

Abstract—One of the several difficulties novice

undergraduates experience in applying programming
fundamentals is mastering the meaning of running programs.
Because of these difficulties, students lack involvement for
Computer Science (CS) introductory courses; and the latter
are associated with high drop-out rates. Integrating a program
visualization tool into an environment that tends to facilitate
learning helps novice undergraduates to build a clear mental
model for understanding the behavior of running programs.
This may improve the involvement of students for those
courses. Using two different editions of the same CS
introductory module, this pilot study portrays the changes
from an unassisted to a visualization tool assisted program-
completion approach. The results in terms of success, failure,
and drop-out are given and the impact of introducing this tool
on student involvement in learning is analyzed. The author
discusses implications of the assisted implementation for the
classroom and pays attention to some of its drawbacks.

Index Terms—computer science education, novice
programmers, program visualization, worked examples

I. INTRODUCTION

T the University of Minho (UM), students who chose
to graduate in Polymers Engineering Integrated Master

(PEIM), which is a five-year degree program, must pass the
two-module Programming and Numerical Methods
(PNM9703) course. Programming is a Computer Science
(CS) introductory module of this second year course of
PEIM studies. Because of the difficulties novice
undergraduates face mainly in applying programming
fundamentals [9], some of them seem to get less involved in
this module over time. The fairly high drop-out rate
associated with the 2010 edition of it may explain part of
the problem.

Constructivist based theories have demonstrated that
effectiveness of learning is largely dependent on the ability
to promote the immersion of the student in authentic
situations. In this view, learning to solve problems is a
process of individual and collaborative exploration
addressed to real context of implementation [10], [21].
Thus, the relevance of CS introductory courses is often
revealed as students attempt to solve reality bond problems.
Active learning in CS instruction acknowledges these views
through, for instance, (i) program-generation approaches

Manuscript received March 04, 2014; revised March 24, 2014. This
work was supported in part by FCT – Fundação para a Ciência e Tecnologia
within the Project Scope: PEst-OE/EEI/UI0319/2014.

I. C. Moura is with the ALGORITMI Research Centre, Universidade do
Minho, 4804-533 Guimarães, Portugal (phone: 351-253-510266; fax: 351-
253-510300; e-mail: icm@dsi.uminho.pt).

(that, e.g., emphasize the design and coding of new
programs, to solve problems, with minimal guidance being
provided from the lecturer) and/or (ii) the introduction of
concepts, methods, and skills on a need-to-know basis in the
context of challenge questions. These techniques keep
students highly involved in the learning process and enable
them to take responsibility for learning [6], [12], [17], [18],
[21], [26]. However, cognitive load theory argues that
program-generation approaches provided with minimal
guidance during instruction put a heavy load on novices’
working memory. This prevents some of them from learning
to apply CS fundamentals, as the human working memory
has limited capacity for dealing with new information.
Lecturers can thus facilitate learning by making novices
study and further complete solutions (or worked examples)
to standard programming problems. Such program-
completion approaches direct students’ attention to learning
the essential of relations between problem-solving moves,
reducing the cognitive load on their working memory [8],
[20], [23], [24].

In the two editions of the programming module of
PNM9703 course (i.e., fall semesters of 2011 and 2010), in-
class active instructional activities were used to introduce
programming basic constructs, such as, variables, selections,
and loops (e.g., with students being presented, in the
beginning of each lab session, to a standard programming
problem and led to build the corresponding algorithmic
solution that they were supposed to code, test, and debug
later on during the session [15]. Examples of in-class active
instructional activities can be found in, e.g., [5], [13], [21].).
These activities help lecturers to involve students in the
learning process and shift part of the responsibility for
learning to the students. In addition, a program-completion
approach was used to facilitate the learning of solutions to
standard programming problems (e.g., [8], [11], [12], [17],
[18], [20], [23], [24], [27]). This program-completion
approach emphasized the completion of worked examples –
or short, textbook-type algorithmic segments of 1 to 30 lines
long (tops) – that started by being complete and flawless,
with flaws and missing lines being increasingly added for
students to complete and/or correct as weeks progressed
[15]. Despite being regarded as facilitating learning, this
environment seemed to fall short for some of the 2010
novices who ended-up dropping the module.

