

Abstract— After 38 years of birthday Diffie-Hellman Key

Exchange (DHKE), there are many proposed improvements in
the DHKE protocol to encounter modern security issues. This
protocol seems quite simple to be implemented; but it can be
vulnerable to many types of attacks. In this work, we propose
the Chained Key Exchange scheme as a case study to explore
cryptographic computation capability of embedded mi-
crocontroller. We choose ARM RaspberryPi board as
hardware platform for experimental setup. To enable
RasberberryPi “system on chip” (SoC) to perform
cryptographic computation, we modified the GNU GMP
Bignum library to support a simple primitive cryptographic
computation in the UBOOT firmware. The main purpose of
our study is to determine whether there is any gap between
cryptographic protocol/scheme (in term of theoretical) and its
engineering implementation. Our scheme will be integrated
with Trivial File Transfer Protocol (TFTP) application in the
UBOOT firmware. Our proposed scheme in the TFTP protocol
will secure the sharing of secrets and symmetric keys (e.g.,
AES256). After that, the symmetric encryption algorithm can
be used to encrypt data in the cases of remote system updates,
patching and upgrades (e.g., firmware, kernel or application).

Index Terms— cryptography, key exchange protocol,
DHKE, Diffie, Hellman, chain, smart device, lightweight,
security, trust, privacy, kernel, Linux, Debian, RaspberryPi,
UBOOT, TFTP, GMP, Bignum, ARM, SoC, firmware,
precision number computation, symmetric, asymmetric,
number theory.

I. INTRODUCTION

he state of art for key exchange protocol is based on
1976 paper “New Directions in Cryptography” [1],

Diffie and Hellman Key Exchange (DHKE) present a secure
key agreement protocol that can be carried out over
unsecure public communication channels. This protocol
seems quite simple to be implemented; but it can be

Manuscript received March 20, 2014; revised April 10, 2014. The

authors would like to thank to Ministry of Higher Education (MOHE) for
providing the grant 600-RMI/ERGS 5/3 (12/2013), and Universiti
Teknologi MARA (UITM) for providing the research grant in this research
work.

Faculty of Electrical Engineering, 40450 UiTM Shah Alam, Selangor,
Malaysia. 1anuarls@hotmail.com (corresponding author),
2habib350@salam.uitm.edu.my, 4syed_farid@salam.uitm.edu.my

MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur,
Malaysia. 3jamalul.lail@mimos.my

Faculty of Computer Science & Information Technology, 43400
Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
5ramlan@fsktm.upm.edu.my

vulnerable to many types of attacks that are based on
Number Theory. In this work, we propose the Chained Key
Exchange scheme as a case study to explore cryptographic
computation capability of embedded microcontroller.

II. RELATED WORK

After 38 years of birthday DHKE, there are more than 50
proposed improvements in DHKE protocol to encounter
security issues such as: J.F. Raymond (2002) [2] collective
of attacks in the DHKE protocol and a good idea about how
to securely implement the DH protocol in various systems.
E. Brickell (2004) [3] provided the first Direct Anonymous
Attestation (DAA) scheme based on the strong RSA
assumption and decisional Diffie-Hellman assumption.
R.C.W Phan (2006) [4] performs cryptanalysis in the DHKE
using N-party encrypted different passwords.

E.J. Yoon (2009) [5] proposed an efficient DH’s MAC
with forward secrecy, key independence and protection
against session state reveal attacks. D. Fiore (2010) [6]
proposed a new identity based key agreement protocol that
is can be implemented over any cyclic group of prime order,
where the Diffie-Hellman problem is supposed to be hard. P.
Vyas (2012) [7] described various protocols used for key
exchange such as freshness of message. H. K. Pathak (2013)
[11] proposed two password based of simple three party key
exchange protocols via twin Diffie-Hellman problem and
showed the proposed protocols provide greater security and
efficiency than the existing protocols.

III. MOTIVATION

Our main motivation in proposing the Chain Key
Exchange scheme is to explore the computation capability
of embedded microcontrollers such as ARM6 RaspberryPi
board in performing cryptographic computation. To explore
the possible constraints in the theoretical and experimental
designs, we have decided to only use the RaspberryPi board
and a USB debug/console cable as experimental setup for
the experiment. The RaspberryPi board can support extra
I/O functions (add-on card) including sensors, Wi-Fi,
camera, sub controllers (e.g., random number generator and
customized FPGA with cryptographic functions) and etc.
However, we omitted these extra I/O features because we
want to study a plain embedded board to perform
cryptographic functions.

