this unique type of networks is

the security problem. A dedicated solution depends on the

capabilities of sensors nodes, indicating that there is no

unified solution. Instead, security mechanisms are highly

applications-specific

Our contribution consists of a hardware protocol which

aims to bring a suitable solution to the problem of key

exchange in wireless sensor networks.

As perspective, we envisage to study a suitable key size

for a reasonable frequency of change. We also envisage

quantifying the consumed energy by the synthesized circuit

in a given technology (e.g. FPGA). Our protocol can be

combined with an encryption algorithm, which can also be

achieved by a hardware solution.

REFERENCE

[1] K. Sohraby, D. Minoli, and T. Znati, WIRELESS SENSOR

NETWORKS: Technology, Protocols, and Applications, USA, 2007,

pp. 1-71.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A

survey on sensor networks,” IEEE Communications Magazine, 40(8):

pp.102–114, August 2002.

[3] R. Vishal, M. Mrudang, “Security in Wireless Sensor Network: A

survey,” Ganpat University Journal of Engineering & Technology,

vol.1, issue.1, jan-jun-2011.

[4] Jaydip Sen, “A Survey on Wireless Sensor Network Security,”

International Journal of Communication Networks and Information

Security, Vol.1, No.2, August 2009.

[5] N. Gura, A. Patel, A. Wander, H. Eberle, and S. Shantz. Comparing

elliptic curve cryptography and rsa on 8-bit cpus. In 2004 Workshop

on cryptography Hardware and Embedded Systems, August 2004.

[6] R. Watro, D. Kong, S. Cuti, C. Gardiner, C. Lynn, and P. Kruus.

Tinypk: securing sensor networks with public key technology. In

Proceedings of the 2nd ACM Workshop on Security of Ad hoc and

Sensor Networks (SASN ’04), pages 59–64, New York, 2004. ACM

Press.

[7] T. Arampatzis, J. Lygeros, and S. Manesis, “A Survey of Applications

of Wireless Sensors and Wireless Sensor Networks,” In Proceedings

of the 13th Mediterranean Conference on Control and Automation,

2005, pp 719–724.

[8] S. Zhu, S. Setia, and S. Jajodia. Leap: Efficient security mechanisms

for large-scale distributed sensor networks. In CCS ’03: Proceedings

of the 10th ACM Conference on Computer and Communications

Security, pages 62–72, New York, NY, USA, 2003. ACM Press.

[9] D. J. Malan, M. Welsh, and M. D. Smith. A public key infrastructure

for key distribution in tinyos based on elliptic curve cryptography.

In First Annual IEEE Communications Society Conference on Sensor

and Ad Hoc Communications and Networks, 2004. IEEE SECON,

2004.

[10] H.C. Chaudhari and L.U. Kadam, “Wireless Sensor Networks:

Security, Attacks and Challenges,” International Journal of

Networking, Vol.1, Issue.1, pp-04-16, 2011.

[11] L. Eschenauer and V. D. Gligor. A key-management scheme for

distributed sensor networks. In Proceedings of the 9th ACM

Conference on Computer and Communications Security, pages 41–

47. ACM Press, 2002.

[12] B. Schneier, applied cryptography: algorithms, protocols and source

codes in C, 2nd edition.

[13] P. Junod, “Cryptographic Secure Pseudo-Random Bits Generation:

The Blum-Blum-Shub Generator,” August 1999.

[14] A. J. Menezes, P. C. van Oorschot, and S. A Vanstone, HANDBOOK

of APPLIED CRYPTOGRAPHY, USA, august 1996, pp. 602-620.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

