
Heuristics for Robust Allocation of Resources to
Parallel Applications with Uncertain Execution Times in

Heterogeneous Systems with Uncertain Availability
Timothy Hansen, Florina M. Ciorba, Anthony A. Maciejewski,

Howard Jay Siegel, Srishti Srivastava, and Ioana Banicescu

Abstract—The scheduling of moldable parallel applications
to clusters of processors is challenging, where the number of
processors on which a moldable application executes is decided
by the scheduler. When the application execution times are
stochastic in nature, and the availability of the resources is
uncertain, this becomes an even greater challenge. A model
is presented for the stochastic execution times of moldable
parallel applications that are assigned to heterogeneous parallel
resources, incorporating the change in execution times when
applications are mapped to different numbers of processors.
To account for the uncertainties in both application execu-
tion times and resource availability, a robustness model that
combines the two sources of uncertainties is proposed. Using
this robustness model, three novel iterative-greedy heuristics
are developed to allocate heterogeneous resources to batches of
parallel applications to maximize the probability of completing
by a designated time, called the makespan goal. To verify the
performance of the proposed heuristics, a simulation study is
conducted using different batch and system sizes. To showcase
the benefit of using the proposed iterative-greedy heuristics,
their performance is studied against two comparison heuristics.
The five heuristics are evaluated against the upper bound on
robustness.

Index Terms—heterogeneous systems, heuristic optimization,
moldable parallel applications, robustness, stochastic resource
allocation.

I. INTRODUCTION

TODAY’S computing systems are often heterogeneous
in nature, comprised of machines with differing com-

putational capabilities to satisfy the diverse computational re-
quirements of applications [1], [2]. For example, a mixture of
general purpose and programmable digital machines, along
with application-specific systems-on-a-chip, were shown to
solve parallel jobs with real-time constraints [3], [4]. The
scheduling of applications on such heterogeneous systems
has been shown, in general, to be NP-complete [5]. Schedul-
ing decisions become more difficult in systems with uncertain
processor availability (this can be due to system jitter/noise
[6], or the time sharing of resources [7]) and with applica-
tion execution times that are modeled as stochastic due to
uncertain input data [8].

Manuscript received January, 2014; revised February, 2014. This work is
supported by the National Science Foundation (NSF) under grant numbers
CNS-0905399, CCF-1302693, and IIP-1034897; the Colorado State Univer-
sity George T. Abell Endowment; and the German Research Foundation in
the Collaborative Research Center 912 “Highly Adaptive Energy-Efficient
Computing.” This research utilized the CSU ISTeC Cray HPC System
supported by NSF Grant CNS-0923386.

T. Hansen, A. A. Maciejewski, and H. J. Siegel are with the Department
of Electrical and Computer Engineering, Colorado State University, Fort
Collins, CO 80523, USA. e-mail: {timothy.hansen,aam,hj}@colostate.edu.

F. M. Ciorba is with the Center for Information Services and High
Performance Computing at Technische Universität Dresden, 01062 Dresden,
Germany. e-mail: florina.ciorba@tu-dresden.de.

S. Srivastava and I. Banicescu are with the Department of Computer
Science and Engineering, Mississippi State University, Mississippi State,
MS 30692, USA. e-mail: {ss878@,ioana@cse.}msstate.edu.

We consider a batch of scientific moldable parallel appli-
cations with stochastic execution times, where a moldable
parallel application is one that differs in execution time as
a function of the numbers of processors (determined by the
scheduler) on which it executes. These applications need to
be allocated resources from a set of heterogeneous processor
types, where the processor types are heterogeneous in both
their computational capabilities (affecting the application
execution times) and the number of processors available. All
applications in the batch should be scheduled in such a way
as to finish executing close to a given makespan goal.

