
 

  
Abstract—The work presented here compares the 

performance of indoor positioning systems suitable for low 
power wireless sensor networks. Map matching, approximate 
positioning (weighted centroid) and exact positioning 
algorithms (least squares) were tested and compared in a small 
predefined indoor environment. We found that, for our test 
scenario, weighted centroid algorithms provided the best 
results. Least squares proved to be completely unreliable when 
using distances obtained by a propagation model. Major 
improvements in the positioning error were found when body 
influence was removed from the test scenario.  
 

Index Terms— Fingerprinting, localization, received signal 
strength, wireless sensor networks, weighted centroid. 
 

I. INTRODUCTION 
OCALIZATION capability in wireless sensor networks  
(WSN) brings spatial information to data obtained from 

sensors. A device’s ability to provide localization 
information enables numerous added value applications. 
Localization can be used in the most various contexts, from 
geodesic routing to antenna beam forming, or to detect soil 
temperature and pinpoint the origin of a wildfire. 

In outdoors environment, the global positioning system 
(GPS) is capable of offering an adequate service to the 
majority of applications. Device size is no longer an issue in 
WSN due to the miniaturization of GPS hardware. 
Remaining disadvantages of this approach relate to energy 
consumption and node price when using this technology in 
WSN. 

Regarding indoors environment, GPS is not reliable due 
to the signal attenuation. Ultra-wideband is a technology 
with potential to solve the problem of indoor location due to 
its high accuracy when inferring distances between devices 
[1]. However, and despite large standardization efforts (e.g., 
the IEEE 802.15.4a standard), a fully compliant commercial 
device for sale is unavailable. Since no mass market is 
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currently in place, prices are very high.  
Received signal strength (RSS) based positioning is a 

popular approach in WSNs since RSS is readily available 
with the radio module. Due to typical WSN energy 
consumption and computational capacity constraints, low 
complexity positioning solutions are desired. As such, 
researchers seek to find balance between accuracy and 
computational complexity. 

The aim of the work presented here is the implementation 
of positioning systems (PS) in WSN that best fit the indoor 
scenario. In this paper, a practical implementation of RSS 
based positioning using wireless sensor nodes is presented. 
The wireless sensor nodes communicate using the IEEE 
802.15.4 medium access control (MAC) protocol, working 
on the 2.4 GHz frequency band. We compare positioning 
calculation using map matching, approximate positioning 
and exact positioning algorithms in an indoor test scenario. 
We also study the effect of the body in the performance 
indicators. 

Map matching solutions are mainly used in large areas, 
such as office settings and warehouses with several 
divisions. Our work differs from the usual approach, since 
the fingerprinting solution is implemented in a smaller 
predefined space of a room, without walls in between access 
points, according to our setup. 

We seek to study positioning techniques that are 
compatible with real-time positioning in WSN, having low-
power and low complexity as requirements, yet presenting 
the best accuracy possible under such framework. 

II. BACKGROUND 

A. RSS Based Positioning Systems 
An overview of technologies used in positioning systems 

is available in [2]. Ultrasound, ultra-wideband, radio-
frequency identification (RFID) and RSS based systems are 
among the most used technologies for indoor positioning. 
Accuracies span from 5 meters (RSS) to a few centimeters 
(ultrasound). 

RSS systems are known for the low reliability when 
inferring distances from measurements. Filtering techniques 
are a solution for dealing with RSS reliability under noisy 
conditions. These techniques also stand as the common 
solution for integration of heterogeneous positioning 
systems, in order to provide more accurate location 
estimation. Kalman filters [3] and particle filters [4] are the 
usual approaches; however, since these solutions need high 
computational capacity, they are usually not compatible 
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with WSNs. Instead, filtering is typically accomplished by 
averaging multiple measurements, thus positioning accuracy 
is sacrificed in the tradeoff for lower computational 
demands, longer lifespan of sensor nodes and faster 
positioning update rates when desired. 

Map matching systems are a popular approach in RSS 
positioning in wireless local area networks (WLANs). 
Approximate positioning uses radio parameters such as link 
quality indication (LQI), RSS or node connectivity to infer 
proximity to a certain known reference point. Exact 
positioning systems use RSS readings as input for 
mathematical models that estimate distances between 
devices in a network. 

