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Abstract—The Fuzzy Hyperline Segment Neural Network 

(FHLSNN) utilizes fuzzy set as pattern classes in which each 
fuzzy set is a union of fuzzy set hyperline segments. This is 
supervised classifier that forms n-dimensional hyperline 
segments defined by two end points with a corresponding 
membership function for learning and prediction.  In this 
paper, we propose the modifications in the prediction phase of 
FHLSNN to improve its classification/recognition rate. In the 
first modification (MFHLSNN1), we propose the Euclidean 
distance computation between the input pattern and the 
centroid of the patterns falling on the hyperline segments, to 
decide the class of pattern. In the second modification 
(MFHLSNN2), we propose to use both, the membership value 
of hyperline segments for the input pattern and Euclidean 
distance to decide the class of pattern. The performance of 
both, MFHLSNN1 and MFHLSNN2 is evaluated using 
benchmark problems and real world handwritten character 
data set. The results are analyzed, discussed and compared 
with the FHLSNN. Both the proposed modifications improved 
the prediction accuracy of the FHLSNN without affecting its 
incremental learning. 
 

Index Terms—Fuzzy hyperline segment neural network, 
Centroid, Euclidean distance computation, Test accuracy 
 

I. INTRODUCTION 

HE fuzzy neural networks (FNN) combine the strength 
of the artificial neural networks, such as learning, 

adaption, fault tolerance, parallelism and generalization with 
human like thinking and reasoning using fuzzy logic. 
Because of all these advantages, the fuzzy neural networks 
are widely used for pattern classification and recognition. A 
very vast literature is available on the fuzzy neural networks 
which suggest various architectures and algorithms for the 
different applications [1]. 

Patrick K. Simpson proposed supervised learning neural 
network classifier known as fuzzy min-max neural network 
(FMN) that utilizes fuzzy sets as pattern classes where each 
fuzzy set is an aggregate (union) of fuzzy set hyperboxes. 
This learning algorithm has the ability to learn on-line and 
in a single pass through the data. Its performance is 
evaluated for commonly used and well-known fisher iris 
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data set [2]. He has also proposed unsupervised fuzzy min-
max clustering neural network (FMCN) in which clusters 
are implemented as fuzzy sets using membership function 
with a hyperbox core that is constructed from a min point 
and a max point [3]. Gabrys and Bargiela have proposed 
general fuzzy min-max neural network (GFMM) for 
classification and clustering, which is a fusion of supervised 
and unsupervised learning [4]. In the sequel of fuzzy min-
max neural network classifier, Kulkarni U. V. et al. 
proposed fuzzy hyperline segment neural network classifier 
(FHLSNN), which utilizes fuzzy sets as pattern classes in 
which each fuzzy set is a union of fuzzy set hyperline 
segments [5]. This classifier is applied for rotation invariant 
handwritten character recognition and found superior than 
unsupervised four layer feedforward fuzzy neural network 
(FNN) of Kwan and Cai, [6] and FMN in terms of 
recognition rate, training time and recall time per pattern. 
U.V. Kulkarni et al. have also proposed unsupervised fuzzy 
hyperline segment clustering neural network and its 
performance is found superior as compare to FMCN when 
applied for clustering of Fisher Iris data [7]. P. M. Patil, U. 
V. Kulkarni and T. R. Sontakke have proposed general 
fuzzy hyperline segment neural network (GFHLSNN), 
which uses supervised and unsupervised learning and can be 
used for pure classification, pure clustering and hybrid 
classification/ clustering [8]. 

Many researchers have suggested the modification in the 
architecture and learning algorithm of FMN to improve its 
performance. Kim and Yang proposed a weighted fuzzy 
min-max neural network whose membership function 
considers the occurrences of input pattern along with 
frequency of occurrences [9]. In order to overcome low 
automation degree and to achieve the remarkable 
generalization capability Antonello Rizzi et al. proposed the 
two new learning algorithms for FMN as the adaptive 
resolution classifier (ARC) and its pruning version (PARC) 
[10]. Nandedkar and Biswas suggested the use of 
overlapped compensatory neuron and the containment 
compensatory neuron to resolve membership confusion in 
the overlapped area [11]. Reza Davtalab et al. proposed new 
fuzzy Min-Max classifier that uses modified compensatory 
neurons and it is online, single-pass and supervised method.  
In this method for handling overlapping regions that are 
mainly created in borders, a modified compensatory nod 
with a radios-based transition function is used which 
increases the classification accuracy in discriminating cases 
[12]. H. Zhang et al. proposed data-core based fuzzy min-
max neural network (DCFMN) in which a new membership 
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function for classifying neuron is defined on the basis of 
noise, the geometric center of the hyperbox and the data 
core. The performance of DCFMN is evaluated for the 
benchmark problems and pattern classification of oil 
pipeline [13].  