Chained Key Exchange scheme can be considered as a
simple key exchange protocol with only minimal security
properties such as forward secrecy and key independence

An Experimental Study of Cryptography
Capability using Chained Key Exchange

Scheme for Embedded Devices

Mohd Anuar Mat Isa1, Habibah Hashim2, Jamalul-lail Ab Manan3, Syed Farid Syed Adnan4,
Ramlan Mahmod5

T

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

for implementation in the experiment. The main purpose of
our study is to determine whether there is any gap between
cryptographic protocol/scheme (in term of theoretical) and
its engineering implementation. Our intention is to make it
as a full working generic security device from an existing
microcontroller. From our past experience, we know that is
not trivial to do implementation of a cryptographic device
which is secured in theoretical, and also secure in its
realized device.

A. Objective

The objective of this paper is to explore cryptographic
computation capability of Chained Key Exchange scheme
for an embedded microcontroller in a constrained
environment.

B. Target Application

This study will attempt to establish a secure and trust
based key exchange protocol in the embedded controller.
The term of “trust” is based on our previous work in Trusted
Computing wherein “How can we be assured device(s) and
system(s) are trusted if we use trusted computing platform
(e.g., TPM) as root of trust?” [8]. For this experiment, we
do not use Trusted Platform Modules (TPM), but rather, we
explore the concept of “chain of trust” in the cryptographic
scheme, i.e. chain of trust of secret keys. The “chain of trust
of secret keys” allows our protocol to verify that new
communication with third parties is the same as previous
communication through secure transitive sessions. The
proposed protocol would be useful for lightweight or smart
embedded device to identify whether an adversary is trying
to intrude into the confidential communication. Energy
usage becomes major factor for operational consideration by
lightweight devices especially for deployment without
compromising on security. In our proposal, we will use
minimal I/O peripheral to reduce energy consumption, and
at the same time yield high cryptographic computation in the
autonomous environment.

In the long term run, our scheme will provide an
implementation of Secure Trivial File Transfer Protocol
(TFTP) application in the UBOOT firmware. It will ensure
remote system updates and patching (e.g., firmware, kernel
or application) processes are secure from attacks which aim
to eavesdrop and modify the TFTP packet. The target
employment of Secure TFTP protocol is in the Wi-Fi Access
Points, remote base stations, wireless sensor nodes and etc.

IV. EXPERIMENTAL SETUP

A. Chained Key Exchange Scheme

A1. Initialization of pre-shared knowledge between two
parties (assume that their names are Along and Busu). This
pre-shared knowledge must happen during production,
physical exchange or through a trusted communication.

Along generates: core root of trust (crt) of random numbers
ܽ௧, ݃௧	௧, 	 ∈ 	Ժ∗ . Along stores ܽ௧, ݃௧ in the	௧,
non-volatile memory equipped with physical tamper-
resistant technology. Along’s secret ܽ௧ is protected using
user authentication. Then, Along computes:

	௧ܣ ≡ 	݃௧ೝ 	ሺmod	௧	ሻ					݁ݎ݄݁ݓ		ܣ௧	݁ݖ݅ݏ	݂	݊
Along share public information ܣ௧	, .݃௧ with Busu	௧,

Busu generates: core root of trust (crt) of random numbers,

length of n-bits ܾ௧ 	 ∈ 	Ժ∗ . Busu stores ܾ௧, ݃௧ in	௧,
the non-volatile memory equipped with physical tamper-
resistant technology. Busu’s secret ܾ௧ is protected using
user authentication. Then, Busu computes:

	௧ܤ ≡ 	݃௧ೝ	ሺmod	௧	ሻ					݁ݎ݄݁ݓ		ܤ௧	݁ݖ݅ݏ	݂	݊
	௧ݕ݁ܭ ≡ ௧ܣ	

ೝ	ሺmod	௧	ሻ					݁ݎ݄݁ݓ		ݕ݁ܭ௧	݁ݖ݅ݏ	݂	݊
Busu share public information ܤ௧	 with Along.

Along computes:

	௧ݕ݁ܭ ≡ ௧ܤ	
ೝ	ሺmod	௧	ሻ					݁ݎ݄݁ݓ		ݕ݁ܭ௧	݁ݖ݅ݏ	݂	݊

Finally, both parties store the matching secret ݕ݁ܭ௧	in the
non-volatile memory with physical tamper resistant
technology wherein the secret key is protected using user
authentication. This initialization of crt key is less likely to
be computed compared to the session key and chain key. We
assumed ݕ݁ܭ௧	computation happens only in safe
environments (e.g., during production of embedded device)
and no integrity verification of the messages is required.
Furthermore, an adversary would not be able to eavesdrop
this information because it happens in close environments.
This initialization scheme has been originated from DHKE
[1] scheme.

A2. Initialization of “chained of session key” between two
parties.
In this scenario, the “chain of session key” occurs in open
communication channel; hence it is still vulnerable to
adversaries.
Along generates: chain of session of random numbers.
ܽ, ݃	, 	 ∈ Ժ∗ and i = 0, where 0 is initial chain sequence and
ܽ 	് ,	௧ݕ݁ܭ		 	് 		 , ݃		௧ ് 		 ݃௧		
Along stores ܽ, 	, ݃ in the non-volatile memory equipped
with physical tamper-resistant technology. Along’s secret
ܽ௧ is protected using user session authentication. Then,
Along computes:

	ܣ ≡ 	݃	ሺmod		ሻ					݁ݎ݄݁ݓ		ܣ		݁ݖ݅ݏ	݂	݊
Along share public information ܣ	, 	, ݃ with Busu.