B. Propagation Models 
A general overview of various propagation models can be 

found in [5]. Several efforts have been made to characterize 
radio signal propagation during the GSM (Groupe Special 
Mobile) system’s evolution, through the COST 231 project 
[6]. For indoor settings, the one-slope [7] and the multiwall 
[8] propagation models are frequently used in the state-of-
the-art. The one-slope model is defined as: 

RSSOS (d) = RSS(d0 )−10 × n × log
d
d0

#

$
%

&

'
(+ χσ  (1) 

The parameter RSS(d0) is the received signal strength at 
the reference distance d0 (usually 1 meter), n is the path loss 
exponent and χσ is a Gaussian distributed random variable. 

The propagation model typically models the large-scale 
effects of signal attenuation. The main error source comes 
from the small-scale fading effect. Multipath waves 
combine at the receiver in slightly different time instants, 
giving rise to a signal that can largely vary in amplitude and 
phase [9].  

A path loss exponent of 2 is the reference path loss, used 
in free space propagation. Authors in [10] and [11] obtained 
path loss exponent values above 2, typical in non-line-of-
sight (NLOS) or reflection dominated environments. Values 
below 2 are less frequent but sometimes found in literature 
[8]. 

When devices are worn near or on the human body, 
propagation models performance degrades. In [12], 
attenuations as high as 15dB due to human body are 
reported when compared to the line-of-sight (LOS) case. 
Body attenuation is of extreme importance, yet a model that 
incorporates the body effect has not been investigated in the 
literature. 

C. Map Matching 
Two phases compose the system originally implemented 

by Bahl et al. [13]. In the offline phase, data relating 
position and RSS from access points (AP) is gathered from 
the site on to a database, in order to create a radio map. In 
the online phase, mobile nodes report to a server the RSS 
from APs in range. The server compares signatures so a 
match (or the closest to) can be found, thus pinpointing the 
mobile node’s position. 

In [14], a comprehensive study on fingerprinting is 
presented. Authors conclude that map density translates to 
higher accuracy with a nonlinear behavior in increasing the 
number of calibration points. The direction faced when 

collecting samples, also studied by Bahl et al., is crucial and 
greatly improves system accuracy.  

Approaches to facilitate creation of radio map in the 
offline phase have been conducted. Authors in [11] use 
propagation models to ease the process of creating the radio 
map. Ray-tracing modeling is another solution to obtain the 
attenuation values of signal propagation [15]. 

D. Approximate Positioning 
This method involves determining the proximity when a 

device or object is near a known location.  
The weighted centroid localization (WCL) method is a 

well-known, low complexity algorithm with good 
robustness to noise. Bulusu et al. implemented this method 
in [16], were node connectivity was the metric used to infer 
distance. Given a set of beacon nodes in the network 
possessing knowledge of their location, the position of 
sensor nodes can be estimated by calculating the centroid of 
all beacon node coordinates for which the sensor is in range 
of.  

In [17], authors compare the linear least squares (LLS) 
method against centroid-based algorithms. Results show that 
centroid based method outperforms the LLS method in 
precision and accuracy with lower complexity, when under 
an environment strongly affected by multipath propagation. 

LANDMARC [18] uses RSS readings in their 
approximate positioning method. Tag readers report RSS 
from RFID moving tags, along with RSS from reference 
tags. Reference tags are fixed and their RSS are used as 
means of comparison between that of the movable tags to 
infer proximity. In a more recent work [19] authors further 
improve LANDMARC’s positioning error to a 1-meter 
accuracy with a signal reporting cycle of 2 seconds. 

Hop count positioning algorithms such as DV-Hop [20] 
can use RSS as a metric to infer distance for each hop. In 
[21], authors achieve less than 10% radio coverage error. In 
contrast with [21], authors in [22] discard a RSS solution 
due to its low reliability. These contradictory opinions are 
strongly related to the use case scenario of each positioning 
system implementation. 

E. Exact Positioning 
The exact positioning method involves the determination 

of angles or distances between a sensor node and multiple 
known reference points. Triangulation and trilateration (or 
multilateration) are the typical methods employed to 
determine the sensor position. Distance estimates are usually 
obtained by measuring the time of arrival (TOA), time 
difference of arrival (TDOA) or the round trip time of flight 
(RTOF) [23]. 

The linear least squares method (LLS) [24] is the most 
used exact positioning algorithm in WSNs, due to the simple 
closed form solution.  