As the recognition rate i.e. test accuracy is one of the 
important parameter to decide the performance of pattern 
classifier, Anas M. Quteishat and Chee Peng Lim [14] 
proposed two types of modifications in the prediction phase 
of FMN, to improve the test accuracy. In the first approach, 
the Euclidean distance is computed in the prediction phase 
to decide the class of pattern. In the second modification, 
they propose to employ both the membership value of the 
hyperbox fuzzy sets and the Euclidean distance for 
classification. These modifications improve the performance 
of classifier, in situations when the large hyperboxes are 
formed by the network. 

In this paper, we propose the modifications in the 
prediction phase of FHLSNN to improve its 
classification/recognition accuracy. In MFHLSNN1, we 
propose the Euclidean distance computation with respect to 
centroid to decide the class of patterns. The MFHLSNN2 
utilizes both the membership value of fuzzy hyperline 
segments and Euclidean distance to decide the class of the 
patterns. The performance of MFHLSNN1 and MFHLSNN2 
is evaluated using benchmark problems and real world 
handwritten character recognition. Also to indicate the 
remarkable recognition ability of MFHLSNN1 and 
MFHLSNN2 over FHLSNN an artificial 2-D dataset is 
applied. The proposed modifications show significant 
improvement in the classification accuracy of the FHLSNN. 
The results are analyzed, discussed and compared with the 
FHLSNN. 

This paper is organized as follows. In Section II, the 
architecture and learning algorithm of the FHLSNN is 
explained. The proposed modifications are explained in 
Section III. The experimental procedure, simulation results, 
description of data sets and discussions on the results are 
presented in the Section IV. Finally, we conclude the paper 
with the Section V. 

II. THE FUZZY HYPERLINE SEGMENT NEURAL NETWORK 

(FHLSNN) 

A. Topology of FHLSNN 

The readers are advised to refer the [5] for the detail 
description of architecture and algorithm of FHLSNN. To 
make this article self contained, this section explain the 
architecture and algorithm of FHLSNN in short. The 
architecture of FHLSNN consists of four layers as shown in 
Fig. 1. In this architecture first, second, third and fourth 
layer are denoted as Fୖ, F୉	ᇱ	Fୈ and Fେ respectively. The Fୖ 
layer accepts an input pattern and consists of n processing 
elements, one for each dimension of the pattern. The F୉	 
layer consists of m processing nodes that are constructed 
during training. There are two connections from each Fୖ to 
each F୉		node. Each connection represents an end point for 
that particular hyperline segment. These end points are 
stored in the two matrices V and W. Each F୉		node 
represents hyperline segment fuzzy set and is characterized 
by the membership function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       ( r୦ଵ,          r୦ଶ,     …… ,r୦୬ ) 

 
Fig. 1.  Fuzzy Hyperline Segment Neural Network 

 
Let R୦ ൌ ሺr୦ଵ, r୦ଶ, ………… , r୦୬ሻ represents the hth input 

pattern, V୨ ൌ ሺv୨ଵ, v୨ଶ, ………v୨୬ሻ is the one end point of 
hyperline segment e୨ and W୨ ൌ ሺw୨ଵ,w୨ଶ, ……… . . , w୨୬ሻ is 
the other end point of	e୨. Then the membership function of 
the jth F୉ node is defined as 
e୨൫R୦, V୨,W୨൯ ൌ 1 െ fሺx, γ, lሻ                 (1) 
in which x ൌ lଵ ൅ lଶ, and the distances lଵ, lଶ and l are 

defined as 

lଵ ൌ 	 ቀ∑ ൫w୨୧ െ r୦୧൯
ଶ୬

୧ୀଵ ቁ
ଵ
ଶൗ
,                 (2) 

 

lଶ ൌ 	 ቀ∑ ൫v୨୧ െ r୦୧൯
ଶ୬

୧ୀଵ ቁ
ଵ
ଶൗ
,                 (3) 

 

l ൌ 	 ቀ∑ ൫w୨୧ െ v୨୧൯
ଶ୬

୧ୀଵ ቁ
ଵ
ଶൗ
,              (4) 

and fሺ. ሻ is the three parameter ramp threshold function 
defined as 

fሺx, γ, lሻ ൌ ൝
0													if	x ൌ l,								
xγ								if	0 ൑ xγ ൑ 1,
1										if	xγ ൐ 1									