To allocate resources to applications, we propose a new
batch scheduler. The batch scheduler must allocate resources
in the presence of the two uncertainties of application
execution times and system availability. To minimize the
impact of the two sources of uncertainty on achieving the
makespan goal, our resource allocations should be robust
against these uncertainties. To accomplish this goal, we
introduce a model that combines the impact on performance
of two sources of uncertainties into a single performance
metric of robustness [9], where we define robustness as the
probability that a batch of applications finishes by the given
makespan goal. Three iterative-greedy resource allocation
heuristics that use this measure of robustness were designed.
The allocation decisions that need to be made for each
application are: (1) on what processor type to run, and (2)
on how many processors of a given type to run. We design
our resource allocation heuristics to maximize robustness by
using stochastic knowledge of the uncertain execution times
and uncertain system availability to intelligently allocate
processors to applications.

This paper is based on the first stage of the dual-stage
optimization framework introduced in [10]. In the first stage,
which is the focus of this paper, a batch of applications is
allocated resources from a set of heterogeneous processor
types. The second stage, which is not part of this paper,
performs fine-grain runtime optimization for each application
given the allocated resources from the first stage. The system
and the flow of information is shown in Fig. 1. In this paper,
we design and evaluate novel resource allocation heuristics
(no heuristics presented in [10]). The heuristics presented
here utilize a more realistic parallel execution time model
and a much larger system than those discussed in [10].

Related prior work on resource allocation and scheduling
for heterogeneous systems has occurred in the areas of
heuristic optimization and modeling. Uncertainties in ap-
plication execution times were taken into account in [11]–
[13]. These uncertainties lead to robustness as a performance
measure (e.g., [8], [9]). The uncertainty in the availability
of computing resources was studied as system noise [6]
and operating system (OS) overhead [14]. Iterative-greedy

Proceedings of the World Congress on Engineering 2014 Vol I, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



heuristics have been shown to perform well for scheduling
problems [15] and balanced resource allocation techniques
are often used in practice [16]. Our work differs from
previous work in that we design new heuristics that take
into account the uncertainty in system availability as well as
the uncertainty in application execution times.

In this paper, we make the following contributions:
• The design of a model for moldable parallel applications

with stochastic execution times running in a heteroge-
neous computing environment.

• A new robustness model and measure dealing with,
and combining, two sources of stochastic uncertainties
for use in the resource allocation of processors to
applications and the performance evaluation of said
resource allocations.

• The design and analysis of three novel iterative-greedy
heuristics across three different platforms of a varying
number of processor types compared to two reference
heuristics and an upper-bound.

The rest of the paper is organized as follows. The system
model is described in Section II. In Section III, the developed
heuristics are presented in detail. The parameters used for
the analysis are given in Section IV with the analysis results
being shown in Section V. Finally, concluding remarks and
a brief description of future work are summarized in Section
VI.

Fig. 1. Dual-stage optimization framework with a focus on Stage I. In
the first stage, a batch of Na scientific moldable parallel applications are
allocated resources from heterogeneous processor types according to a given
resource allocation heuristic. In Stage II, a runtime optimization is performed
for each application using the allocated resources from Stage I.

II. SYSTEM MODEL

A. Batch Scheduler
The proposed model for the batch scheduler is given in

Fig. 2. There are three times of interest shown: the time
the assignment of resources for batch z starts (t0), the time
batch z starts executing (t1), and the time that batch z
finishes executing (t2). Thus, the resource allocation heuristic
executes from t0 to t1. Without a loss of generality, we are
assuming a workload of one batch so the subscript denoting
the batch number will be dropped from the notation. This
research is applicable for any number of subsequent batches.

Given a batch of Na moldable parallel applications, a
scheduling heuristic is used to allocate computing resources
to each application. The applications are assumed to be
independent and without precedence constraints. The allo-
cation decision that needs to be made for application i is

Fig. 2. Proposed batch scheduler model. At some time t0, the applications
in batch z will be assigned resources using a given heuristic. At t1, the
last application of batch (z − 1) finishes executing and batch z can begin
executing using the resources allocated by a given heuristic. Time t2 denotes
when batch z finishes executing and batch (z + 1) begins executing, ad
infinitum.

twofold. First, application i must be assigned to one of
Np processor types (denoted processor type j). Second, the
application must be allocated a number of processors, k, of
processor type j. Let I be a vector of length Na representing
a complete resource allocation, where the ith entry is a
(j, k) tuple that represents application i being assigned to
k processors of type j (i.e., I[i] = (ji, ki)).