Busu generates: secret ܾ	of random numbers, of length n-
bits.

ܾ 	 ∈ Ժ∗ 		and	i	 ൌ 	0, where 0 is initial chain sequence
Busu stores ܾ, 	, ݃ in the non-volatile memory equipped
with physical tamper-resistant. Busu’s secret ܽ is protected
using user session authentication. Then, Busu computes:

	ܤ ≡ 	݃	ሺmod		ሻ					݁ݎ݄݁ݓ		ܤ	݁ݖ݅ݏ	݂	݊
	ݕ݁ܭ ≡ ܣ	

	݃௬ೝ	ሺmod		ሻ					݁ݎ݄݁ݓ		ݕ݁ܭ	݁ݖ݅ݏ	݂	(1) ݊
Busu share public information ܤ	with Along.

Along computes:
	ݕ݁ܭ ≡ ܤ	

	݃௬ೝ	ሺmod		ሻ					݁ݎ݄݁ݓ		ݕ݁ܭ	݁ݖ݅ݏ	݂	(2) ݊
Session ݕ݁ܭୀ	needs to be verified before being stored or
used (explained in Section A3 for details). The shared secret
 requires 3n length of exponential computation or	ݕ݁ܭ
ܱሺ3݊ሻ	 as shown in (3). For the next session of key
computation, we use key derivative function to derive
 . Therefore, we conclude that the	ୀݕ݁ܭ from	ୀݕ݁ܭ
 :as follow	ୀଵݕ݁ܭ
	ଵݕ݁ܭ ≡ 	݃ଵభ	 . ݃ଵభ	. ݃ଵ௬బ	 	ሺ݉݀	ଵ	ሻ (3)
However, there is no guarantee that ݕ݁ܭ	in (1-3) will be the
size of n after the successful key exchange process. In worst
case scenario, it produces a weak key with a short length.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

Therefore, ݕ݁ܭ	 needs to be checked1/discarded before we
can proceed to the verification process as it will be
explained next.

A3. Verification of “chained of session key”

The purpose of verification is to ensure that both parties
will synchronize and Message Authentication Code (MAC)
the generated ݕ݁ܭ	from Section A2. If successful, both
parties will store the matching secret ݕ݁ܭ	in the non-
volatile memory equipped with physical tamper resistant
technology wherein the secret key is protected using user
authentication. The previous ݕ݁ܭିଵ	 (if it still exists) is
safely wiped out from nonvolatile memory. We define
nonce as ݊݁ܿ݊ 	 ∈ ሺԺ∗ ሻ	and	initial	with	݊݁ܿ݊ୀ ൌ
	0′s	string		of	length	n.

Along performs hashing function:
݂݅	݅ ൌ ݐݏ݁݃݅݀		;0 ൌ 	ݕ݁ܭሺ݄ݏ݄ܽ ∥ 	௧ݕ݁ܭ	 ∥ 	 		݁ݏ݈݁		ሻ	݁ܿ݊݊

݂݅	݅ ݐݏ݁݃݅݀	;0 ൌ 	ݕ݁ܭሺ݄ݏ݄ܽ ∥ 	ିଵݕ݁ܭ	 ∥ 	 ିଵݐݏ݁݃݅݀ 	 ∥ 	 ሻ	݁ܿ݊݊

Along expects ݀݅݃݁ݐݏ௨௦௨
݂݅	݅ ൌ ௨௦௨	ா௫௧ௗݐݏ݁݃݅݀		;0 ൌ 	௧ݕ݁ܭሺ݄ݏ݄ܽ ∥ 	ݕ݁ܭ	 ∥ 	 ݁ݏ݈݁		ሻ	݁ܿ݊݊
݂݅	݅ 0; ௨௦௨	ா௫௧ௗݐݏ݁݃݅݀	 ൌ 	ିଵݕ݁ܭ	൫݄ݏ݄ܽ ∥ 	ݕ݁ܭ	 ∥ 	 ିଵݐݏ݁݃݅݀ 	 ∥
 	݅݁ܿ݊݊	

Along shares public information ݀݅݃݁ݐݏ with Busu.

