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Abstract—This paper is concerned with the factorization
approach to control systems. The factorization approach we
use here assumes that the plant admits coprime factorizations.
On the ohter hand, the set of stable causal transfer functions
is a general commutative ring. The objective of this paper
is to present that even in the case where the set of stable
causal transfer functions is a general commutative ring, we can
employ the Youla-parameterization for the parametrization of
stabilizing controllers.

Index Terms—Linear systems, Feedback stabilization, Co-
prime factorization over commutative rings Parametrization of
stabilizinng controllers

I. INTRODUCTION

IN the factorization approach[2], [7], [9], [10], a transfer
function is given as the ratio of two stable causal transfer

functions and the set of stable causal transfer functions forms
a commutative ring.

Since stabilizing controllers are not unique in general, the
choice of stabilizing controllers is important for the resulting
closed loop. In the classical case such as continuous-time LTI
systems and discrete-time LTI systems, the stabilizing con-
trollers can be parameterized by the method called “Youla-
parameterization”[2], [7], [10], [11] (also called Youla-
Kučera-parameterization). However, there exist models in
which some stabilizable transfer matrices do not have their
right-/left-coprime factorizations in general[1], [3]. In such
models, we cannot employ the Youla-parameterization in
general.

The objective of this paper is to present that in the
factorization approach, if a plant has both right-/left-coprime
factorizations (even if some other stabilizable plants in the
same model do not have right-/left-coprime factorizations),
we can still employ the Youla-parameterization for the
parameterization of stabilizing controllers of the plant.

II. PRELIMINARIES

In the following we begin by introducing notations used
in this paper. Then we give the formulation of the feedback
stabilization problem.

A. Notations

a) Commutative Rings: We will consider that the set
of all stable causal transfer functions is a commutative ring,
denoted by A. The total ring of fractions of A is denoted
by F ; that is, F = {n/d |n, d ∈ A, d is a nonzerodivisor}.
This will be considered to be the set of all possible transfer
functions. If the commutative ring A is an integral domain, F
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Fig. 1. Feedback system Σ.

becomes a field of fractions of A. However, if A is not an
integral domain, then F is not a field, because any nonzero
zerodivisor of F is not a unit.

b) Matrices: Suppose that x and y denote sizes of
matrices.

The set of matrices over A of size x × y is denoted
by Ax×y. In particular, the set of square matrices over A
of size x is denoted by (A)x. A square matrix is called
singular over A if its determinant is a zerodivisor of A, and
nonsingular otherwise. The identity and the zero matrices
are denoted by Ix and Ox×y , respectively, if the sizes are
required, otherwise they are denoted simply by I and O.

Matrices A and B over A are right-coprime over A if there
exist matrices X̃ and Ỹ over A such that X̃A + Ỹ B = I .
Analogously, matrices Ã and B̃ over A are left-coprime
over A if there exist matrices X and Y over A such that
ÃX + B̃Y = I . Further, pair (N, D) of matrices N and D
is said to be a right-coprime factorization of P over A if (i)
the matrix D is nonsingular over A, (ii) P = ND−1 over F ,
and (iii) N and D are right-coprime over A. Also, pair
(Ñ , D̃) of matrices Ñ and D̃ is said to be a left-coprime
factorization of P over A if (i) D̃ is nonsingular over A, (ii)
P = D̃−1Ñ over F , and (iii) Ñ and D̃ are left-coprime
over A. As we have seen, in the case where a matrix is
potentially used to express left fractional form and/or left
coprimeness, we usually attach a tilde ‘˜’ to a symbol; for
example Ñ , D̃ for P = D̃−1Ñ and Ỹ , X̃ for Ỹ N+X̃D = I .

B. Feedback Stabilization Problem

The stabilization problem considered in this paper follows
that of Sule in [8] and Mori and Abe in [6] who consider the
feedback system Σ [9, Ch.5, Figure 5.1] as in Figure 1. For
further details the reader is referred to [9], [6]. Throughout
this paper, the plant we consider has m inputs and n outputs,
and its transfer matrix, which itself is also called simply a
plant, is denoted by P and belongs to F n×m.
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Definition 1: Define F̂ad by

F̂ad = {(X, Y ) ∈ Fx×y ×Fy×x |
det(Ix + XY ) is a unit of F ,
x and y are positive integers}.