To avoid fragmentation of the system resources, all Na
applications start executing at the same time (i.e., each batch
of applications can leverage the ability of the entire set
of system resources), shown as t1 in Fig. 2. In addition
to avoiding fragmentation, other scenarios in which this
holds true are in scatter-gather operations and MapReduce
[17]. Because all applications in the batch start executing at
the same time, the next batch of applications cannot start
executing until the current one is finished (t1 and t2 in Fig.
2). This implies that the scheduling heuristics should try to
allocate resources so applications finish at approximately the
same time to prevent the waste of system resources (i.e., idle
machines).

B. Applications

1) Heterogeneity: The execution time for each application
i in the batch of applications differs across heterogeneous
processor types. For a fixed number of processors, if pro-
cessor type A is faster than processor type B for a given
application, it is not necessarily true that processor type A is
faster than processor type B for all applications. We assume
the application execution time distributions are known a
priori. This information, in practice, can be obtained by
analytical, historical, or experimental techniques [8], [18].

2) Parallel Model: We use Downey’s parallel speedup
model [19] to describe how the execution times of real
applications change as a function of the number of processors
allocated. Given k processors, the speedup of an application
is denoted S(k). If S(k) = x for a given resource allocation,
application i will execute x times as fast in parallel on k
processors (k > 1) of type j than if it was run serially
(i.e., k = 1). This model takes into account the different
finishing times of each processor and the execution time
of the application is determined by the longest running
processor.

C. Uncertainties

1) Application Execution Time: Each application on a
given processor type has an uncertain execution time, for ex-
ample because of differing input data. Because the system is

Proceedings of the World Congress on Engineering 2014 Vol I, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



modeled as heterogeneous, each application has a probability
distribution describing its execution time on each processor
type. These execution time distributions are assumed to
describe the serial execution times of the applications. Let
Ti,j be a random variable describing the serial execution time
of application i on processor type j. To obtain the parallel
execution time distribution, we use the Downey model by
scaling the time axis of the probability distribution of Ti,j
by 1

S(k) .
2) System Slowdown: In addition to the uncertainty in

application execution times, the system availability of each
processor type is uncertain. The set of system resources
available are Np processor types, where processor type j
has nj processors. Each processor type is assumed to have
an associated system slowdown (defined as the reciprocal of
the system availability). This could be due to OS jitter or
system noise [6], or the time sharing of resources [7].

Because the slowdown of a processor type is uncertain, we
model slowdowns probabilistically. That is, given historical
data of a processor type, we have a probability distribution
describing the likelihood of a given system slowdown occur-
ring. Let Sj be a random variable describing the slowdown
of processor type j. A system slowdown of x will scale the
execution time of the application by x.

3) Combining Uncertainties: Let Xi,j,k be a random
variable describing the final execution time distribution of
application i running on k processors of type j. To obtain
the final execution time distribution, multiply the parallel
execution time distribution by the system slowdown distribu-
tion [10], Sj , as defined by Eq. 1. Once Xi,j,k is obtained, it
can be used to calculate the probability that a given resource
allocation will result in application i finishing by a given
time on k processors of type j. The multiplication of the
distributions was performed discretely in the simulation code,
not using a closed form solution (as one does not exist for
the types of distributions used).

Xi,j,k = Sj
Ti,j
S(k)

(1)

D. Robustness

A “robust” resource allocation is defined as a resource
allocation that mitigates the effect of uncertainties on a given
performance objective. To claim robustness for a system,
the following three questions must be answered [9]: (1)
What performance feature makes the system robust? (2)
What uncertainties is the system robust against? (3) How
is robustness quantified?

To answer the robustness questions, the makespan goal,
∆, is defined as a target time for all applications to attempt
to complete executing by, as well as a time used to calculate
the probability that a given resource allocation will com-
plete by a given ∆. Therefore, the performance feature that
makes the system robust is applications completing by the
makespan goal, ∆. The system is robust against uncertainties
in application execution times and the uncertainties in system
slowdown.