Busu performs hashing function:
	݂݅	݅ ൌ 0; ௨௦௨ݐݏ݁݃݅݀	 ൌ 	௧ݕ݁ܭሺ݄ݏ݄ܽ ∥ 	ݕ݁ܭ	 ∥ 	 ݁ݏ݈݁	ሻ	݁ܿ݊݊
݂݅	݅ 0; ௨௦௨ݐݏ݁݃݅݀	 ൌ 	ିଵݕ݁ܭ	ሺ	݄ݏ݄ܽ ∥ 	ݕ݁ܭ	 ∥ 	 ିଵݐݏ݁݃݅݀ 	 ∥ 	 ሻ	݁ܿ݊݊

Busu expects ݀݅݃݁ݐݏ:
݂݅	݅ ൌ 0; 	ா௫௧ௗݐݏ݁݃݅݀			 ൌ 	ݕ݁ܭሺ݄ݏ݄ܽ ∥ 	௧ݕ݁ܭ	 ∥ 	 ݁ݏ݈݁		ሻ	݁ܿ݊݊

 ݂݅	݅ 0; 	ா௫௧ௗݐݏ݁݃݅݀	 ൌ ݕ݁ܭሺ݄ݏ݄ܽ ∥ 	ିଵݕ݁ܭ		 ∥ 	 ିଵݐݏ݁݃݅݀ 	 ∥
 ሻ	݁ܿ݊݊	
Busu shares public information ݀݅݃݁ݐݏ௨௦௨ with Along.
Along verifies:
௨௦௨	ா௫௧ௗݐݏ݁݃݅݀ ൌ ௨௦௨ݐݏ݁݃݅݀	

Busu verifies:
	ா௫௧ௗݐݏ݁݃݅݀ ൌ ݐݏ݁݃݅݀	

 Observe that in hashing function between Along and
Busu, the sequence of hashing function is different in the
first parameter and the second parameter for the hashing
input. This will guarantee that the hashing digests of Along
and Busu are different for the MAC authentication process.
To protect from an attack based on Number Theory, such as
“degenerate message attack” [2], we need to ensure random
secrets, public parameters and ݕ݁ܭ	 are not recycled
numbers. For the next session, we must use a secure one
way key derivation function to derive ݕ݁ܭ	 from ݕ݁ܭ	to
avoid using previous key.

After that, both parties store ݕ݁ܭ	 that has been
successfully verified. In case of failure, the digest need to be
retransmitted (retry) because errors may happen in
communication medium when using non-reliable network.
Failure to do correction and verification within the allowed
number of retries, the verification process is considered

1 We can use generated key with a key length less than n (e.g.
ሺ݊	– 	2ሻ	length); but we need to use a secure one way key
expander/derivation function to fill-up (or padding) the less significant part
of number in ሺ݊	– 	2ሻ length. However this is very risky when the

ሺ݊	– ቀ

ଶ
ቁ	ሻ	length is too short.

invalid and the chain of session ݅ must be dropped. All
temporary data in Section A2 must also be safely wiped out
from volatile memory. If this problem happens, we can
consider that there are problems i) in the communication
channel, ii) an active adversary is impersonating either
parties or iii) an active adversary has tampered the digest.

B. Embedded System

We decided to use RasberberryPi Model B (Fig. 1) with
specifications: BCM2835 (ARMv6k) 700 MHz, 512MB
RAM, 16GB SD memory card, 10/100 Ethernet port. This
board is widely used for system prototyping or experiment,
system controller, surveillance system, cluster nodes,
embedded programming etc. We have done literature review
on past works and we found that it is not well explored yet.
From here, we decided to conduct cryptographic primitive
computation using this board. Among the major issues need
to be considered when using this board are GCC ARM
compiler and GMP Bignum [9] library to compute numbers
beyond 32-bit integers (e.g., exponential, modular, etc.).

We conducted an experiment based on “one-group
pretest-posttest” [10][11] experimental design to evaluate
performance measurement of Chained Key Exchange
scheme. The first test group was conducted in application
layer (user space) through Linux Raspbian “wheezy” Kernel
using precompiled image “2013-07-26-wheezy-
raspbian.zip” [12]. The second test group was conducted in
firmware layer (bare metal) using Denx U-Boot [13] as
platform for bare metal execution of our scheme. U-Boot
provides cross platform execution because it supports
multiple embedded architecture such as ARM, MIPS, PPC,
x86, 68k, Nios and etc. Therefore, we are confident that
with a very minimal configuration, our protocol can be
deployed in multiple embedded systems.

To enable RasberberryPi “system on chip” (SoC) to
perform cryptographic computation, we modified the GMP
Bignum version gmp-5.1.0 [9] library for a simple primitive
cryptographic library. However, major modification is
required in a bare metal system because of missing C library
and its dependencies in the U-Boot. We noted that most of
standard C libraries are meant for application and kernel
layers, but not in firmware layer. This means that most of C
libraries in firmware programming are minimal for the
purpose of startup for the device and loading an operating
system kernel for a system to boot up. To reduce the
complexity, we modified the “mini-gmp” section to
diminish the dependency problems. The modified “mini-
gmp” is encoded in the first and second group experiments
for fairness of execution and timing measurements. Our new
“mini-gmp” library support the major functions for
cryptographic computations such as mpz_init(),
mpz_clear(), mpz_t, mpz_set_str(), mpz_powm(),
mpz_get_str(), mpz_cmp(), mpz_sub(), mpz_add(),
mpz_ui_pow_ui(), mpz_gcdext(), mpz_invert() clock(),
SHA512(), and etc. Based on our previous work, we work
on the communication protocol for two sets of
RasberberryPi board using a secure TFTP protocol for smart
environment [14]. This work [14] we discussed the
modification of U-Boot’s TFTP protocol to support a secure
key exchange and data encryption.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

Fig. 1. Experimental Testbed.