For P ∈ Fn×m and C ∈ Fm×n, the matrix H(P, C) ∈
(F)m+n is defined by

H(P, C) =
[

(In + PC)−1 −P (Im + CP )−1

C(In + PC)−1 (Im + CP )−1

]
(1)

provided (P, C) ∈ F̂ad. This H(P, C) is the transfer matrix
from [ ut

1 ut
2 ]t to [ et

1 et
2 ]t of the feedback system Σ. If (i)

(P, C) ∈ F̂ad and (ii) H(P, C) ∈ (A)m+n, then we say that
the plant P is stabilizable, P is stabilized by C, and C is a
stabilizing controller of P .

It is known that W (P, C) defined below is over A if and
only if H(P, C) is over A:

W (P, C) :=
[

C(In + PC)−1 −CP (Im + CP )−1

PC(In + PC)−1 P (Im + CP )−1

]
.

This W (P, C) is the transfer matrix from u1 and u2 to y1

and y2. Then, we have

H(P, C) = Im+n − FW (P, C),

where

F =
[

O In

−Im O

]
.

The matrix F is unimodular; in fact,

F−1 =
[

O −Im

In O

]
,

which is over A. Thus, W (P, C) can be expressed in terms
of F and H(P, C):

W (P, C) = F−1(Im+n − H(P, C)).

Here we define the causality of transfer functions, which
is an important physical constraint, used in this paper. We
employ the definition of causality from Vidyasagar et al.[10,
Definition 3.1] and Mori and Abe[6].

Definition 2: Let Z be a prime ideal of A, with Z �= A,
including all zerodivisors. Define the subsets P and Ps of F
as follows:

P = {n/d ∈ F |n ∈ A, d ∈ A\Z},
Ps = {n/d ∈ F |n ∈ Z, d ∈ A\Z}.

A transfer function in P
(
Ps

)
is called causal

(
strictly

causal
)

. Similarly, if every entry of a transfer matrix over F
is in P

(
Ps

)
, the transfer matrix is called causal

(
strictly

causal
)

.
It should be noted that when using “a stabilizing con-

troller,” we do not guarantee the causality. However, in
the classical case of the factorization approach, once we
restrict ourselves to strictly proper plants, it is known that
any stabilizing controller of strictly causal plant is causal
(cf. Corollary 5.2.20 of [9], Theorem 4.1 of [10], and Propo-
sition 6.2 of [6]). One can see, in fact, that many practical
systems are strictly causal. On the other hand, including
noncausal stabilizing controllers seems to make the theory

easy and simple in the mathematical viewpoint. From these
observations, we have accepted the possibility of the non-
causality of stabilizing controllers in the parametrization.

III. PARAMETRIZATION WITHOUT COPRIME

FACTORIZABILITY

Here we review the parametrization method without con-
sidering the coprime factorizability[4], [5]. Let H be the set
of H(P, C)’s with all stabilizing controllers C of the plant
P . This set H and all stabilizing controllers are obtained as
in the following way.

Let H0 be H(P, C0), where C0 is a stabilizing controller
of p. Let Ω(Q) be a matrix defined as follows:

Ω(Q) := (H0 −
[

In O
O O

]
)Q (2)

×(H0 −
[

O O
O Im

]
) + H0

with a stable causal and square matrix Q of size (m + n)×
(m+n). Using this matrix Q, we have the following theorem,
the controller parametrization, as follows.

Theorem 1 ([4], [5]): The set of all H(P, C)’s with all
stabilizing controllers is given as follows

H = {Ω(Q) |Q is stable causal and Ω(Q) is nonsingular}
(3)

Furthermore, any stabilizing controller has the following
form:

− [ O Im ] Ω(Q)−1

[
In

O

]
, (4)

provided that Ω(Q) is nonsingular.
The parameterization above is given by a parameter matrix Q
without the coprime factorizability of the plant. The parame-
ter matrix Q is of size (m+n)×(m+n). That is, in order to
archive the parametrization, we need (m + n)2 parameters.

IV. MAIN RESULT

Suppose that the plant P is stabilizable. Suppose further
that P has right-/left-coprime factorizations over A of P .
Let (N, D) and (D̃, Ñ) be right-/left-coprime factorizations
over A of P and (Y0, X0) and (X̃0, Ỹ0) be right-/left-coprime
factorizations over A of C0, a stabilizing controller of P ,
such that

Ỹ0N + X̃0D = Im, ÑY0 + D̃X0 = In.