Let P (i, (j, k)) be the probability that application i
allocated resources (j, k) completes by the makespan goal ∆,
obtained by evaluating the cumulative distribution function

(cdf) of Xi,j,k at ∆. The robustness of the resource allocation
I , denoted Ψ(I), is quantified in Eq. 2.

Ψ(I) = min
i=1..Na

P (i, I[i]) (2)

E. Formal Problem Statement

We are given a batch of Na moldable parallel applications
to allocate resources to from Np heterogeneous processor
types, where processor type j has nj processors. We know
the parallel characteristics and serial execution time distribu-
tion for each application i on each processor type j. We also
know the system slowdown distribution for each processor
type j. Within the constraint of an allocation not exceeding
the total number of processors of each type and the constraint
that each application can only be assigned processors of one
type, the goal of the resource allocation heuristics is to find
a resource allocation I to maximize Ψ(I), given in Eq. 3 as
the performance objective ρ.

ρ = max Ψ(I) = max min
i=1..Na

P (i, I[i]) (3)

III. HEURISTICS

A. Processor Balance

1) Overview: The goal of the processor balance heuristics
is to give equal resources (i.e., processors) to each applica-
tion. Let the total number of processors in the system be τ
(i.e., τ =

∑Np

j=1 nj) and let M be the average number of
processors per application in the system (i.e., M = τ

Na
). We

assume that M is an integer value and each nj is a multiple
of M for each processor type. These assumptions allow the
comparison of our proposed robustness floor heuristics to
the processor balance heuristics, but the assumptions are not
necessary for the robustness floor heuristics.

The processor balance heuristics will then split the total
number of resources into Na blocks of M processors, where
each block is comprised of processors of a single type. This
reduces the dimensionality of the problem to just assigning
an application to a processor type. The two variants of
how this assignment is accomplished are random and smart.
These two heuristics will be used as a comparison to the
performance of the robustness floor heuristics, as a layperson
might assign a fair share of resources to each user [16].

2) Random: The processor balance – random (PB-R)
variant of the processor balance heuristic assigns the Na ap-
plications to the Na groups of processors randomly. That is,
for each of the Na groups of M processors, randomly select
an application to be assigned. The application and processor
group are removed from further allocation decisions and the
process is repeated until no applications remain.

3) Smart: Unlike the PB-R variant, processor balance
– smart (PB-S) greedily assigns applications to processor
groups. Each of the Na groups of M processors has an
associated processor type j. Randomly select a group and
assign the application i that maximizes P (i, (j,M)). The
application and processor group are removed from further
allocation decisions and the process is repeated until no
applications remain.

Proceedings of the World Congress on Engineering 2014 Vol I, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



B. Robustness Floor

1) Overview: Our proposed robustness floor algorithm,
shown as pseudocode in Fig. 3, is an iterative-greedy heuris-
tic with three variants. For each algorithm iteration l, the
robustness floor algorithm performs a binary search over the
minimum value of robustness an application should achieve,
Ωl (i.e., each application should have at least a probability
of Ωl of completing by the makespan goal). Let Π(Ωl)
be a function that returns a matrix where the i, j element
gives the minimum number of processors k required for
application i on processor type j to meet P (i, (j, k)) ≥ Ωl.
Also let greedy(Π(Ωl)) be a greedy heuristic that takes
the application-processor pairings from Π(Ωl) and returns a
complete resource allocation I . These greedy heuristics are
described in Subsections III-B2 to III-B4. After the greedy
heuristic returns a resource allocation I , the function v(I)
returns true or false depending on whether I is valid (i.e.,
every application is assigned a set of resources). If λl is
the current binary search residual, defined as Ωl−Ωl−1, the
next robustness floor value will be changed by λl

2 . If v(I)
returns true, then the robustness floor of the next iteration
Ωl = Ωl + λl

2 , but if v(I) returns false, Ωl = Ωl − λl

2 .
Finally, let Λ be the minimum residual considered (i.e., when
λl < Λ, stop iterating).