V. SECURITY ANALYSIS

A. Protocol Security

The underlying security principles for Chain Key
Exchange scheme are based on the i) Decision Diffie-
Hellman Problem (DDHP) [15] and ii) one way hash
function [16]. To solve DDLP, an adversary needs to find
ܽ, ܾ, ܽ௧, ܾ௧ in Section A1. For example, 	݃		is a
primitive root of of order ݊.

	ଵݕ݁ܭ ≡ 	 ݃
	 . ݃

 	. ݃
௬	 	ሺ݉݀	ଵ	ሻ		݂݅	݊ 	2଼

It is not feasible to use brute force to find ݕ݁ܭଵ	 in above
equation. The fast algorithm to do brute force for modular
exponential requires time complexity of ܱሺ2ሻ where ݊ is a
number of steps in bits. We use hash function in Section A3
for verification of secret key that is generated during chain
of key exchange. We consider a simple Message
Authentication Code (MAC) hash function to verify Along’s
and Busu’s shared secret key in the communication. We also
assume that the one way hash function is a secure pseudo
random generator [16] wherein the adversary cannot
distinguish the hashing output (digest) from input to the
hashing algorithm. For the moment, we use a standard
SHA512 because it has been assumed to be secure2 based on
many recent literature [17][18][19][20][21]. Based on these
two underlying security assumptions stated above, we
consider our protocol as secure against the following
outsider attacks:

i. Session state reveal attack: The Chain Key Exchange
scheme is secure even when an adversary manages to
know the current session secrets ܽ, ܾ in Sections A1
and A2 above. An adversary cannot compute
	ݕ݁ܭ ≡ ݃బ	.		బ		.		࢚࢘ࢉ࢟ࢋࡷ	ሺ݉݀	ሻ			 or ݕ݁ܭ	 ≡

݃
	.				.		࢟ࢋࡷష	ሺ݉݀	ሻ because root key ݕ݁ܭ௧	

and chain key 		ݕ݁ܭିଵ	 are unknown.
ii. Forward secrecy: The Chain Key Exchange scheme is

still secure even when an adversary manages to know
the previous session secrets
ܽିଵ, ܾିଵ, ,	ିଵݕ݁ܭ in Sections A1. An	௧ݕ݁ܭ
adversary cannot compute
	ݕ݁ܭ ≡ ݃

	ݕ݁ܭ or			ሻ	݀ሺ݉	௬ೝ		.		࢈		.	ࢇ ≡

݃
 ሻ because current session	݀ሺ݉	ష࢟ࢋࡷ			.		࢈		.	ࢇ

secrets ܽ, ܾ are unknown.

2 We choose to use SHA-512 because it receives wider input block in

size of 1024 bits and output hashing digest in size of 64 words or strings.
With this size of input block, it can be pushed all at once for n = 1024 bits.
It helps to produce a better MAC in terms of 64 words of hashing digest.

iii. Key independence: Based on the forward secrecy, the
scheme is secure when an adversary manages to
know the previous secret key ݕ݁ܭିଵ	because of a
new session secrets ܽ, ܾ, are generated and	ݕ݁ܭ
computed independently from all previous sessions.
An adversary cannot attack a new chain of session
using previous knowledge; even if those previous
session keys are already broken and exposed. This
requires the total length of all secrets (ܽ, ܾ,
ሻ	ିଵݕ݁ܭ 3݊ length of bits and each secret ݊
length of bits. At present, it is acceptable to use 2
where ݊ ൌ 1024 bits length. Based on DDHP
assumption, an adversary knowledge of ݕ݁ܭିଵ	 is
considered infeasible to derive
	ݕ݁ܭ ≡ ݃

	.				.		௬షభ	ሺ݉݀	ሻ because of
unknown secrets ܽ, ܾ (total 2 of secrets length is
considered infeasible to attack). Therefore, using new
ephemeral random numbers ܽ, ܾ with appropriate
length, our scheme is resistant against “Denning-
Sacco” [22] [7] attack.

iv. Key derivation function attack: Our scheme can resist
the Burmester triangle attack [23] because we include
1) key derivate function to derive ݕ݁ܭ	 from
 only	ܤ and	ܣ and 2) the public parameters	ݕ݁ܭ
consist 2n length of exponential computations of 2
secrets (such as ܽ, ܾ) in Section A2. Both public
parameters could never be computed with ݃

	௬ೝ	 or

݃
	௬షభ	 (due to the missing the 3rd secret value in

public parameters as). An adversary can impersonate
Along when communicated with Busu in (4-6) and
vice versa (7-9). Let us assume that an adversary can
also manages to break previous session ݅ െ 1 with
adversary’s knowledge of the secrets
ܽ, ܾ	ܽ݊݀		ݕ݁ܭ	. However, the adversary will fail to
break (11) of our protocol because of the two reasons
mentioned above. With a strong key derivation
function, we can secure future session keys because it
destroys algebraic relationships3 in between old
session keys and new session keys.