              (5) 

The Fୈ  layer gives soft decision and output of ݇௧௛	Fୈ 
node represents the degree to which the input pattern 
belongs to the class d୩. The binary weights assigned to the 
connections between Fେ and Fୈ layers are stored in the 
matrix U. The values assigned to these connections are 
defined as 

  

u୨୩ ൌ ൜
1		if	e୨	is	a	hyperline	segment	of	the	class		d୩

	0			otherwise																																																																		
 

for k ൌ 1, 2, ……p and j ൌ 1, 2, …… 		m.        (6) 
where e୨ is the ݆௧௛ F୉ node and ݀௞ is the ݇௧௛ Fୈ node. 
The transfer function of each Fୈ node performs the union 

of the appropriate (of same class) hyperline segment fuzzy 
values, which is described as  
d୩ ൌ maxሺe୨u୨୩ሻ  for j ൌ 1	to	m			and			k ൌ 1	to	p    (7) 

cଶ cଵ 

d଴ dଵ d୮ 

eଵ eଶ eଷ

c୮ 

e୫

r୬ rଶrଵ 

࡯ࡲ Layer 

 Matrix ࢁ
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Each Fେ node delivers nonfuzzy output descried as, 

c୩ ൌ ൜
0								if	d୩ ൏ ܶ
1							if		d୩ ൌ T	 where  T ൌ max	ሺd୩ሻ, for k=1 to p 

   (8) 

B. Learning Algorithm of FHLSNN 

The supervised FHLSNN learning algorithm for creating 
HLSs in the hyperspace consists of following steps. 

Step 1: Initialization. To initialize HLS start with first 
pattern in the database, as  

௝ܹ ൌ 	 ௝ܸ ൌ 	ܴ௛.                  (9) 
Step2: Creation of hyperline segments. The maximum 

length of HLS is bounded by the parameter θ, where  
0 ൑ 	ߠ	 ൑ 1, which is a user defined value and depends on 
the dimension of feature vector. The extension criterion that 
has to be met before HLS can extend to include 	ܴ௛  is  

௝݁	൫ܴ௛, ௝ܸ, ௝ܹ൯ ൒ 0.                (10) 

Let the set of pattern is R, where ܴ ∈ 	 ൛ܴ௛│݄ ൌ

1, 2,……ܲ	ൟ. Given the hth training pair ሺܴ௛, ݀௛ሻ,	find all the 
HLSs belonging to the class	݀௛. After this following cases 
are carried out for possible inclusion of the input pattern	ܴ௛.  

Case 1: By using membership function, find out whether 
the pattern ܴ௛ falls on any one of the exiting HLSs. If ܴ௛ 
falls on any of the HLS then it is included. Therefore, in the 
training process all the remaining steps are skipped and 
training is continued with the next training pair. 

Case 2: If the input pattern  ܴ௛ falls on any one of the 
hyperline passing through the two end points of HLS, then 
extend the HLS to include the pattern. Suppose ௝݁ is that 
hyperline segment with end points ௝ܸand ௝ܹthen ݈ଵ, ݈ଶ	and	݈ 
are calculated using equation (2), (3), and (4). Subsequently 
algorithm executes sub-step (i) if ݈ଵ ൐ ݈ଶ, else the sub-step 
(ii). Otherwise the Case 3 is considered. 

(i) Test whether the point ௝ܸ  falls on the HLS formed by 
the points ௝ܹ and ܴ௛ using equation (1) and if verified then 
include the pattern by extending ௝݁ as 

௝ܸ
௡௘௪ ൌ 	ܴ௛ and  ௝ܹ

௡௘௪ ൌ 	 ௝ܹ              (11) 
(ii) Test whether the point ௝ܹ falls on the hyperline 

segment formed by the points V୨ and R୦ and if verified, then 
include the pattern by extending e୨ as 

௝ܹ
௡௘௪ ൌ 	ܴ௛ and ௝ܸ

௡௘௪ ൌ ௝ܸ.           (12) 
Case 3: If HLS is a point i.e. ௝ܹ ൌ 	 ௝ܸ, then extend it to 

include the pattern ܴ௛, if extension criteria is satisfied as 
descried by equation (11). 

