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Abstract—A 3D slip-dependent frictional contact
problem in elastostatics is discussed. We deliver
a variational formulation as a mixed variational
problem whose Lagrange multipliers set is solution-
dependent. Then, the existence and the boundedness
of the solutions is investigated. The proof is based on
a recent result for an abstract mixed variational prob-
lem with solution-dependent set of Lagrange multipli-
ers.
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1 Introduction

The weak formulations of contact problems are related to
the theory of variational inequalities, see e.g. [3, 9], or to
the theory of saddle point problems, see e.g. [2, 4].

The first mathematical results on contact problem with
slip displacements dependent friction in elastostatics were
obtained in [6].

In the present work we focus on a 3D contact model with
slip dependent coefficient of friction, for linearly elastic
materials. This model was already analyzed into the
framework of quasi-variational inequalities, see [1]. The
novelty in the present paper consists in the variational
approach we use; herein, a mixed variational formulation
is proposed, in a form of a generalized saddle point prob-
lem, the set of the Lagrange multipliers being solution-
dependent.

The mixed variational formulations are related to modern
numerical techniques in order to approximate the weak
solutions of contact models and this motivates the present
study. Referring to numerical techniques for approximat-
ing weak solutions of contact problems via saddle point
technique, we send the reader to, e.g., [5, 10, 11].
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2 The model

The classical model for a 3D slip-dependent contact pro-
cess is the following one.

Problem 1 Find u : Ω → R3 and σ : Ω → S3 such that

Divσ(x) + f0(x) = 0 in Ω, (1)

σ(x) = Eε(u(x)) in Ω, (2)

u(x) = 0 on Γ1, (3)

σ(x)ν(x) = f2 on Γ2, (4)

uν(x) = 0 on Γ3, (5)

∥στ (x)∥ ≤ g(x, ∥uτ (x)∥),
στ (x) = −g(x, ∥uτ (x)∥) uτ (x)

∥uτ (x)∥

if uτ (x) ̸= 0 on Γ3. (6)

Problem 1 has the following structure: (1) represents
the equilibrium equation, (2) represents the constitutive
law for linearly elastic materials, (3) represents the dis-
placements boundary condition, (4) represents the trac-
tion boundary condition and (5)-(6) model the bilateral
contact with slip-dependent coefficient of friction g. No-
tice that uν = u · ν, uτ = u − uνν, σν = (σν) · ν,
στ = σν − σνν, where ” · ” denotes the inner product
of two vectors and ν is the unit outward normal vector.
The domain Ω is a bounded domain in R3 and Γ1, Γ2,
Γ3 is a partition of the boundary ∂Ω := Γ. For details on
this model we refer to [1].

3 Assumptions

In order to weakly solve Problem 1 we make the following
assumptions.

Assumption 1 E = (Eijls) : Ω× S3 → S3,

• Eijls = Eijsl = Elsij ∈ L∞(Ω),

• There exists mE > 0 such that Eijlsεijεls ≥ mE |ε|2,
ε ∈ S3, a.e. in Ω.

Assumption 2 f0 ∈ L2(Ω)3, f2 ∈ L2(Γ2)
3.
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Assumption 3 g : Γ3 ×R+ → R+

• there exists Lg > 0 :

|g(x, r1) − g(x, r2)| ≤ Lg |r1 − r2| r1, r2 ∈ R+,
a.e. x ∈ Γ3;

• the mapping x 7→ g(x, r) is Lebesgue measurable

on Γ3, for all r ∈ R+;

• the mapping x 7→ g(x, 0) belongs to L2(Γ3).

4 Weak formulation

Let us introduce the following functional space.

V = {v ∈ H1(Ω)3 |γv = 0 on Γ1, vν = 0 on Γ3}. (7)

Notice that, everywhere in this paper, for each w ∈ V,
wν = γw · ν and wτ = γw − wνν a.e. on Γ, where γ
denotes the Sobolev trace operator for vectors.

Define f ∈ V using Riesz’s representation theorem,

(f ,v)V =

∫
Ω

f0(x) ·v(x) dx+
∫
Γ2

f2(x) ·γv(x) dΓ (8)

for all v ∈ V.

Let u be a sufficiently regular solution of Problem 1. By
a Green formula we get, for all v ∈ V,

a(u, v) = (f ,v)V +

∫
Γ3

στ (x) · vτ (x) dΓ (9)

where a(·, ·) : V × V → R,

a(u,v) =

∫
Ω

Eε(u(x)) : ε(v(x)) dx. (10)

Notice that ” : ” denotes the inner product of two tensors.