	ௗ௩ܣ ≡ 	݃ೌೡ	ሺ݉݀		ሻ (4)

	௨௦௨ܤ ≡ 	್݃ೠೞೠ	ሺ݉݀		ሻ (5)

	ௗ௩ା௨௦௨ݕ݁ܭ ≡ 	݃ೌೡ		.		್ೠೞೠ	ሺ݉݀		ሻ (6)

	ܣ ≡ 	݃
ೌ	ሺ݉݀		ሻ (7)

	ௗ௩ܤ ≡ 	݃ೌೡ	ሺ݉݀		ሻ (8)

	ାௗ௩ݕ݁ܭ ≡ 	݃
ೌೡ	.		ೌ	ሺ݉݀		ሻ (9)

(6) and (9) ݕ݁ܭାௗ௩	+ ݕ݁ܭௗ௩ା௨௦௨	

	ା௨௦௨ݕ݁ܭ ≡	

݃ೌೡ	.		್ೠೞೠ	 	݃
ೌೡ	.		ೌ	 ݃௬షభ	 	െ ሺ݃ೌೡ	

	݃ೌೡ	ሻሺ݉݀		ሻ (10)

From (10)
	ା௨௦௨ݕ݁ܭ ≡ 	݃

ೌ	.		್ೠೞೠ	.		௬షభ	 	ሺ݉݀		ሻ (11)

3 We considered that the key derivation function is a secure one way

pseudo random function wherein both sides (Along and Busu) are using the
same function to derive ݕ݁ܭ	 from ݕ݁ܭ	.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

Key agreement and confirmation: Authentication based on
hashing MAC is used to protect message integrity, replay
attack, man-in-the-middle attack and chain of session keys
in Section A3.

B. Hardware Security

Physical access to RaspberryPi board is a major problem
in the product deployment. An attacker can easily remove
the SD card memory from the board and use memory card
reader to access all data in the SD card. We can encrypt the
memory region in SD card using common techniques such
as disk encryption4. At the moment, there is no temper
resistant circuit in the devices, it can be easily broken if an
attacker has physical access to the device. We need extra I/O
devices that are connected to board with implementation of
physical temper resistant (e.g., memory), physically
unclonable function (PUF), and etc.

C. Security Checkpoints for Implementation

We have listed below some security concerns and guidelines
for the implementation and deployment. For additional
reading, one may refer to [2] for further understanding of
good security implementations.

i. Weak primes group and order: Vulnerability to Pohlig-
Hellman algorithm, composite order subgroup for
 ൌ ݍ2 1, Pollard Lambda algorithm, Number Field
Sieve algorithm and etc.

ii. Weak randomness of number generator and randomness
seeds.

iii. Key management and memory segregation for many
sessions for different applications.

iv. Choosing k size of symmetric key encryption, we need
2k size of exponential of each secrets to secure against
Pollard's rho method (finding collisions between values
computed in a large number space)

v. Never recycle any keys after usage.
vi. Generate a new session key for symmetric encryption

before it reaches a point that is encrypted message or
hashing MAC will produce collisions.

vii. There is possibility that the proposed scheme is
vulnerable to timing attacks because of exponential
computation in RaspberryPi. If an adversary can
effectively and precisely determine the computation of
700 MHz CPU to compute public parameters from
Along’s or Busu’s secrets. However, an implementation
of key derivate function in our scheme will render the
timing issue.

viii. Check data type of numbers (int, unsigned, sign, strings,
byte stream and etc), valid values range or size of
received in the I/O buffer before loading it into
cryptographic functions.

VI. RESULT & DISCUSSION

Table I shows the result of experiments wherein each
experiment sessions are measured in seconds. All
experimental setup are using the same codes and input data
such as primes number, ephemeral secrets and etc. We use
pre-generated random numbers and other input data to
guarantee that is each experimental setup are free from bias

4 The size of UBOOT firmware with implementation of our scheme is
185,584 bytes. We can add user authentication module in the UBOOT
firmware when user want to access our scheme (encrypted memory regions
of secrets and keys). We considered it as a future work.

of randomness when using random number generator. The
most fascinating and unexpected finding is that the
performance of the protocol in bare metal is slower than
execution in the operating system5. The results shown the
computation time to exchange one secret key based on
Sections A2, A3 and network performance. We omitted the
Section A1 because of it can be generated using original
DHKE or pre-install the device with core-root-key during
manufacturing process. Based on result in the Table 1, it is
required 12~14 computation times to exchange a secret key
in length of 2048 bits to compare with 1024 bits secret key.
We conclude that is our experiment meets the minimal
target objective in the research and development of Secure
TFTP application in the UBOOT. It is extremely difficult
and unrealistic to make a 360 degrees security fortification
in order to fulfill all security requirements such as side-
channel security and [2] because of resource limitation in
the embedded devices.