Case 4: If the pattern  ܴ௛ is not included by any of the 
HLSs then create a new HLS as 

௝ܸ
௡௘௪ ൌ 	 ௝ܹ

௡௘௪ ൌ 	ܴ௛.              (13) 
Step 3: Intersection test. The learning algorithm allows 

intersection of HLSs from the same class and eliminates the 
intersection between HLSs from separate classes. 
Intersection test is carried out as soon as the HLS is either 
extended by Case 2, Case 3 or created in Case 4. 

Let ௟ܹ௦௧ ൌ ሾݔଵ, ,ଶݔ …… . ௡ሿ, and ௟ܸ௦௧ݔ ൌ ሾݕଵ, ,ଶݕ …… .  ௡ሿݕ
represent two end points of the extended or created HLS and 

௡ܹ ൌ ሾݔଵ
, 	, ଶݔ

, , …… . . ௡ݔ
, ሿ, ௡ܸ ൌ ሾݕଵ

, , ଶݕ
, , ௡ݕ……

, ሿ are the end 
points of the HLS of other class. The equation of hyperline 
passing through ௟ܹ௦௧ and ௟ܸ௦௧ is 

ቂ
௔೔ି௫೔
௬೔ି	௫೔

ቃ ൌ 	 ݅	ݎ݋݂		ଵݎ ൌ 1, 2, ……… , ݊.           (14) 

and the equation of the hyperline passing through ௡ܹ and 

௡ܸ is 

൤
௕೔ି	௫೔

,

௬೔
,ି	௫೔

, ൨ ൌ 	 ݅	ݎ݋݂			ଶݎ ൌ 1, 2, ………݊.           (15) 

where ݎଵ, ݎଶ are the constants and ܽ௜	, ܾ௜ are the variables. 
The equations (14) and (15) leads to set of n simultaneous 
equations which are described as  
௜ݕଵሺݎ െ	ݔ௜ሻ ൅	ݔ௜ ൌ 	 ௜ݕଶ൫ݎ

, െ ௜ݔ	
,൯ ൅	ݔ௜

,           (16) 
for ݅ ൌ 1, 2, …………………݊. 
 The values of ݎଵand ݎଶcan be calculated by solving any 

two simultaneous equations. If remaining n-2 equations are 
satisfied with the calculated values of ݎଵand ݎଶ then two 
hyperlines are intersecting and the points of intersection ௧ܲ 
is  

௧ܲ ൌ 	 ሺݎଵሺݕଵ െ	ݔଵሻ ൅	ݔଵ, …… , ௡ݕଵሺݎ െ ௡ሻݔ ൅	ݔ௡ሻ   (17) 
The point of intersection ௧ܲ, if falls on both hyperlines 

segments then these HLSs are also intersect. This can be 
verified by the equation (1) and eliminated by contraction of 
appropriate HLS.  

Step 4: Removing intersection. Depending on the cases, if 
extension of HLS produces an intersection then it is 
removed by restoring the end point ௝ܸ as ௝ܸ

௡௘௪ ൌ 	 ௝ܸ
௢௟ௗ, and 

point ௝ܹ is restored as, ௝ܹ
௡௘௪ ൌ 	 ௝ܹ

௢௟ௗ. Create a new HLS 
to include ܴ௛ as in equation (13). 

If Case 4 creates intersection then it is removed by 
restoring the end points of previous HLS of other class as 

௡ܹ௘௪ାଵ ൌ 	 ௡ܸ௘௪ାଵ ൌ 	 ௡ܸ and ௡ܸ ൌ 	 ௡ܹ.       (18) 
 

III. MODIFICATIONS TO FHLSNN 

A. Prediction based on the Centroid and Euclidean 
Distance 

After the learning, in the prediction phase, the FHLSNN 
classifies the applied pattern based on the membership 
function value calculated using equation (1). When we apply 
the pattern to the classifier for testing, it calculates the 
membership value for all the HLSs created during the 
learning phase. The applied pattern is classified to the class 
associated with the HLS that gives the highest membership 
value for this pattern.  

We propose the new method to decide the class of applied 
pattern in the prediction phase of FHLSNN. This method 
uses centroid of the pattern falling on the hyperline segment 
and Euclidean distance for the classification of pattern in the 
prediction phase. In this method, instead of calculating the 
membership value, the centroid of patterns falling on the 
each HLS is computed using equation (19), as below. 

௝௜ܥ ൌ ௝௜ܥ
ᇱ ൅

หோ೓೔ష஼ೕ೔ห

ேೕ
               (19) 

where, ܥ௝௜
ᇱ 	 is the centroid of the jth HLS in the ith 

dimension, ܥ௝௜ is the centroid of the patterns falling on the jth 
HLS in the ith dimension, and ௝ܰ is the number of patterns 
falling on the jth HLS.  