1: Ωl = 1.0
2: Ωl−1 = 0.0
3: repeat
4: I = greedy(Π(Ωl))
5: λl = Ωl − Ωl−1

6: Ωl−1 = Ωl
7: if v(I) == true then Ωl = Ωl + λl

2

8: else if v(I) == false then Ωl = Ωl − λl

2
9: until λl < Λ

10: return I

Fig. 3. Robustness floor algorithm

2) Min-Min Processors: The min-min processors greedy
heuristic is a two-stage greedy heuristic (e.g., [20], [21]) that
describes one of the greedy functions from line 4 in Fig. 3.
In the first stage, for each application i, find the processor
type j in row i of the matrix returned by Π(Ωl) that uses
the minimum number of processors. In the second stage,
from the application to processor type pairs found in the
first stage, assign the application, imin, to the processor
type, jmin, that uses the minimum number of processors,
kmin. Remove application imin from further allocation
decisions and decrement the number of processors of type
jmin by kmin. Repeat the two stages until all applications
are assigned (i.e., v(I) = true) or until there are not enough
remaining processors to make any more allocations (i.e.,
v(I) = false).

By utilizing the min-min processors greedy heuristic in
step 4 of the robustness floor algorithm, the robustness floor
min-min (RF Min-Min) heuristic is formed.

3) Min-Max Processors: The min-max processors heuris-
tic is a two-stage greedy heuristic similar to the min-min
processors heuristic in that the first stage is the same. In
the second stage, however, from the application to processor
type pairs found in the first stage, assign the application,
imax, to the processor type, jmax, that uses the maximum

number of processors, kmax. Remove application imax from
further allocation decisions and decrement the number of
processors of type jmax by kmax. Repeat the two stages
until all applications are assigned (i.e., v(I) = true) or until
there are not enough remaining processors to make any more
allocations (i.e., v(I) = false).

The intuition behind assigning those applications that
need more processors first is that as more applications are
assigned, it is harder to find room for those requiring more
processors to meet the robustness floor. By utilizing the min-
max processors greedy heuristic in step 4 of the robustness
floor algorithm, the robustness floor min-max (RF Min-Max)
heuristic is formed.

4) Duplex: The final greedy heuristic is a combination of
the min-min and min-max processors heuristics, referred to
as duplex. At step 4 in Fig. 3, duplex runs both min-min
and min-max processors at each iteration and returns I such
that the performance objective, ρ, is maximized. By utilizing
the duplex greedy heuristic in step 4 of the robustness floor
algorithm, the robustness floor duplex (RF Duplex) heuristic
is formed.

IV. SIMULATION PARAMETERS

A. Overview

The following section describes parameters that are used
only to conduct a simulation study for analysis. The tech-
niques introduced above can be used for any real system.
Regardless of the input data, a system administrator utilizing
these techniques would need to evaluate their effectiveness
for their exact system. The performance from our simulation
analysis does not imply the same performance on all systems.

B. Application Parameters

To model the stochastic execution times, Gamma distri-
butions are used [12]. Gamma distributions were chosen
to represent the application execution times as they are
non-negative and their shape is flexible, allowing the rep-
resentation of execution time distributions of a myriad of
different applications. To generate the serial execution time
distributions for each application on each processor type, the
Coefficient of Variation (COV) method was used [22] to
obtain the mean and standard deviation of each application on
each processor type. To generate the parallel characteristics
for the Downey model for each application, the distributions
from [23] are used.

C. System Slowdown

To represent the slowdown of a given processor type, a
modified form of a Beta distribution was used because it is
a flexible distribution on the interval [0,1] that was similar
to the shape of small scale slowdown studies we conducted
on actual systems. It can be used to model the system
availability, defined as the inverse of the system slowdown,
where in this context 0 corresponds to no availability and a
slowdown of ∞, 1 corresponds to a fully available system
and no slowdown, and a processor type that is 50% available
would have a slowdown of 2. To use the Beta distribution
as a model for the system slowdown, the reciprocal of the
x-axis is used (i.e., the x-axis is now on the interval [1,∞)
instead of [0, 1]). We denote the overall system slowdown as
Γ, defined as the weighted average (weighted by the number

Proceedings of the World Congress on Engineering 2014 Vol I, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



of processors for each type) of the mean system slowdown
of the processor types.