Research in CS education (for a detailed review, see [20])
suggests that applying programming fundamentals requires
more than just mastering solutions to standard problems
from novice undergraduates. It also requires them to master
the meaning of running programs, which entails the ability
to mentally simulate the execution of programs [4], [19]. To

Computer Science Instruction Assisted by a
Visualization Tool

Isabel C. Moura

A

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

promote the learning of this skill, experts in program
animation for training purposes (e.g., [2]–[4], [19], [22])
suggest lecturers to introduce novices to a simple
description of the machine they are learning to operate (e.g.,
the procedural notional machine) and use a program
visualization tool to assist this description. Furthermore,
they suggest lecturers to give students basic programming
tasks to make them interact with the tool, and thus, enhance
their engagement with it. Such use of these tools helps
novices to build a clear mental model for understanding the
execution of programs, by showing them the hidden
mechanics of the notional machine. The more students
deepen their understanding (and mental models) about the
meaning of running programs (and, e.g., the procedural
notional machine), getting involved in learning activities,
the more likely they are to succeed. A stronger involvement
among students may lead to higher achievements in CS
introductory courses (and modules). This hypothesis can be
related to the fundamental principles set forth in
constructivist learning theory [6], [16]–[18], [21], [26].
However, regarding effectiveness and pedagogical benefits
of visualization tools, empirical studies show mixed results
(for an overview, see [2], p. 376-377). On the other hand,
literature in educational research indicates that the above
referred positive effect is expected if program visualization
tools are integrated into an environment that tends to
facilitate learning [3], [8], [12], [17], [18], [23], [24].

In the 2011 edition of the programming module of
PNM9703 course a stable version of a program visualization
tool (i.e., Portugol Integrated Development Environment
(IDE) 2.3) was integrated into the learning environment.
The tool was required for novices to automatically animate
procedural algorithmic solutions (or worked examples
written in a Portuguese pseudo-code like language). That is,
using Portugol IDE 2.3 novices were supposed to (i)
automatically format a given algorithmic solution (i.e., color
and indent the pseudo-code), (ii) automatically check the
latter for syntactic errors, (iii) correct them, (iv) run/test the
syntactically correct algorithmic solution step-by-step while
monitoring the corresponding change of the internal state of
variables, (v) edit the solution as needed, and (vi) repeat
steps (i) to (v) until they got a complete and flawless
solution to a standard programming problem [15].

This pilot study reports on the impact that the
implementation entailing the use of Portugol IDE 2.3 (for
students to automatically visualize the execution of worked
algorithmic solutions) in the 2011 programming module of
PNM9703 course (at the UM) had on its drop-out rate and
students’ academic achievements. Method and results are
then presented. A discussion follows on this study’s results
and potential ways of improving the referred
implementation in a CS introductory module.

II. CONTEXT AND RESEARCH DESIGN

PNM9703 was a second year mandatory course, with no
prerequisites, offered in the fall semester. Its programming
module, which covered two thirds of the semester, was the
first of PEIM studies exclusively dedicated to computational
literacy (e.g., involving the ability to create computational
artifacts). Given the module’s short term, during its 2011

and 2010 editions only programming basic constructs (e.g.,
variables, assignment statements, selections, loops, and
arrays) were taught in accordance with the procedural
paradigm. (Reference [1] suggests that the latter is more
appropriate than the object-oriented one to teach
programming fundamentals to novice undergraduates.) Over
exposing students to content was thus avoided, as it may
impede learners’ meaningful interaction with the content
and block the learning [26]. Although the learning
environment of both editions (that is described below) tends
to facilitate learning, particularly of solutions to standard
programming problems [8], [12], [20], [24], [27], it failed to
involve some of the 2010 students.