Let us introduce the spaces

S = {γw |w ∈ V }; (11)

D = S′. (12)

For each φ ∈ V we define

Λ(φ) = {µ ∈ D | < µ,γv >≤ (13)∫
Γ3

g(x, ∥φτ (x)∥)∥vτ (x)∥ dΓ v ∈ V };

here and below < ·, · > denotes the duality pairing be-
tween D and S.

Let us define a Lagrange multiplier λ ∈ D,

< λ, ζ >= −
∫
Γ3

στ (x) · [ζ − (ζ · ν)ν](x) dΓ (14)

for all ζ ∈ D.

By (14) and (6) we deduce that λ ∈ Λ(u).

We also define

b : V ×D → R b(v,µ) =< µ,γv > . (15)

Let us rewrite (9) as

a(u, v) = (f ,v)V − ⟨λ,γv⟩ for all v ∈ V.

By the definition of the form b(·, ·), we obtain

a(u, v) + b(v,λ) = (f ,v)V for all v ∈ V. (16)

The friction law (6) leads us to the identity∫
Γ3

στ (x) · uτ (x) dΓ = −
∫
Γ3

g(x, ∥uτ (x)∥)∥uτ (x)∥ dΓ.

Thus,

b(u,λ) =

∫
Γ3

g(x, ∥uτ (x)∥)∥uτ (x)∥ dΓ. (17)

By (13) with φ = u we are led to

b(u, ζ) ≤
∫
Γ3

g(x, ∥uτ (x)∥)∥uτ (x)∥ dΓ (18)

for all ζ ∈ Λ(u). Subtract now (17) from (18) to obtain
the inequality

b(u, ζ − λ) ≤ 0 for all ζ ∈ Λ(u). (19)

Therefore, Problem 1 has the following weak formulation.

Problem 2 Find u ∈ V and λ ∈ Λ(u) ⊂ D such that
(16) and (19) hold true.

Each solution of Problem 2 is called weak solution of
Problem 1.

5 Abstract auxiliary result

Let us consider the following abstract mixed variational
problem.

Problem 3 Given f ∈ X, f ̸= 0X , find (u, λ) ∈ X × Y
such that λ ∈ Λ(u) ⊂ Y and

a(u, v) + b(v, λ) = (f, v)X for all v ∈ X, (20)

b(u, µ− λ) ≤ 0 for all µ ∈ Λ(u). (21)

We made the following assumptions.
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Assumption 4 (X, (·, ·)X , ∥ · ∥X) and (Y, (·, ·)Y , ∥ · ∥Y )
are two Hilbert spaces.

Assumption 5 a(·, ·) : X × X → R is a symmetric
bilinear form such that

(i1) there exists Ma > 0 :

|a(u, v)| ≤ Ma∥u∥X∥v∥X for all u, v ∈ X,

(i2) there exists ma > 0 :

a(v, v) ≥ ma ∥v∥2X for all v ∈ X.

Assumption 6 b(·, ·) : X × Y → R is a bilinear form
such that

(j1) there exists Mb > 0 :

|b(v, µ)| ≤ Mb∥v∥X∥µ∥Y for all v ∈ X, µ ∈ Y,

(j2) there exists α > 0 :

inf
µ∈Y,µ̸=0Y

sup
v∈X,v ̸=0X

b(v, µ)

∥v∥X∥µ∥Y
≥ α.

Assumption 7 For each φ ∈ X, Λ(φ) is a closed convex
subset of Y such that 0Y ∈ Λ(φ).

Assumption 8 Let (ηn)n ⊂ X and (un)n ⊂ X be two
weakly convergent sequences, ηn ⇀ η in X and un ⇀ u
in X, as n → ∞.

(k1) For each µ ∈ Λ(η), there exists a sequence (µn)n ⊂
Y such that µn ∈ Λ(ηn) and

lim infn→∞ b(un, µn − µ) ≥ 0.

(k2) For each subsequence (Λ(ηn′))n′ of the sequence

(Λ(ηn))n, if (µn′)n′ ⊂ Y such that

µn′ ∈ Λ(ηn′) and µn′ ⇀ µ in Y as n′ → ∞, then µ ∈
Λ(η).

Theorem 1 If Assumptions 4-8 hold true, then Problem
3 has a solution. In addition, if (u, λ) ∈ X × Λ(u) is a
solution of Problem 3, then

(u, λ) ∈ K1 ×
(
Λ(u) ∩K2),

where

K1 = {v ∈ X | ∥v∥X ≤ 1

ma
∥f∥X};

K2 = {µ ∈ Y | ∥µ∥Y ≤ ma +Ma

αma
∥f∥X},

ma, α and Ma being the constants in Assumptions 5-6.

For the proof of this theorem we refer to [7].

6 Existence and boundedness results

Theorem 2 (An existence result) If Assumptions 1
-3 hold true, then Problem 1 has a solution.