Measuring the propagation time of a transmission is a 
more robust method when compared to the signal strength. 
However, in WSN this generally involves adding extra 
hardware, increasing energy consumption. The main goal in 
this work is the implementation of low power and real-time 
sensor node positioning in indoor environment. As such, 
addition of extra hardware is avoided and RSS 
measurements are performed for distance estimates. 
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III. MATERIALS AND METHODS 

A. Hardware 
Texas Instruments CC2530DK development kit was used 

in this work. The CC2530 is a system on chip (SoC) 
solution that contains an 8051 microprocessor, a radio 
transceiver compatible with the IEEE 802.15.4 MAC 
working on the 2.4GHz frequency band and general I/O 
(Input / Output) peripherals. The CC2530 radio has a 
sensitivity of -97 dBm and a maximum transmission power 
of +4.5 dBm.  

The test scenario is composed by four anchor nodes and 
one sensor node. Each anchor node is composed by a 
CC2530 evaluation module and a battery board powered by 
two AA batteries. The sensor node is composed by a 
development board and an evaluation module. The 
development board contains necessary hardware to interface 
with the USART (Universal Synchronous Asynchronous 
Receiver Transmitter), used to communicate through 
standard PC serial port. 

B. Experimental Setup 
The anchor’s role is to broadcast beacon messages 

periodically, so sensor nodes can receive these messages and 
locate themselves. Our main test bed is a room with 10×4.7 
m free space area, as shown in fig. 1. 

 
Anchors are placed in the corners of the mentioned area 

on top of a stand, 1.2 meters above ground. The stands used 
are made of plastic, so no extra interferences affect the radio 
messages.  

Numbered from 0 to 3, each anchor broadcasts one 
beacon message periodically, at the start of each 100-
millisecond superframe. As soon as anchor 1 receives 
beacon message from anchor 0, anchor 1 begins 
broadcasting its own beacon periodically, and so forth. 
Anchor nodes bypass the usual CSMA/CA (Carrier Sense 
Multiple Access/Collision Avoidance) in their 
transmissions, so timings between transmissions do not 
overlap. Messages arrive sequentially and free of collision.  

Using the sequence number in the beacon messages, the 
sensor node detects lost beacons during data collection and 
inserts a value of -127, indicating an invalid RSS sample. 
Calculations are performed in an offline phase. 

C. Propagation Model Calibration 
Equation 1 was used as the linear (in the coefficients) 

non-polynomial model, to find the parameters of the one-
slope model: 
M (x) = c1φ1(x)+ c2φ2 (x)+ ... + cnφn (x)  (2) 

with ϕ1=1 and ϕ2=10×log10(x), where a reference distance 
of 1 meter was used. The model coefficients are calculated 
by minimizing the squared error between the model and the 
measurements taken at the site: 

S = fi −M (xi )( )2i=1
N∑  (3) 

The solution is found by solving a system of equations in 
augmented matrix form: 

φ1
2

i=1
N∑ φ1φ2i=1

N∑ fiφ1i=1
N∑

φ2φ1i=1
N∑ φ2

2
i=1
N∑ fiφ 2i=1

N∑

"

#
$
$

%

&
'
'

 (4) 

D. Map Matching 
The radio map was created with a grid resolution of one 

squared meter. Since our positioning area is 4.7 meters 
wide, the last column of the grid has a smaller resolution of 
0.7 squared meters. A total of 66 grid points covered our test 
field. A calibration point was collected at each grid point 
and for each body orientation (e.g., north, west, south and 
east), amounting to a total of 264 calibration points. Each 
point is composed by true position (x and y with origin on 
anchor 0), body orientation and average RSS obtained from 
100 RSS samples from all four anchor nodes. 

During the online phase, the sensor node obtains RSS 
samples and stores them. At the end of a test run (e.g.: after 
collecting 100 samples), data is uploaded to the PC running 
MATLAB and the position is computed. The weighted k-
nearest neighbor (WKNN) algorithm [13] uses (5) to find 
the distance in signal space between a RSS sample and each 
calibration point. 

DSS = Rmap (i)− Rs (i)
p

i=1
N∑#$

%
&

1
p  (5) 

N is the number of anchor nodes in range and p is the 
norm used. The Rmap(i) is the RSS stored for anchor i in a 
calibration point of the radio map and Rs(i) is the RSS 
sampled in the online phase for anchor i. After computing 
the distances for all calibration points, the K smallest 
distances are used to estimate the node’s position using (6), 
with pi being the coordinates of each calibration point. 

x̂ =
wi ×

pii=1
K∑

wii=1
K∑

;  wi =
1
D1

 (6) 

The weight applied to each neighbor found in the search 
process is simply the inverse of the signal space distance.  