Then the Euclidean distance [15], between the centroid of 
patterns falling on the jth HLS in the ith dimension and the 
applied input pattern is calculated using equation (20), 

௝௛ܧ ൌ ට∑ ൫ܥ௝௜ െ ܴ௛௜൯
ଶ௡

௜ୀଵ             (20) 
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where, ܧ௝௛ is the Euclidean distance between the centroid 
of patterns falling on the jth HLS in the ith dimension and the 
applied hth input pattern.  

Finally, the HLS with the smallest Euclidean distance is 
selected as winner and the pattern is so classified that it 
belongs to the class associated with that HLS. 

The classification process for a two dimensional input 
pattern using this first modification is demonstrated in the 
Fig. 2. This figure shows the two hyperline segments of 
class 1 and class 2 with centroids of hyperline segment 
as	ܥଵଶ

ᇱ ଶଶܥ ,	
ᇱ 	 and the centroids of the patterns falling on the 

HLS as	ܥଵଶ , 	ܥଶଶ respectively. The ܧଵ is the Euclidean 
distance between the input pattern and centroids 	ܥଵଶ of first 
HLS.  Similarly, ܧଶ is the Euclidean distance between the 
input pattern and centroid 	ܥଶଶ of second HLS. As the 
distance ܧଵ is the smaller than distance ܧଶ, the applied input 
pattern is classified as class 1. Thus the hyperline segment 
with smallest distance is selected as winner and the class of 
that hyperline segment is assigned to the input pattern.    

 

 

 
 
 
   
      ଵݓ ଵݒ         
 
   

 

 

 

v2 ݓଶ 

 

 

Fig. 2.  The classification process of modified FHLSNN 

 

B. Prediction based on Membership Function and 
Euclidean Distance 

In this method, to predict the class of applied input 
pattern, we propose to use both, the membership value of 
HLSs for applied input pattern and Euclidean distance 
between the centroid of patterns falling on the HLS and the 
applied input pattern.  After learning, first the membership 
values of all the HLSs created during learning are calculated 
for the applied input pattern. In FHLSNN, the applied 
pattern is classified to the class associated with the HLS that 
gives the highest membership value for this pattern. But, in 
the MFHLSNN2, instead of calculating the Euclidean 
distance for all the HLSs as like MFHLSNN1, a pool of 
HLSs that have high membership function is selected. The 
number of HLSs selected can be based on a user defined 
threshold. For example, the 30% HLSs having high 
membership values are selected. After that, the Euclidean 
distance between the centroid of patterns falling on the HLS 
and the applied input pattern is calculated using equation 
(20). Finally, the HLS with the smallest Euclidean distance 

is selected as winner and the pattern is so classified that it 
belongs to the class associated with that HLS.  

Thus the both proposed modification do not affect the 
learning process of FHLSNN. Therefore the hyperline 
segments created during learning are same for both original 
and modified FHLSNN.   

IV. EXPERIMENTS AND RESULTS 

A. Benchmark Problem 

This proposed modifications are implemented using 
MATLAB R2013a and ran on Intel core i3 2328M, 2.2GHz 
PC. To explore the different capabilities of a pattern 
classifier, we choose three benchmark data sets from the 
UCI machine learning repository [16] and the real 
handwritten character database. The three Benchmark data 
sets are Wine data set, Iris data set and Sonar data set. From 
the total available patterns, training data set consists of 
approximately 75% patterns with equal proportion of all 
class and remaining 25% patterns with equal proportion of 
all class are used as testing data set. A description of each 
data set is as follows. 

1) The Wine data Set: This data set is another example of 
multiple classes with higher number of continuous features. 
This data set contains 178 samples, each with 13 continuous 
features from three classes. 136 patterns are randomly 
selected with equal proportion of all classes and given for 
training. Remaining 42 patterns with equal proportion of all 
classes are given for testing. 

2) The Iris data set: This data set contains 150 samples, 
each with four continuous features (sepal length, sepal 
width, petal length, and petal width), from three classes (Iris 
setosa, Iris versicolor, and Iris virginica). This data set is an 
example of a small data set with a small number of features. 
One class is linearly separable from the other two classes, 
but the other two classes are not linearly separable from 
each other. 120 patterns are randomly selected with equal 
proportion of all classes and given for training. Remaining 
30 patterns with equal proportion of all classes are given for 
testing. 