During weekly 130-minute lab sessions (of both the 2011
and 2010 programming module of PNM9703 course) in-
class active instructional activities were used to introduce
CS fundamentals (for examples see, e.g., [1], [5], [11], [13],
[21]). In each session, to start with, a standard programming
problem (refer to the Appendix) was presented to students
and they were lectured (for approximately 5-15 minutes) on
algorithmic constructs meant for the solution. Then, they
were asked to put together (individually or in groups of two)
an algorithmic solution in a couple of minutes (i.e., students
practiced the knowledge lectured). Right after, one of the
students’ solutions was written, discussed, and improved on
the board. This was done with the lecturer (i) showing
students how to manually trace the execution of an
algorithm, (ii) asking ‘what-if’ questions, and (iii) letting
students work on their answers and presenting them before
class. (CS fundamentals previously taught were revisited, as
needed.) In the remainder of lab sessions, undergraduates
were supposed to study, complete, and/or correct textbook-
type algorithmic solutions (or worked examples) of 1 to 30
lines long (tops). Flaws and missing lines were increasingly
added to these solutions throughout the module. In addition,
students were guided through the programming language
text book (on Visual Basic under MS Excel 2007 VBA
environment, which made it easy for them to automate the
handling of datasheets they work with throughout PEIM
studies) so they could code, test, and debug (individually or
in groups of two) the algorithmic solutions. Students were
also asked to summarize the general idea behind each
solution (i.e., to find out the programming problem being
solved). At home, students were supposed to finish the
worked examples started in class. Assessment consisted of
two individual tests and aimed at evaluating students’
recognition of syntactic errors and understanding of the
structure and function of simple algorithmic and code
sequences [27]. The first test (consisting only of multiple-
choice questions) covered material on variables, assignment
statements, selections, and ‘while’ loops. Besides answering
multiple-choice questions, in the second test (that also
covered ‘for’ and ‘do-until’ loops and arrays) students had
to (i) fill-in the blanks for a simple algorithmic and/or code
segment and (ii) write a simple piece of code equivalent to a
given one. (According to [12], as many novice
undergraduates are unable to write a piece of code by the
end of a whole semester practicing programming, multiple-
choice questions are good for testing their knowledge of
basic constructs.) Overall grades of the programming

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

module of PNM9703 course were derived 40% from the
first test and 60% from the second test [15].

During the 2010 edition of the programming module of
PNM9703 course students were also supposed to manually
trace the execution of worked examples (just like the
lecturer did during lab sessions, as she used the call stack to
describe the execution of procedural algorithmic solutions).
This required them to mentally simulate the execution of
examples and imagine the dynamic behavior and side-
effects of running examples. As many novice
undergraduates found this tracing activity particularly
challenging, they skipped it, and thus, had a hard time
understanding the meaning of running worked algorithmic
solutions (written in Portuguese – or students’ native
language – pseudo-code like language) [2]–[4], [19], [20],
[22]. Conversely, hands-on computing and receiving
immediate feedback (e.g., from an IDE program) in and out
of class, is perceived by students to have a positive effect on
their understanding of programming activities [1].
Therefore, in the 2011 edition of that same module a stable
version of Portugol IDE 2.3 (i.e., a program visualization
tool) was integrated into the learning environment for
students to automatically animate worked algorithmic
solutions.

Portugol IDE 2.3 is a freeware environment for training
programming fundamentals compliant with the procedural
paradigm [14]. It is a standalone application that can be
downloaded from the Portugol website
(http://www.dei.estt.ipt.pt/portugol) and easily installed on a
personal computer. The tool interface is presented in Fig. 1.
It is fairly similar to but simpler than Jeliot’s (refer to [2], p.
378). Overall, Portugol IDE 2.3 is a simple, intuitive, and
stable IDE that enables novice undergraduates (on their
own) to create, edit, develop, test, and automatically animate
algorithmic solutions (or worked examples). These solutions
must be written in a Portuguese pseudo-code like language
(e.g., refer to the solution printed in the large upper window
right below the pull-down menu in Fig.1), which is quite
similar to the one taught in the 2010 programming module
of PNM9703 course [15]. Portugol IDE 2.3 pseudo-code
language is built around a small number of constructs and
kept simple in its syntax and semantics [14]. This program

visualization tool has been used by Portuguese and Brazilian
higher education institutions.