D. Makespan Goal

Let µi,j,k be the mean execution time of application i
using k processors on processor type j. The calculation of
the makespan goal, ∆, is described in Eq. 4.

∆ =

∑Na

i=1

∑Np

j=1 µi,j,M

NaNp
(4)

The intuition behind using Eq. 4 is that it represents
an average of the applications’ performance in the given
heterogeneous system. The inner summation averages the
mean execution time of an application across all processor
types. The outer summation averages across all applications.
This allows different scenarios (e.g., number of applications,
number of processor types) to be compared by using the
same makespan goal calculation. We are aware that the
determination of the makespan goal will have an impact on
the resource allocation determined by the heuristics. This is
currently out of the scope of this paper, but will be explored
in the future.

E. Upper Bound on Robustness

Because robustness is defined across all applications as
the minimum probability P (i, (j, k)) that an application i in
resource allocation I completes by the makespan goal ∆, it
is possible to find an upper bound on robustness based upon
the worst performing application. The upper bound (given in
Eq. 5),B, states that for each application i, find the processor
type j that maximizes its probability of completing by the
makespan goal if it is given all processors of that type (i.e.,
nj). Out of all of those probabilities, the application that
has the minimum probability of completing by the makespan
goal sets the upper bound on system robustness.

B = min
i=1..Na

max
j=1..Np

P (i, (j, nj)) (5)

V. SIMULATION RESULTS

For our analysis, we consider three different batch sizes
(i.e., Na) of 8, 32, and 128 applications. The total num-
ber of processor types (i.e., Np) explored for each batch
size were {1, 2, 4, 8}, {1, 2, 4, 8, 16}, and {1, 2, 4, 8, 16, 32},
respectively. The total number of processors in the system
(i.e., τ ) with batch sizes of 8, 32, and 128 were 64, 256,
and 1024, respectively, where nj varies between types. The
overall system slowdown, Γ, was broken into categories of
low, mixed, and high corresponding to Γ of 1.1, 1.36, and 1.6,
respectively. Each scenario (where a scenario is a batch size,
system size, and system slowdown category) was run for 48
trials for each of the five heuristics with the 25th, median,
and 75th quartiles shown. The plus symbols show all trials
outside of the 25th and 75th quartiles. Between trials, the
application characteristics and the makespan goal differed.
The stopping criterion for the robustness floor heuristics, Λ,
was set to 0.01. This led to each robustness floor variant
running for seven iterations (dlog2(Λ−1)e).

A typical result is presented in Fig. 4. This figure shows
the robustness compared between the five heuristics and the
upper bound. The batch size was 32 applications with four
processor types with high slowdown and 256 total processors.

Fig. 4. A typical result in the comparison of the five heuristics and the
upper bound. The batch size was 32 applications with four processor types
with high system slowdown. The box plot shows the distribution of 48 trials
with the 25th, median, and 75th quartile trials represented by the box. All
trials outside of the 25th and 75th quartile are shown with the plus symbol.

We can see that the two processor balance heuristics do
not perform as well as the three robustness floor heuristics.
This is because the processor balance heuristics only make
decisions on which processor type to allocate an application
to, where the number of processors per application is fixed
as M . The PB-S heuristic performs better than the PB-
R heuristic because at each allocation decision it assigns
the application that will have the highest probability of
completing by the makespan goal where PB-R makes random
allocation decisions. Out of the robustness floor heuristics,
RF Min-Max, in general, performs better than RF Min-Min.
This is because as more applications are allocated, there is
less room and it becomes harder to assign the applications
that need more processors. RF Min-Max assigns these larger
applications first, leading to better performance in most
cases. RF Duplex will always perform at least as well as
RF Min-Min and RF Min-Max because it runs both greedy
algorithms at each iteration. By using intelligent calculation
optimizations, running this algorithm only requires 5 to 10%
longer than either RF Min-Min and RF Min-Max. The upper
bound is not overlapped by any of the heuristics because,
in general, it is not achievable as it assumes an application
occupies an entire processor type. This does not leave enough
resources for the remaining applications to have an ample
opportunity of completing by the makespan goal.