3)  The Sonar data set: This is a high-dimensional data set 
and is useful for evaluating the scalability capability of 
pattern classifier. It contains 208 samples, each with 60 
input features (s1, s2, . . .s60). The data set contains 111 
patterns of class 1 and 97 patterns of class 2, i.e., sonar 
signals from mine (metal cylinders) (class 1) and rocks 
(class 2), respectively. 156 patterns are randomly selected 
with equal proportion of two classes and given for training. 
Remaining 52 patterns with equal proportion of two classes 
are given for testing.  

The Table I to Table III shows the percentage recognition 
rate of FHLSNN, MFHLSNN1 and MFHLSNN2 classifiers 
for Wine data, Iris data and Sonar data set respectively. The 
effect of parameter θ on the number of HLS creation in the 
learning phase and on the recognition rate in the testing is 
also observed.  

The experiments are repeated by varying the parameter θ 
to determine the number HLSs created and thereafter the 
recognition rate. It is observed that as we increase the value 
of θ, the number of hyperline segments created decreases. 
This also decreases the recognition rate in the testing phase. 
All the summarized results show that both the proposed 

 ଶଶܥ ଶଶ′ܥ

 ଵଶܥ ଵଶ′ܥ

E1 

E2 

Input pattern 
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modifications in FHLSNN show significant improvement in 
recognition rate for all the selected data sets. We also 
observed that the second modification (MFHLSNN2) gives 
more recognition rate as compare to the FHLSNN and 
MFHLSNN1. Thus the second modification gives a 
significant improvement in the recognition rate with less 
number of HLSs.    

 
TABLE I 

RECOGNITION RATE FOR WINE DATA SET 
Theta 
θ 

HLS 
Created 

FHLSNN 
(%) 

MFHLSNN1 
(%) 

MFHLSNN2 
(%) 

0.045 66 66.66 80.95 80.95 

0.05 66 66.66 88.09 90.47 

0.1 58 61.90 64.28 66.66 

0.15 53 61.90 92.85 92.85 

0.2 48 59.52 66.66 66.66 

 
 

TABLE II 
RECOGNITION RATE FOR IRIS DATA SET 

Theta 
θ 

HLS 
Created 

FHLSNN 
(%) 

MFHLSNN1 
(%) 

MFHLSNN2 
(%) 

0.1 62 96.67 60 100 

0.15 59 96.67 63.3 100 

0.2 59 96.67 63.3 100 

0.25 59 96.67 63.3 100 

0.3 59 96.67 63.3 100 

 
 

TABLE III 
RECOGNITION RATE FOR SONAR DATA SET 

Theta 
θ 

HLS 
Created 

FHLSNN 
(%) 

MFHLSNN1 
(%) 

MFHLSNN2 
(%) 

0.6 133 30.76 34.61 50 

0.65 131 30.76 34.61 50 

0.70 128 30.76 34.61 50 

0.75 124 30.76 36.53 50 

0.80 119 30.76 36.53 50 

 

B. Real handwritten character database: 

This database consists of 1000 Devanagari numeral 
character. Ten numerals from one hundred writers are 
scanned and stored in BMP format. After moment 
normalization [17], the rotation invariant ring-data features 
defined by Ueda and Nakamura [18] and extended by Chiu 
and Tseng [19], are extracted from the character by setting 
ring width to two.  

The extracted ring-data vector is a 16-dimensional feature 
vector. 800 patterns are randomly selected with equal 
proportion of ten classes and given for training. Remaining 
200 patterns with equal proportion of ten classes are given 
for testing. The Table IV shows the percentage recognition 
rate of FHLSNN, MFHLSNN1 and MFHLSNN2 classifiers 
for handwritten character data set for various values of 
parameter θ. 

 

TABLE IV 
RECOGNITION RATE FOR HANDWRITTEN DATA SET  
Theta 
θ 

HLS 
Created 

FHLSNN 
(%) 

MFHLSNN1 
(%) 

MFHLSNN2 
(%) 

0.45 403 41 43 42 

0.5 402 41 43.5 43.5 

0.55 401 41 42 42.5 

0.6 400 41 43 43 

0.65 400 41 41.5 42 

 

The Table IV shows recognition rate and number of 
hyperline segments created during training for FHLSNN, 
MFHLSNN1 and MFHLSNN2. As the modification is 
proposed in the prediction phase of FHLSNN, the number of 
hyperline segments created during training remains same for 
all the three networks. Thus the proposed modification does 
not affect the incremental learning of FHLSNN. As shown 
in the table IV, that both the proposed modifications in 
FHLSNN achieve significant improvement in recognition 
rate for handwritten character data set also. We also 
observed that the second modification (MFHLSNN2) gives 
more recognition rate as compare to the FHLSNN and 
MFHLSNN1.  