Novices were introduced to Portugol IDE 2.3 in the
beginning of the 2011 programming module of PNM9703
course and taught how to use it. As making students interact
with a program visualization tool increases their
engagement with it [2], [4], [19], PEIM novices were given
basic programming tasks to exploit the tool. First, they used
the tool editor (i.e., the large upper window right below the
pull-down menu in Fig.1) to write and automatically format
examples. (The “automatic format” option in the Editar
pull-down menu, see Fig. 1, automatically colors and
indents the pseudo-code, which makes it easy to read.)
Second, novices were advised to use the “verify” option (as
needed, e.g., until they got a syntactic error-free solution) in
the Algoritmo pull-down menu (see Fig. 1) to automatically
check examples for syntactic errors. (This option highlights,
one at a time, pseudo-code lines that have syntactic errors in
the editor screen and provides feedback on each error).
Third, students had to correct/remove syntactic errors
reported by the tool from examples. Finally, they were
required to run/test syntactic error free examples using the
“Executa e Monitora” option in the Algoritmo pull-down
menu. (This option opens a new window with two vertical
frames, i.e., the “Executa e Monitora” window in the centre
of the screen in Fig. 1). By repeatedly pushing the right
button on top of the left frame (for continuing with the
execution of the next statement), students were able to
execute an example step-by-step at their own pace and
visualize (on the right frame of the “Executa e Monitora”
window in Fig. 1) the effect of each statement on the
internal state of variables. This step-wise animation allowed
students to form and explore their own hypothesis (as they
inserted input data, e.g.) and draw conclusions for the
examples [2], [4], [19]. After a few lab sessions, some of the
students got bored with this way of running examples.
These students were then taught to use the left button and
cursor located on top of the left frame (i.e., the “50%”
button and cursor right below this button on the left frame
of the “Executa e Monitora” window in Fig. 1). Displacing
the cursor students established the slow-motion speed at
which Portugol IDE 2.3 showed them, after they have
pushed the “50%” button, the automatic step-wise execution
of an example and the corresponding update of the internal
state of variables (on the right frame of the “Executa e
Monitora” window in Fig. 1). The lecturer gave students
feedback on their solutions and corresponding
visualizations, as needed [15].

III. RESEARCH QUESTIONS AND METHODOLOGY

Literature in educational research argues that integrating
an easy to use program visualization tool into an
environment that tends to facilitate learning (one that
combines, e.g., active learning and program-completion
approaches) and that engages students with the tool (e.g.,
giving them basic programming tasks to make students use
it), helps novices to build a clear mental model for
understanding the execution of programs. The more students
deepen their understanding about the meaning of running
programs, getting involved in learning activities, the more

Fig. 1. The Portugol IDE 2.3 interface.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

likely they are to succeed [2]–[4], [8], [12], [19], [20], [22]–
[24]. This stronger involvement among students may lead to
higher achievements in CS introductory modules [6], [17],
[18], [21]. This hypothesis raised the following research
questions:
1) Are there differences in course approval, failure, and

drop-out rates between the programming module of
PNM9703 course assisted by a visualization tool taught
in the fall of 2011 and the unassisted one taught in the
fall of 2010?

2) Are there differences in approved students’ final
achievements (on average) between the programming
module of PNM9703 course assisted by a visualization
tool taught in the fall of 2011 and the unassisted one
taught in the fall of 2010?

 In this pilot study quantitative methodologies were used

in the analysis and interpretation of data. These
methodologies consisted of examining the potential
differences for both editions of the programming module of
PNM9703 course (i.e., visualization tool assisted and
unassisted implementations) in terms of totals of approvals,
failures, and drop-outs and approved students’ final
achievements.

IV. DATA COLLECTION AND RESULTS

Both the 2011 and 2010 classes of PNM9703 course were
composed without the author’s intervention (i.e., in the
UM’s usual manner). Then, data spanning these two
semesters were collected on undergraduates registered in the
course. Students who had previously been exposed to a
similar CS content were excluded from the sample, as an
improvement in these students’ grades was expected. Thus,
data from a total of 63 novices (i.e., 35 from the fall 2011
and 28 from the fall 2010, who attended the programming
module of PNM9703 course for the first time) were
examined. Given students’ academic index, this population
had the same background since its undergraduates were all
from the second year of PEIM studies.