E. Approximate Positioning 
In this type of positioning, the only information needed 

by a node to calculate its position is the coordinates of each 
anchor node in range. The position estimate is calculated 
using (7): 

x̂ =
wi ×


Lii=1

B∑

wii=1
B∑

;  wi =
1

(Rp )e
 (7) 

where Li are the coordinates of each anchor node and Rp 
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Fig. 1.  Experimental setup. Anchor locations are depicted as green circles, 
along with distances to walls. Black dots indicate calibration points. A 
calibration point was also taken at each anchor location. The three 
supporting beams on the left side of the room are depicted as squares. 
 

Proceedings of the World Congress on Engineering 2014 Vol I, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



 

is the radio parameter used to calculate the weight. In this 
work, both the RSS and the distance using a propagation 
model were used to calculate the weights, in two different 
approaches. The exponent e allows an adjustment of the 
importance of the weight applied to each anchor node’s 
RSS. 

F. Exact Positioning 
The Linear Least Squares method is an exact positioning 

technique, which computes the position of a node using a set 
of three or more non-collinear distance measurements (in 
the two dimensional case). Each measurement produces an 
equation of the form illustrated in (8): 
(x − xn )

2 + (y − yn )
2 = dn

2  (8) 
Several measurements produce a system of equations, 

which has no solution when circles don’t intersect. To find a 
solution to this system, first a linearization of the system of 
equations is obtained by subtracting the location of the first 
anchor node from other locations. This cancels the unknown 
squared terms, and a linear system of the form Av = b is 
obtained, as shown in (9), (10) and (11):  

A = 2 ×
x1 − x2
x1 − x3

y1 − y2
y1 − y3

...
x1 − xn

...
y1 − yn

#

$

%
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&

'

(
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 (9) 

b =
d2
2 − d1

2 + x1
2 − x2

2 + y1
2 − y2

2
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v = x
y( )  (11) 

Since the vector b may be located outside the plane 
defined by matrix A, the solution is to find the projection of 
b onto A, thus minimizing the Euclidean distance (or 
squared error), using (12). 
v = (AT ×A)−1 × (AT × b)  (12) 

IV. RESULTS 
One aspect of RSS positioning essential to its 

performance is the body influence. Two sets of samples 
were collected, with one set being obtained with the user’s 
body near the receiving antenna (body present BP), the other 
set without the body influence (body not present BNP). A 
set is composed by several test runs; each test run contains 
100 RSS samples. Position estimation is computed for each 
sample in a test run, thus no averaging was used in the tests 
presented. 

All sample sets were taken in positions where a 
calibration point exists. The BP sample set is composed by 
79 test runs, from which 66 were taken facing the north 
direction. The remaining 13 test runs were randomly chosen 
across the positioning area, with different orientations. The 
BNP sample set is composed by 12 test runs randomly 
chosen and do not have an orientation associated since the 
body is not present. 

The height of the sensor nodes is the same as the anchor 
nodes (1.2 meters above ground). The mean and standard 

deviation of the absolute error (Euclidean distance between 
the calculated position and the true position) were the 
metrics chosen as primary performance indicators. 
Performance evaluation results and comparison between 
each algorithm are presented. 

A. Propagation Model Calibration 
The one-slope propagation model uses two parameters: 

the RSS at the reference distance and the path loss exponent. 
A reference distance of 1 meter was used, which simplifies 
computation of distances by the low power sensor nodes.  

We collected twelve datasets of RSS measurements at 
different distances from each of the anchors and applied (2), 
(3) and (4) to find the one-slope model parameters. Table 1 
presents the data collected. 

 
 

The average value of each coefficient was used in our 
propagation model, presented in (13). 
RSSOS (d) = −37.72 −10 × 2.19 × log10 (d)+ χσ  (13) 

The RSS measurements for the propagation model were 
done with the body near the receiving antenna, and in LOS 
to each anchor node, which is the typical application 
scenario. 

B. Map Matching 
Two parameters were tested in the map matching 

solution: the number of neighbors K and the norm used p. 
The mean error (ME) and the standard deviation (STD) are 
presented in fig. 2 and fig. 3 respectively. 
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Fig. 2. Mean error comparison for different values of K and p. At the top is 
displayed the WKNN BP, at the bottom is displayed the WKNN BNP. 
 