Because RF Duplex was the best performing heuristic in
all scenarios with respect to robustness, we focus the rest of
the discussion in regards to it. In our simulations, we noticed
that the upper bound remained mostly constant for any
given number of processor types. This is because the upper
bound is only set by one application on one processor type,
therefore the number of processor types does not matter in
that calculation, but rather the heterogeneity and performance
of a single processor type in the system. Where the number of
processor types does matter, however, is with the heuristics.
The more processor types there are, the more the heuristics
can leverage the benefit of the heterogeneity in the system.

The heuristics leveraging the heterogeneity in the system
is apparent in Fig. 5. Let Bnorm be difference between the

Proceedings of the World Congress on Engineering 2014 Vol I, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



Fig. 5. The trend in performance, in terms of Bnorm, when increasing the
number of processor types in the system. A Bnorm value of zero indicates
that the robustness exactly equals the upper bound (i.e., Ψ(I) = B). The
batch size was 32 applications and the system had a low system slowdown.
The number of processor types varied between 1, 2, 4, 8, and 16.

upper bound and the robustness, normalized by the upper
bound (i.e., Bnorm =

(
B−Ψ(I)

B

)
). As Bnorm approaches

zero, the performance of the resource allocation approaches
the upper bound. Fig. 5 shows how Bnorm changes when
the number of processor types are varied in a system with
a batch size of 32 and low system slowdown. The increase
in the number of processors in the system leads to better
performance by RF Duplex with respect to the upper bound.

VI. CONCLUSIONS

A robustness metric was presented that combines the
uncertainties of moldable parallel applications with stochastic
execution times and heterogeneous resources with uncertain
availability. Using knowledge of the parallel characteristics
of the application in conjunction with the robustness metric,
three iterative-greedy heuristics were designed and studied
through simulation. In practice, the RF Duplex heuristic
should be used. For a small increase in computation time,
it combines the benefits of RF Min-Min and RF Min-Max.

In the future, additional resource allocation heuristics will
be designed, implemented, and analyzed. The sensitivity
of the performance of the heuristics to the setting of the
makespan goal will be explored. Last, as in [10], we will
combine the resource allocation techniques with a second
stage that implements dynamic loop scheduling, a suite of
runtime performance optimization techniques [24].

ACKNOWLEDGMENTS

The authors thank M. Oxley and K. Tarplee of Colorado
State University for their valuable comments.

REFERENCES

[1] M. M. Eshaghian, Heterogeneous Computing. Artech House Publish-
ers, 1996.

[2] S. Ali, T. D. Braun, H. J. Siegel, A. A. Maciejewski, N. Beck,
L. Boloni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D.
Theys, and B. Yao, “Characterizing resource allocation heuristics for
heterogeneous computing systems,” Advances in Computers Volume
63: Parallel, Distributed and Pervasive Computing, Ali R. Hurson,
Ed. Elsevier, 2005.

[3] X. Qin and H. Jiang, “A dynamic and reliability-driven scheduling
algorithm for parallel real-time jobs executing on heterogeneous clus-
ters,” Journal of Parallel and Distributed Computing, vol. 65, no. 8,
pp. 885–900, Aug. 2005.

[4] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures,”
Journal of Parallel and Distributed Computing, vol. 4, no. 2, pp. 175–
187, Feb. 1993.

[5] E. G. Coffman, Computer and Job-Shop Scheduling Theory. John
Wiley & Sons, New York, NY, 1976.

[6] C. Boneti, R. Gioiosa, F. J. Cazorla, and M. Valero, “Using hard-
ware resource allocation to balance HPC applications,” Parallel and
Distributed Computing, Ros Alberto, Ed. InTech, 2010.

[7] R. Wolski, N. Spring, and J. Hayes, “Predicting the CPU availability
of time-shared Unix systems on the computational grid,” Cluster
Computing, vol. 3, no. 4, pp. 293–301, Dec. 2000.