In the fall semester of 2011, out of 35, 32 students were
approved (i.e., 91% of approvals) and three students

dropped the programming module of PNM9703 course (i.e.,
9% of withdrawals). Surprisingly, there were no failures.

According to Fig. 2, both drop-out and approval rates of the
programming module suggest that undergraduates might
have responded favorably to the implementation assisted by
Portugol IDE 2.3 (the program visualization tool). For
students involved in this implementation: the drop-out rate
was below half (9%) the one of fall 2010; the approval rate
was 20 percentage points higher than (91%) the one of fall
2010; and the failure rate reached the lowest value possible
(0%).

Regarding the first research question, the test result for
the proportion of withdrawals (using small-sample statistics)
indicates that the drop-out rate of the programming module
of PNM9703 course offered in the fall of 2011 (N = 35) is
numerically and marginally statistically different (with p-
value < 0.10) from the drop-out rate of fall 2010 (N = 28).
This result resembles the one on drop-out attained by [7],
who have also used active learning techniques but, a
different program visualization tool (namely Turtlet).
Similar tests were performed on both proportions of
approvals and failures of the same 2011 module. Results
suggest that the approval rate of the programming module
offered in 2011 is numerically and statistically different
(with p-value < 0.01) from the one of fall 2010. This result
outperformed the one attained by [7]. But, the failure rate of
that same module is not statistically different from the one
of fall 2010.

Concerning students’ achievements, the final grade
average for the approved ones was equal to 13 (SD = 2.05;
Maximum = 18; Minimum = 10; N = 32), on a 0-20 scale, in
the fall of 2011. In 2010, the final grade average for the
approved students of the programming module of PNM9703
course equaled the 12 mark (SD = 2.06; Maximum = 16;
Minimum = 10; N = 20). Examining the second research
question, no statistically significant differences between
semesters were found in the distribution of the approved
students’ final programming grades.

V. DISCUSSION, CONCLUSION, RECOMMENDATIONS, AND

FUTURE RESEARCH

This pilot study reports on the use of a tool for students to
automatically visualize the execution of worked algorithmic
solutions in an undergraduate CS introductory module of
PNM9703 course at the UM in 2011. This module
implementation comprised (i) in-class active instructional
and learning activities for solving standard programming
problems and tracing the execution of corresponding
algorithmic solutions, (ii) using a program visualization tool
(i.e., Portugol IDE 2.3) for novice undergraduates to
automatically animate worked examples (i.e., short,
textbook-type algorithmic solutions to standard
programming problems that were handed over complete and
flawless, in the beginning, and increasingly incomplete
and/or flawed as the module progressed) that they were
supposed to study, complete, and/or correct, (iii) coding,
testing, and debugging the referred worked algorithmic
solutions, and (iv) two individual test assignments
consisting mainly of multiple-choice questions [15].

The results of the 2011 implementation for the
programming module of PNM9703 course indicate that
students responded favorably to the integration of Portugol

91%

0%
9%

71%

7%

21%

0%

20%

40%

60%

80%

100%

Approval Fail Drop

Fall 11 Fall 10

Fig. 2. Approval, failure, and drop-out rates of both programming modules
of PNM9703 course offered in 2011 and in 2010.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

IDE 2.3 into the learning environment. That is, given Fig. 2
results, making novice undergraduates interact with
Portugol IDE under an environment that tends to facilitate
learning (in the fall semester of 2011), required an
additional involvement in programming activities from
novice undergraduates (compared to the implementation of
fall 2010). This result is in line with previous research (e.g.,
[7], [9]). Besides helping students to enhance their
understanding on the meaning of running programs, this
stronger involvement among them may also lead to higher
achievements [2], [4], [6], [17]–[19], [21]. Still, concerning
those students who passed, the programming module final
grade average of fall 2011 was not significantly higher than
the final grade average of fall 2010. Nonetheless, the results
seem to confirm that students’ achievements may have been
improved because students got highly involved in the
programming tasks (e.g., for automatically animating
increasingly difficult worked algorithmic solutions with
Portugol IDE 2.3) throughout the module. This may have
made the difference between students getting approval and
dropping the programming module of PNM9703 course.