C. Example in 2-D space  

To explore the recognition ability of MFHLSNN1 and 
MFHLSNN2, an artificial 2-D dataset is created which is of 
28 patterns of two classes.  It is worth to mention here that 
this 2-D data is created for not to fever the proposed 
modification but to show that in a particular constrained 
situation, modified FHLSNN can perform well.  Table V 
shows training data set which consist of 20 patterns of class 
1 and 2 with its dimensions.   

 
TABLE V 

2-D TRAINING DATA SET 
Pattern No.  Feature 1 Feature 2 Class Index 

1 1 3.1 1 
2 1.15 3.565 1 
3 1.1 3.41 1 
4 1.2 3.72 1 
5 1.8 5.58 1 
6 1 1.5 1 
7 2.9 4.35 1 
8 3.11 4.665 1 
9 3.15 4.725 1 
10 3.2 4.8 1 
11 0.2 0.8 2 
12 0.25 1 2 
13 0.3 1.2 2 
14 0.34 1.36 2 
15 1.5 6 2 
16 0.6 0.6 2 
17 1.66 1.66 2 
18 1.77 1.77 2 
19 1.88 1.88 2 
20 2 2 2 

 
Table VI shows the 2-D testing data set of 8 patterns of 

class 1 and 2 with its dimensions.  We intentionally select 
the dimensions of class 1 patterns so that they fall very 
closer to the hyperline of class 2 and vice-versa. 
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TABLE VI 
2-D TESTING DATA SET 

Pattern No. Feature 1 Feature 2 Class Index 

1 1.18 4.72 1 
2 1.2 4.8 1 
3 1.3 5.2 1 
4 1.35 5.4 1 
5 1 1.5 2 
6 1.2 1.8 2 
7 1.25 1.875 2 
8 1.29 1.935 2 

 

The Table VII shows the performance of FHLSNN, 
MFHLSNN1 and MFHLSNN2 classifiers in terms of 
percentage recognition rate for this 2-D data set. We 
observed that with higher value of theta and less number of 
hyperline segments, the FHLSNN fails to recognize the 
patterns, where as both the proposed modifications 
(MFHLSNN1 and MFHLSNN2) shows 100 % recognition 
rate. Thus the misclassification of FHLSNN is overcome by 
adding additional parameter that is the computation of 
Euclidean distance between the centroid of pattern falling on 
hyperline segment and applied pattern, in the prediction 
phase of classifier. Thus the MFHLSNN1 and MFHLSNN2 
can perform very well with less number of hyperline 
segment, means with less complexity. 

 

TABLE VII 
RECOGNITION RATE FOR ARTIFICIAL 2-D DATA SET 

Theta 
θ 

HLS 
Created 

FHLSNN 
(%) 

MFHSNN1 
(%) 

MFHSNN2 
(%) 

0.5 5 25 50 50 

0.55 5 25 50 50 

0.60 4 0 100 100 

0.65 4 0 100 100 

0.70 4 0 100 100 

 

V.  CONCLUSIONS 

The Fuzzy Hyperline Segment Neural Network 
(FHLSNN) utilizes fuzzy set as pattern classes in which 
each fuzzy set is a union of fuzzy set hyperline segments. 
This is supervised classifier that forms n-dimensional HLSs 
defined by two end points, for learning and prediction. In 
this paper, we have proposed the two modifications in the 
prediction phase of FHLSNN, which has improved its 
classification performance for selected benchmark problems 
and real world handwritten character data set. The proposed 
modifications are applied in the prediction phase. Thus the 
incremental learning and other properties of FHLSNN are 
not affected. All the summarized results show that both the 
proposed modifications in FHLSNN show significant 
improvement in recognition rate for all the selected data 
sets. The second modification gives a significant 
improvement in the recognition rate with less number of 
HLSs. The evaluation of proposed classifiers, with 2-D data 
set explores its capability to classify closely spaced patterns 
of different classes. Thus the proposed modification 
improves the prediction accuracy of FHLSNN without 

affecting its incremental learning. In future, the proposed 
method can be applied to other fuzzy neural network 
classifiers with the different data sets.  

REFERENCES 
[1] J. –S. R. Jang, C. –T. Sun and E. Mizutani, Neuro-Fuzzy and Soft 

Computing, A Computational Approach to Learning and Machine 
Intelligence. Pearson Prentice Hall: South Asia, 2008. 