TABLE I
An Average of Chain of Key Exchange Scheme (One Chain Cycle)

Performance in Second.

No Experimental Setup
 1024=

Bits Key

 2048=

Bits Key

1

RaspberryPi, Bare Metal, default

UBOOT setting (disable CPU’s internal

caches), modified GMP Bignum library.

8.364 63.998

2

RaspberryPi, Bare Metal, modified

UBOOT codes & setting (enable CPU’s

internal caches), modified GMP Bignum

library.

1.887 14.671

3

RaspberryPi, console, 2013-07-26-

wheezy-raspbian OS image, modified

GMP Bignum library.

1.571 12.035

4

RaspberryPi, GUI console (startx),

2013-07-26-wheezy-raspbian OS image,

modified GMP Bignum library.

1.607 12.093

5
HP Elitebook 8440w, 2.8 GHz i7, 8 GB

RAM, Debian 6 OS and GUI (startx).
0.196 1.479

VII. SUGGESTIONS AND FUTURE WORK

Varied research and developments works must be done to
improve the proposed scheme. For the security protocol, we
plan to investigate the usage of Diophantine Equation Hard
Problem (DEHP) [24] [25] to provide faster cryptographic
computation to replace the DDHP because of it is slower in
the exponential computation. We want to include a zero
energy consumption of true random number generator using
a wide band passive antenna and frequency hopping in
receiver (Rx) antenna. This wide band receiver will
consume analog signals or frequencies in the air space as
input for powerless random number generator (or green
RNG). For a current work, our research group is focusing in
developing a secure TFTP communication in radio
frequency (RF) using CISECO B023 Slice of Radio RF

5 Before we conduct the bare metal experiment, we used to believed that

execution in the bare metal is faster because it is free from any disturbance
of operating system [27] scheduling or context switching of processes (our
hypothesis). Result of Table 1, prove that we need to consider the hardware
implementation to make it works faster. In the bare metal environment;
there is no pipelining and other OS’s caching techniques that helps to
improve the performance of data fetching and CPU’s instruction fetching
for CPU’s execution process.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

transceiver [26]. For the cryptographic computing, we want
to proof our hypothesis that executing in the bare metal is
faster than executes in the generic operating system. This
required additional programming in the UBOOT to improve
CPU’s caches and external caches, DMA and pipelining
processes in the MMU.

VIII. CONCLUSION

We presented our Chain of Key Exchange scheme with
experimental results. We succeed to fulfill our research
objective and that is to explore cryptographic computation
capability of embedded microcontroller in the constrained
environment. Our major contribution is the integration of
our scheme for secure TFTP application in the UBOOT
firmware. However, the result in the experiments is not
pretty as our hypothesis expectation. The result shown that
is the performance of our scheme in the bare metal is slower
compared to execution in the operating system. At the
moment, we considered this is the most flopped research
hypothesis for this research project. One might think that is
our scheme and experiment are failure work. But, we will
keep trying with new ideas and improve it even that are our
100th flopped ideas and God rewards fool6.

REFERENCES
[1] W. Diffie, M. E. Hellman, “New Directions in Cryptography,” in

IEEE Transactions on Information Theory, pp. 644–654, 1976.
[2] JF Raymond, Anton Stiglic, “Security issues in the Diffie-Hellman

key agreement protocol,” in McGill University Technical Manuscript,
2002.

[3] Ernie Brickell, Liqun Chen, Jiangtao Li, “A Static Diffie-Hellman
Attack on Several Direct Anonymous Attestation Schemes,” Trusted
Systems, Lecture Notes in Computer Science, vol. 7711, 2012.

[4] RCW Phan, BM Goi, “Cryptanalysis of the n-party encrypted diffie-
hellman key exchange using different passwords,” Applied
Cryptography and Network Security, pp. 226–238, 2006.

[5] Eun-jun Yoon, Kee-young Yoo, “An Efficient Diffie-Hellman-MAC
Key Exchange Scheme.” pp. 398–400, 2009.

[6] Dario Fiore, R Gennaro, “Identity-based key exchange protocols
without pairings,” Transactions on computational science X, LNCS,
vol. 6340, pp. 42–77, 2010.

[7] Pranav Vyas, Bhushan Trivedi, “An Analysis Of Session Key
Exchange Protocols,” International Journal of Engineering Research
and Applications (IJERA), vol. 2, no. 4, pp. 658–663, 2012.