In line with previous empirical research [2]–[4], [19],
[22], this study suggests that the successful integration of a
program visualization tool (e.g., Portugol IDE 2.3) into an
environment that tends to facilitate learning (like the one
described here) requires lecturers to (i) pick a stable and
easy to learn and use tool, (ii) introduce students to the tool
in the beginning of the module, (iii) make sure that students
use the tool throughout the module, giving them basic
programming tasks (e.g., worked examples – constructed to
avoid splitting students’ attention between different sources
of information or having them deal with redundant
information [12], [25] – for novices to study, correct and/or
complete), (iv) remind students (as needed) that they will be
tested on the understanding of structure and function of
pseudo-code sequences structurally identical to the ones
trained in class, and (v) explicitly teach students how to use
the tool and interpret its automatic visualizations (in the
beginning and later on in the module, as needed), for
instance, making them run basic algorithms (or worked
examples) step-by-step at their own pace and giving
students feedback on these algorithms and corresponding
step-wise animations [15].

Future integrations of program visualization tools into CS
introductory modules shall provide further insight into
students’ background and characteristics (e.g.
demographics, programming experience, perceptions and
attitudes towards CS, learning methods, and program
visualization tools, and both team and individual work) and
use of the tool. This data shall help confirm, in future
studies, if the effects reported here on students’ performance
are from the tool or just artifacts of the composition of the
different classes.

Future studies shall also use a larger population that will
help to further validate the significance of the results
obtained.

APPENDIX: AN EXAMPLE OF A STANDARD PROGRAMMING

PROBLEM (TRANSLATED INTO ENGLISH)

Write a program that computes the area of a triangle.

ACKNOWLEDGMENT

The author thanks several anonymous reviewers for their
helpful comments and suggestions.

REFERENCES
[1] M. Barak, J. Harward, G. Kocur, and S. Lerman, “Transforming an

introductory programming course: from lectures to active learning via
wireless laptops,” Journal of Science Education and Technology, vol.
16, no. 4, pp. 325–336, 2007.

[2] M. Ben-Ari, R. Bednarik, R. Levy, G. Ebel, A. Moreno, N. Myller,
and E. Sutinen, “A decade of research and development on program
animation: the Jeliot experience,” Journal of Visual Languages and
Computing, vol. 22, no. 5, pp. 375–384, 2011.

[3] R. Ben-Bassat Levy, M. Ben-Ari, and P. Uronen, “The Jeliot 2000
program animation system,” Computers & Education, vol. 40, no. 1,
pp. 1–15, 2003.

[4] J. Bennedsen and C. Schulte, “BlueJ visual debugger for learning the
execution of object-oriented programs?,” ACM Transactions on
Computing Education, vol. 10, no. 2, pp. 8:1-8:22, 2010.

[5] R. Felder and R. Brent (2009). Active learning: an introduction. ASQ
Higher Education Brief [Online]. 2(4). Available:
http://www.asq.org/edu/2009/08/best-practices/active-learning-an-
introduction.%20felder.pdf

[6] A. Forte and M. Guzdial, “Motivation and nonmajors in computer
science: identifying discrete audiences for introductory courses,”
IEEE Transactions on Education, vol. 48, no. 2, pp. 248-253, 2005.

[7] J. Kasurinen, M. Purmonen, and U. Nikula, “A study of visualization
in introductory programming,” in Proc. 20th Annu. Meeting
Psychology Programming Interest Group, Lancaster, 2008.

[8] P. Kirschner, J. Sweller, and R. Clark, “Why minimal guidance during
instruction does not work: an analysis of the failure of constructivist,
discovery, problem-based, experiential, and inquiry-based teaching,”
Educational Psychologist, vol. 41, no. 2, pp. 75-86, 2006.