Proof. As the spaces V and D are real Hilbert spaces
then Assumption 4 is fulfilled with X = V and Y = D.

The form a(·, ·) defined in (10) verifies Assumption 5 with

Ma = ∥E∥∞ and ma = mE , (22)

where
∥E∥∞ = max

0≤i,j,k,l≤d
∥Eijkl∥L∞(Ω).

Let us prove (j1) in Assumption 6. Since S is a closed
subspace of HΓ, see [8], we can write

|b(v,µ)| ≤ ∥µ∥D∥γv∥HΓ .

We recall that HΓ = γ(H1(Ω)3) and the Sobolev trace
operator γ : H1(Ω)3 → HΓ is a linear and continuous
operator. Due to the fact that ∥ · ∥V and ∥ · ∥H1(Ω)3 are
equivalent norms, we deduce that there exists Mb > 0
such that (j1) holds true.

We also recall that there exists a linear and continuous
operator Z such that

Z : HΓ → H1(Ω)3 γ(Z(ζ)) = ζ for all ζ ∈ HΓ.

The operator Z is called the right inverse of the operator
γ. Notice that,

γ(Z(γw)) = γw for all w ∈ V.

Since, for each w ∈ V, Z(γw) has the same trace as w,
we deduce that for each w ∈ V, Z(γw) ∈ V.

Let us prove now (j2) in Assumption 6.

∥µ∥D = sup
γw∈S,γw ̸=0S

< µ,γw >

∥γw∥HΓ

≤ c sup
γw∈S,γw ̸=0S

b(Z(γw),µ)

∥Z(γw)∥V

≤ c sup
v∈V,v ̸=0V

b(v,µ)

∥v∥V
,

where c > 0. We can take

α =
1

c
. (23)

Obviously, 0D ∈ Λ(φ). Also, Λ(φ) is a closed convex
subset of the space D. Hence, Assumption 7 is fulfilled.

Let us verify Assumption 8. To start, let (ηn)n ⊂ V and
(un)n ⊂ V be two weakly convergent sequences, ηn ⇀ η
in V and un ⇀ u in V, as n → ∞. Let us take µ ∈ Λ(η).
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In order to check Assumption 8 a crucial point is the
construction of an appropriate sequence in (k1). Let us
define (µn)n as follows: for each n ≥ 1,

< µn, ζ > (24)

=

∫
Γ3

g(x, ∥ητ n(x)∥)ψ(uτ n(x))

[ζ − (ζ · ν)ν](x) dΓ

−
∫
Γ3

g(x, ∥ητ (x)∥)∥uτ n(x)∥ dΓ

+ < µ,γun >, ζ ∈ D,

where

ψ(r) =

{ r
∥r∥ if r ̸= 0;

0 if r = 0.

Taking into account the definition in (13), we deduce
that, for each positive integer n, we have µn ∈ Λ(ηn).

We recall here that γ : H1(Ω)3 → L2(Γ)3 is a compact
operator. Thus, since ηn ⇀ η in V and un ⇀ u in V as
n → ∞, using the compactness of the trace operator we
can write

γηn → γη in L2(Γ)3 as n → ∞;

γun → γu in L2(Γ)3 as n → ∞.

Therefore,

uτ n(x) → uτ (x) a.e. on Γ3 as n → ∞

and

g(x, ∥γηn(x)∥) → g(x, ∥γη(x)∥) a.e. on Γ3 as n → ∞.

Setting ζ = γun in (24) we can write

⟨µn − µ,γun⟩ =
∫
Γ3

(
g(x, ∥γηn(x)∥) − g(x, ∥γη(x)∥)

)
∥uτ n(x)∥ dΓ.

Hence, passing to the inferior limit as n → ∞, we get

lim infn→∞ b(un,µn − µ)

= lim infn→∞
∫
Γ3

(
g(x, ∥ητ n(x)∥) −

g(x, ∥ητ (x)∥)
)
∥uτ n(x)∥dΓ

= 0.

Using again the properties of the trace operator and the
assumptions on the friction bound we deduce that (k2)
in Assumption 8 is also verified.

We apply now Theorem 1.

Let us introduce

K1 = {v ∈ V | ∥v∥V ≤ 1

ma
∥f∥V }; (25)

K2 = {µ ∈ D | ∥µ∥D ≤ ma +Ma

αma
∥f∥V }, (26)

Theorem 3 (A boundedness result) If (u,λ) is a
weak solution of Problem 1, then

(u,λ) ∈K1 ×
(
Λ(u) ∩K2)

where K1 and K2 are given by (25)-(26), V given by (7),
D given by (12), f given by (8), ma and Ma being the
constants in (22) and α being the constant in (23).

Proof. The proof is a straightforward consequence of
Theorem 1.
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