TABLE I 
PROPAGATION MODEL MEASUREMENTS 

Dataset RSS at distance d0 Exponent n 
1 -30.88 3.88 
2 -45.91 0.12 
3 -32.18 1.81 
4 -31.06 2.76 
5 -36.09 3.17 
6 -55.19 -0.16 
7 -20.42 3.99 
8 -34.76 2.72 
9 -34.82 2.38 

10 -47.71 1.40 
11 -48.75 1.41 
12 -34.84 2.74 

Average -37.72 2.19 
Coefficients from the one-slope model were calculated 

for each dataset collected, using the Least Squares best fit. 
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The body influence is presented for each of the p-norms 

tested. In the BP case, the ME variation between K=1, 
equivalent to the nearest neighbor (NN) algorithm, and the 
other values of K is not significant. This can be explained 
due to the positioning system area and calibration point 
density. Since the area is small and the density of calibration 
points is high, the NN algorithm tends to perform as good as 
WKNN. Other works, such as [14], also pointed out this 
outcome, yet under a different environment. Note that a map 
matching solution with NN as the positioning algorithm 
only needs to find one nearest neighbor, which is 
computationally faster than the WKNN case.  

In the BNP case, the value K has a more important 
influence than in the BP case, where for p=2 and K=5, ME 
reaches a minimum of approximately 2.2 meters. This 
scenario were body influence is not present is, of course, a 
best-case scenario, which does not happen when the system 
is to be used by a person. Yet, it shows a boundary of 
positioning error that deterministic frameworks can provide 
in this environment, if accounting the body influence in the 
position calculation. 

The STD values exhibit a monotonic decrease, with the 
increase of K in the BP case. Differences between norms are 
negligible. In the BNP case, STD values reach a minimum 
of 0.8 meters for p=1 and K=4. 

C. Approximate Positioning 
RSS (RWCL) and distance using the one-slope path loss 

model (DWCL) are tested as weights in the WCL algorithm. 
In the RWCL, the exponent e was varied. Results are 
presented in fig. 4. 

 

In contrast with other works [25], [26], we found the 
optimum e parameter between 2 (BP) to 6 (BNP), where a 
tradeoff between the mean error and the standard deviation 
exists. As the parameter e increases beyond 4 in the BP case, 
and beyond 6 in the BNP case, the mean error and standard 
deviation also increase. With a high e value, the position is 
strongly influenced by the anchor node with the greater RSS 
reading. Thus, in limit conditions, the calculated position 
would be the same as that of the anchor node with higher 
RSS in the field. 

Again, body influence plays a very important role. As an 
example, for an exponent of e=4, the mean error in the BNP 
case is approximately half of the mean error in the BP case. 
In the case of standard deviation, an improvement of more 
than 50% in the BNP case is also achieved. 

In the DWCL algorithm, two parameters can be varied: 
exponent e and the path loss exponent n. Mean error and 
standard deviation results are presented in fig. 5 and 6. 

 

 
The minimum ME of 1.36 meters is achieved (n=2.2, 

e=1.4) in the BNP case, while in the BP case, minimum ME 
was 2.92 meters (n=3.4, e=1). Body influence increases the 
error by a factor slightly higher than 2.  

There is a balance between parameters, due to n and e 
balancing each other, which can be seen as the “saddle” 
effect in fig. 5 and 6. 

The value of n=2.2 obtained in the BNP case is also very 
similar to the value obtained by linear regression of n=2.19, 
which validates the use of linear regression as an appropriate 
method of determining path loss exponent when in LOS 
conditions. 
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Fig. 6. DWCL standard deviation comparison for different values of the 
path loss exponent n and parameter e. 
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Fig. 5. DWCL mean error comparison for different values of the path loss 
exponent n and parameter e. 
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Fig. 3. Standard deviation comparison for different values of K and p. At 
the top is displayed the WKNN BP, at the bottom is displayed the WKNN 
BNP. 
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Fig. 4. Mean error and standard deviation comparison for different values 
of exponent e, for both BP and BNP case. 
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D. Exact Positioning 
The influence of the parameter n of the one-slope model 

was tested. The results for the LLS algorithm are depicted in 
fig. 7. 