[2]  P. K. Simpson, “Fuzzy min–max neural networks—Part 1: 
Classification,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 776–
786, Sep. 1992. 

[3] P. K. Simpson, “Fuzzy min–max neural networks—Part 2: 
Clustering,” IEEE Trans. Fuzzy Systems, vol. 1, no. 1, pp. 32–45, Feb. 
1993. 

[4] B. Gabrys and A. Bargiela, “General fuzzy min-max neural network 
for clustering and classification,” IEEE Trans. Neural Networks, 
vol.11, pp. 769-783, May 2000. 

[5] U. V. Kulkarni, T. R. Sontakke, and G. D. Randale, “Fuzzy hyperline 
segment neural network for rotation invariant handwritten 
recognition,” published in Int. Joint Conf. on Neural Networks: 
IJCCNN’01 held in Washington DC, USA, July 2001, pp. 2918–2923. 

[6] Kwan H. K. and Yaling Cai, “A fuzzy neural network and its 
applications to pattern recognition,” IEEE Trans. Fuzzy Systems, vol. 
2, no. 3, pp. 185-192, Aug. 1994.  

[7] U. V. Kulkarni, T. R. Sontakke and A. B. Kulkarni, “Fuzzy hyperline 
segment clustering neural network,” IEE Electronics Letters vol. 37, 
no. 05, pp. 301-303, March 2001. 

[8] P. M. Patil, U. V. Kulkarni, and T. R. Sontakke, “General fuzzy 
hyperline segment neural network,” in Proc. IEEE Int. Conf. on 
Systems, Man Cybernetics, Hammamet, Tunesia, Connection Sci, 
2002, vol. 4, pp. 6–27.  

[9] H. J. Kim and H. S. Yang, “A weighted fuzzy min-max neural 
network and its application to feature analysis,” Advances in Natural 
Computation (Lecture Notes in Computer Science), vol.3612. New 
York: Springer-Verlag, Aug.2005, pp.1178–1181. 

[10] A. Rizzi, M. Panella, and F. M. F. Massciloi, “Adaptive resolution 
min-max classifiers,” IEEE Trans. Neural Networks, vol.13, no.2, 
pp.402–414, Mar.2002. 

[11] A. V. Nandedkar and P. K. Biswas, “A fuzzy min-max neural 
network classifier with compensatory neuron architecture,” IEEE 
Trans. Neural Networks, vol.18, no.1, pp.42–54, Jan.2007. 

[12] R. Davtalab, M. Parchami, M. H. Dezfoulian, M. Mansourizade, and 
B. Akhtar, “M-FMCN: modified fuzzy min-max classifier using 
compensatory neurons,” in Proc. 11th WSEAS Int. Conf. on Artificial 
Intelligence, Knowledge Engineering and Data Bases, Wisconsin, 
USA, Feb. 2012, pp. 77-82.  

[13] Huaguang Zhang, Jinhai Liu, Dazhong Ma, and Zhanshan Wang, 
“Data-core-based fuzzy min–max neural network for pattern 
classification,” IEEE Trans. Neural Networks, vol.22, no.12, pp.2339-
2352, Dec. 2011. 

[14] Anas M. Quteishat and Chee Peng Lim, “A Modified fuzzy min-max 
neural network and its application to fault classification,” Soft 
computing in industrial application, ASC, vol. 39, pp.179-188, 2007 

[15] Johnson, R.A., and D.W. Wichern, Applied multivariate Statistical 
Analysis. New Jersey: Prentice Hall. 1998, pp. 226-235.  

[16] P. M. Murphy and D. W. Aha, UCI Repository of Machine Learning 
Databases, (Machine-Readable Data Repository). Irvine, CA: Dept. 
Inf. Comput. Sci., Univ. California, 1995. 

[17] Perantonis S. J. and P.J.G. Lisboa, “Translation, rotation and scale 
invariant pattern recognition by high-order neural networks and 
moment classifiers,” IEEE Trans. Neural Networks, Vol. 3, No. 2, pp. 
241-251, 1992. 

[18] Udea K. and Y. Nakamura, “Automatic verification of seal 
impression pattern,” in Proc. 9th Int. Conf. on Pattern 
Recognition.1984, vo1. 2, pp.  1019-1021. 

[19] Hung-Pin Chiu and Din-Chang Tseng, “Invariant handwritten 
Chinese character recognition using fuzzy min-max neural networks,” 
Pattern Recog. Letters, vol.  18, pp. 481-491, 1997. 

Proceedings of the World Congress on Engineering 2014 Vol I, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014