[9] E. Lahtinen, T. Ahoniemi, and A. Salo, “Effectiveness of integrating
program visualizations to a programming course,” in Proc. 7th Baltic
Sea Conf. Computing Education Research–88, Koli National Park,
2007, pp. 195–198.

[10] C. Leão, G. Machado, R. Pereira, J. Paulo, and S. Teixeira, “Teaching
differential equations: concepts and applications,” in Proc.
International Conf. Engineering Education – New Challenges in
Engineering Education and Research in the 21st Century, Budapest,
2008.

[11] M. Linn and M. Clancy, “The case for case studies of programming
problems,” Communication of the ACM, vol. 35, no. 3, pp. 121-132,
1992.

[12] R. Lister, “After the gold rush: toward sustainable scholarship in
computing,” in Proc. 10th Conf. Australasian Computing Education,
Wollongong, 2008, pp. 3–17.

[13] J. McConnell, “Active learning and its use in computer science,” in
Proc. 1st Conf. on Integrating Technology into Computer Science
Education, Barcelona, 1996, pp. 52–54.

[14] A. Manso, C. Marques, and P. Dias, “Portugol IDE v3.x: a new
environment to teach and learn computer programming,” in Proc.
IEEE EDUCON Education Engineering, Madrid, 2010, pp. 1007–
1010.

[15] I. Moura, “Visualizing the execution of programming worked-out
examples with Portugol,” in Lecture Notes in Engineering and
Computer Science: Proc. World Congress on Engineering Vol I,
London, 2013, pp. 404–408.

[16] T. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C.
Hundhausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, and J.
Velazquez-Iturbide, “Exploring the role of visualization and
engagement in computer science education,” SIGCSE Bulletin, vol.
35, no. 2, pp. 131–152.

[17] M. Prince and R. Felder, “The Many Faces of Inductive Teaching and
Learning,” Journal of College Science Teaching, vol. 36, no. 5, pp.
14–20, 2007.

[18] M. Prince and R. Felder, “Inductive teaching and learning methods:
definitions, comparisons, and research bases,” Journal of Engr.
Education, vol. 95, no. 2, pp. 123–138, 2006.

[19] H. Ramadhan, F. Deek, and K. Shihab, “Incorporating software
visualization in the design of intelligent diagnosis systems for user
programming,” Artificial Intelligence Review, vol. 16, no. 1, pp. 61–
84, 2001.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

[20] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching
programming: a review and discussion,” Computer Science
Education, vol. 13, no. 2, pp. 137–172, 2003.

[21] K. Smith, S. Sheppard, D. Johnson, and R. Johnson, “Pedagogies of
engagement: classroom-based practices,” Journal of. Engr.
Education, vol. 94, no. 1, pp. 87–101, 2005.

[22] P. Smith and G. Webb, “The efficacy of a low-level program
visualization tool for teaching programming concepts to novice C
programmers,” Journal of Educational Computing Research, vol. 22,
no. 2, pp. 187–215, 2000.

[23] J. Sweller and G. Cooper, “The use of worked examples as a
substitute for problem solving in learning algebra,” Cognition and
Instruction, vol. 2, no. 1, pp. 59-89, 1985.

[24] J. van Merriënboer, P. Kirschner, and L. Kester, “Taking the load off
a learner’s mind: instructional design for complex learning,”
Educational Psychologist, vol. 38, no. 1, pp. 5–13, 2003.

[25] J. van Merriënboer, J. Schuurman, M. de Croock, and F. Paas,
“Redirecting learners’ attention during training: effects on cognitive
load, transfer test performance and training efficiency,” Learning and
Instruction, vol. 12, no. 1, pp. 11–37, 2002.

[26] M. Weimer, Learner-centered teaching. Five key changes to practice.
San Francisco, CA: Jossey-Bass, 2002.

[27] S. Wiedenbeck, “Novice/expert differences in programming skills,”
International. Journal of Man-Machine Studies, vol. 23, no. 4, pp.
383–390, 1985.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