 

 
Even though the mean error and the standard deviation 

decrease has n increases, the algorithm exhibits a saturated 
behavior, has can be seen for values of n higher than 6. 
Positioning error increases rapidly for values of n smaller 
than 4. For a value of n=2.19, as obtained for our one-slope 
model, the ME rises to around 1000 meters, many orders 
higher than the positioning area itself, which renders the 
algorithm useless.  

E. Algorithm Comparison 
In order to compare the several positioning algorithms, 

the best parameter values for each of the algorithms were 
considered.  

To evaluate the algorithm’s sensitivity to noisy 
measurements, a simple simulation was made: given a set of 
positions (x, y) from our test setup, the real distance from all 
anchor nodes to each position was calculated. An error was 
added to this calculated distance and served as input to each 
algorithm that uses distances. For the RSS based algorithms, 
distances were converted to RSS using the inverse of (13). 
Results are presented in fig. 8. 

 
Only the LLS algorithm exhibits zero error under exact 

distance estimates. Error increases rapidly with noise in the 
LLS case, while the other algorithms exhibit resilience to 
increasingly erroneous estimates.  

To have a frame of reference when comparing algorithms, 
a fictitious positioning algorithm, called static center 

position (SCP) was added to each CDF plot. This algorithm 
simply returns the center position of the PS area, for any 
input. The CDF for WKNN and LLS algorithms is presented 
in fig. 9. 

 
The CDF for RWCL and DWCL algorithms is presented 

in fig. 10. 

 
Regarding the WKNN algorithm, the body influence is 

evident, with a 30% improvement for an error of 3 meters. 
The body has a bigger impact on WCL than in the map 

matching solution, yet the WCL algorithms present slightly 
better results than WKNN when under body influence. 
When body is not present, WCL produces the best position 
estimates of all algorithms tested. Considering a probability 
of around 70%, WCL improves from an accuracy of 4 
meters in the BP case to approximately 1.8 meters in the 
BNP. Between RWCL and DWCL, different parameter 
values lead to an equivalent performance. This implies that 
the use of RSS is the best weighting solution in WCL for 
our setup, since it is simpler than using a propagation model.  

LLS had the worst performance, where the BNP case 
obtained a performance at the same level of the BP case for 
the other algorithms. When compared with SCP, LLS can 
even sometimes perform worse. 

In general, all algorithms exhibited weak performances 
when the body is present. If the body influence is removed, 
WCL algorithms can perform significantly better than 
WKNN. In addition to this, WCL also has reduced 
complexity, easier setup and maintenance than WKNN. 
Little overhead is needed to allow nodes to compute their 
position, since nodes only need to know the coordinates of 
the anchor nodes.  
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Fig. 9. Cumulative Distribution Function for WKNN and LLS algorithms. 
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Fig. 8. Error resilience comparison between algorithms tested. 
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Fig. 7. LLS comparison using different values of path loss exponent n for 
distance conversion. 
 

 
Fig. 10. Cumulative Distribution Function for RWCL and DWCL 
algorithms. 
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V. DISCUSSION 
The comparison between the results obtained for the BP 

and BNP case demonstrate how strong the body influence is. 
Given the results, it is of extreme importance to account for 
body influence when estimating the position using RSS. 

The use of propagation models proved to be unreliable in 
the case of the LLS algorithm. 

Although more information from the propagation 
environment is embedded in the map matching solution, the 
results obtained did not compensate such effort when 
compared to WCL algorithm.  

The performance obtained from the WCL solutions is 
equivalent to the map matching solution in the BP case. 
WCL solutions provided the best position estimates in the 
BNP case, making this type of positioning the best possible 
under our test conditions. 

All algorithms showed poor positioning capabilities when 
body influence is present. When body influence is removed, 
positioning accuracy improves drastically, with the 
exception of LLS. 

VI. CONCLUSIONS AND FUTURE WORK 
Propagation models perform poorly due to not accounting 

for body influence and when the environment is severely 
affected by multipath propagation. Distances estimated from 
these models are severely affected by biases that heavily 
depend on factors such as body orientation, LOS/NLOS 
condition and proximity to other objects, walls or 
obstructions.  

As future work, we intend to integrate the RSS indoor 
positioning capability in our wireless posture monitoring 
system (WPMS) [27]. The objective is to provide location 
information, which, together with the body posture, will 
characterize not only how the user is moving but also his 
location. The information sensed from the users body will 
be used to aid in the positioning task. 
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