[8] V. Shestak, J. Smith, A. A. Maciejewski, and H. J. Siegel, “Stochastic
robustness metric and its use for static resource allocations,” Journal
of Parallel and Distributed Computing, vol. 68, no. 8, pp. 1157–1173,
Aug. 2008.

[9] S. Ali, A. A. Maciejewski, and H. J. Siegel, “Perspectives on robust
resource allocation for heterogeneous parallel systems,” Handbook
of Parallel Computing: Models, Algorithms, and Applications, S.
Rajasekaran and J. Reif, Ed. Boca Raton, FL: Chapman and Hall/CRC
Press, 2008.

[10] F. M. Ciorba, T. Hansen, S. Srivastava, I. Banicescu, A. A. Ma-
ciejewski, and H. J. Siegel, “A combined dual-stage framework for
robust scheduling of scientific applications in heterogeneous environ-
ments with uncertain availability,” in 21st Heterogeneity in Computing
Workshop (HCW 2012) in the proceedings of the IEEE International
Parallel and Distributed Processing Symposium, May 2012, pp. 193–
207.

[11] D. J. Robb and E. A. Silver, “Probability density functions of task-
processing times for deterministic, time-varying processor efficiency,”
Journal of the Operational Research Society, vol. 41, no. 11, pp. 1049–
1052, Nov. 1990.

[12] S. R. Lawrence and E. C. Sewell, “Heuristic, optimal, static, and
dynamic schedules when processing times are uncertain,” Journal of
Operations Management, vol. 15, no. 1, pp. 71–82, Feb. 1997.

[13] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling using system-
generated predictions rather than user estimates,” IEEE Transactions
on Parallel and Distributed Systems, vol. 18, no. 6, pp. 789–803, June
2007.

[14] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “System
noise, OS clock ticks, and fine-grained parallel applications,” in 19th
International Conference on Supercomputing, June 2005, pp. 303–312.

[15] R. Ruiz and T. Stützle, “An iterated greedy heuristic for the sequence
dependent setup times flowshop problem with makespan and weighted
tardiness objectives,” European Journal of Operational Research, vol.
187, no. 3, pp. 1143–1159, June 2008.

[16] Maui SchedulerTM Administrator’s Guide, Adap-
tive Computing Enterprises, Inc. [Online]. Available:
http://docs.adaptivecomputing.com/maui

[17] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, Jan. 2008.

[18] L. Wasserman, All of Statistics: A Concise Course in Statistical
Interference. New York, NY: Springer Science+Business Media,
2005.

[19] A. B. Downey, “A parallel workload model and its implications for
processor allocation,” Cluster Computing, vol. 1, no. 1, pp. 133–145,
May 1998.

[20] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hengsen, and
R. F. Freund, “A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing
systems,” Journal of Parallel and Distributed Computing, vol. 61,
no. 6, pp. 810–837, June 2001.

[21] M. Maheswaran, S. Ali, H. J. Siegel, D. Hengsen, and R. F. Freund,
“Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems,” Journal of Parallel and Distributed Computing,
vol. 59, no. 2, pp. 107–131, Nov. 1999.

[22] S. Ali, H. J. Siegel, M. Maheswaran, D. Hengsen, and S. Ali,
“Representing task and machine heterogeneities for heterogeneous
computing systems,” Tamkang Journal of Science and Engineering,
Special Tamkang University 50th Anniversary Issue, vol. 3, no. 3, pp.
195–208, Nov. 2000. Invited.

[23] W. Cirne and F. Berman, “Using moldability to improve the perfor-
mance of supercomputer jobs,” Journal of Parallel and Distributed
Computing, vol. 62, no. 10, pp. 1571–1601, Oct. 2002.

[24] I. Banicescu and R. L. Cariño, “Addressing the stochastic nature
of scientific computations via dynamic loop scheduling,” Electronic
Transactions on Numerical Analysis, vol. 21, pp. 66–80, 2005.

Proceedings of the World Congress on Engineering 2014 Vol I, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014