[8] Mohd Anuar Isa Mat, Azhar Abu Talib, Jamalul-lail Ab Manan, Siti
Hamimah Rasidi, “Establishing Trusted Process In Trusted
Computing Platform,” in Conference on Engineering and Technology
Education, World Engineering Congress 2010, no. August, 2010.

[9] “The GNU Multiple Precision Arithmetic Library,” 2013. [Online].
Available: http://gmplib.org/.

[10] Mohd Anuar, Mat Isa, Habibah Hashim, Jamalul-lail Ab Manan,
Ramlan Mahmod, Hanunah Othman, “Integrity Verification
Architecture (IVA) Based Security Framework for Windows
Operating System,” in International Symposium on Advances in
Trusted and Secure Information Systems (TSIS-2012), 2012.

[11] Donna R. Brogan, Michael H. Kutner, “Comparative Analyses of
Pretest-Posttest Research Designs,” The American Statistician, vol.
34, no. 4, pp. 229–232, 1980.

[12] “Raspberry Pi,” 2013. [Online]. Available:
http://www.raspberrypi.org/downloads.

[13] DENX Software Engineering, “DENX U-Boot,” 2014. [Online].
Available: http://www.denx.de/wiki/U-Boot/WebHome.

6 “…the way to get to the top of the heap in terms of developing original

research is to be a fool, because only fools keep trying. You have idea
number 1, you get excited, and it flops. Then you have idea number 2, you
get excited, and it flops. Then you have idea number 99, you get excited,
and it flops. Only a fool would be excited by the 100th idea, but it might
take 100 ideas before one really pays off. Unless you’re foolish enough to
be continually excited, you won’t have the motivation, you won’t have the
energy to carry it through. God rewards fools.” - Whitfield Diffie and
Martin Hellman, in The Code Book, p. 256.

[14] Mohd Anuar Mat Isa, Nur Nabila Mohamed, Habibah Hashim,
Ramlan Mahmod Syed Farid Syed Adnan, Jamalul-lail Ab Manan, “A
Lightweight and Secure TFTP Protocol in the Embedded System,” in
2012 IEEE Symposium on Computer Applications and Industrial
Electronics (ISCAIE 2012), 2012.

[15] Dan Boneh, “The decision diffie-hellman problem,” in Algorithmic
Number Theory, vol. 1423, pp. 1–14, 1998.

[16] Gene Tsudik, “Message authentication with one-way hash functions,”
ACM SIGCOMM Computer Communication Review, vol. 22, no. 5,
pp. 29–38, 1992.

[17] Henri Gilbert, Helena Handschuh, “Security analysis of SHA-256 and
sisters,” in Selected areas in cryptography, LNCS 3006, pp. 175–193,
2004.

[18] Dmitry Khovratovich, Christian Rechberger, Alexandra Savelieva,
“Bicliques for Preimages: Attacks on Skein-512 and the SHA-2
family,” in Fast Software Encryption, 2012.

[19] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin
Yang, “High-speed high-security signatures,” Journal of
Cryptographic Engineering, vol. 2, no. 2, pp. 77–89, Aug. 2012.

[20] Isha Jauhari, Jitendra Kumar, “Secure and Optimized Algorithm for
Implementation of Digital Signature,” International Journal of
Science and Research (IJSR), vol. 2, no. 6, pp. 2–7, 2013.

[21] Erfaneh Noroozi, M Salwani, Ali Sabouhi, “Secure digital signature
schemes based on hash functions,” International Journal of Innovative
Technology and Exploring Engineering (IJITEE), vol. 2, no. 4, pp.
321–325, 2013.

[22] DE Denning, GM Sacco, “Timestamps in key distribution protocols,”
in Communications of the ACM, vol. 24, no. 8, pp. 533–536, 1981.

[23] Mike Burmester, “On the risk of opening distributed keys,” in
Advances in Cryptology—CRYPTO’94, pp. 308–317, 1994.

[24] Muhammad Rezal Kamel Ariffin, “A New Efficient Asymmetric
Cryptosystem Based on Diophantine Equation Hard Problem,” in
arXiv preprint arXiv:1209.3458, no. 1, pp. 1–6, 2012.

[25] MRK Ariffin, MA Asbullah, NA Abu, “A New Efficient Asymmetric
Cryptosystem for large data sets,” in iacr.org, 2012.

[26] CISECO, “Slice of Radio - Wireless RF transciever for the Raspberry
Pi,” 2014. [Online]. Available: http://shop.ciseco.co.uk/slice-of-radio-
wireless-rf-transciever-for-the-raspberry-pi/.

[27] Mohd Anuar Mat Isa, Jamalul-lail Ab Manan, Habibah Hashim,
Ramlan Mahmod, Azhar Abu Talib, “Trusted Real Time Operating
System : Identifying its Characteristics,” in 2012 IEEE Symposium on
Computer Applications and Industrial Electronics (ISCAIE 2012),
2012.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