The following is the parameterization of stabilizing con-
trollers presented as a Youla-parameterization.

Theorem 2: (cf. Theorems 5.2.1 and 8.3.12 of [9]) All
matrices X , Y , X̃, Ỹ over A satisfying

Ỹ N + X̃D = Im, ÑY + D̃X = In

are expressed as X = X0 − NS, Y = Y0 + DS, X̃ =
X̃0 − RÑ and Ỹ = Ỹ0 + RD̃ for R and S in Am×n.

Further the set of all A-stabilizing controllers, denoted by
S(P ), is given as

S(P ) = {(X̃0 − RÑ)−1(Ỹ0 + RD̃) |
R ∈ Am×n, X̃0 − RÑ is nonsingular}

= {(Y0 + DS)(X0 − NS)−1 |
S ∈ Am×n, X0 − NS is nonsingular}.
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The “integral domain version” of Theorem 2 was already
shown in Section 8 of [9] without the proof. Nevertheless,
we need to give the proof because the proofs have some
differences.

Proof of Theorem 2: Observe first that Lemma 8.3.2
of [9] holds over commutative rings as well as integral
domains. Hence, any stabilizing controller has both right-
/right-coprime factorizations over A.

In the proof of Theorem 5.2.1 of [9] three intermediate
results (Lemma 4.1.32, Corollaries 4.1.67, 5.1.30 of [9]) was
used. Modifying them in order to hold over A, we can prove
analogously to the proof of Theorem 5.2.1 of [9].

First, observe that Corollary 4.1.67 of [9] as well as
Theorem 4.1.60 of [9] directly holds over A.

Next, we consider Corollary 5.1.30 of [9]. Observe that
Lemma 3.1 of [10] also holds over A. By virtue of
Lemma 3.1 of [10] instead of Theorem 5.1.25 of [9], we
can see that Corollary 5.1.30 of [9] holds over A (We have
avoided to use the notion of the characteristic determinant).

To finish the proof we generalize Lemma 4.1.32 of [9]
over A. It should be noted that in Lemma 4.1.32 of [9],
only the right-coprimeness is required. On the other hand, in
our case, both the right-/left-coprimenesses will be required
since in the case of a general commutative ring the existence
of the left-coprime factorization is not guaranteed even if
there exists a right-coprime factorization. Fortunately, this
new requirement does not affect the proof of Theorem 5.2.1
of [9] over A. Presenting Lemma 2 below as a generalization
of Lemma 4.1.32 of [9], we finish this proof.

Before presenting the generalization of Lemma 4.1.32
of [9], we should give a lemma which is a generalization
of Corollary 4.1.26 of [9].

Lemma 1: (cf. Corollary 4.1.26 of [9]) Suppose P ∈
F(A)n×m and that P = ND−1 = D̃−1Ñ with the
matrices N, D, Ñ , D̃ over A. Let F1 = [−Ñ D̃ ] and
F2 = [ Dt N t ]t. Then the following are equivalent:
(i) N and D are right-coprime over A, and Ñ and D̃

left-coprime over A.
(ii) There exist unimodular matrices U1 and U2 of the

forms U1 = [ Gt
1 F t

1 ]t and U2 = [ F2 G2 ] for some
matrices G1 and G2 over A.
Proof: The “(ii)→(i)” part is proved analogously to the

“if” part of Corollary 4.1.26 of [9]. On the other hand, the
“(i)→(ii)” part is directly from Corollary 4.1.67 of [9] which
holds over A as stated above.

Lemma 2: (cf. Lemma 4.1.32 of [9]) Suppose P ∈
F(A)n×m. Let (N, D) and (Ñ , D̃) be right-/left-coprime
factorizations over A of P , respectively. Let U1 and U2 be the
unimodular matrices of the form in Lemma 1. Then the set of
matrices Ỹ ∈ Am×n and X̃ ∈ Am×m with Ỹ N +X̃D = Im

is given by
[ X̃ Ỹ ] = [ Im R ] U−1

2 , (5)

where R ∈ Am×n. Similarly the set of matrices Y ∈ Am×n

and X ∈ An×n with ÑY + D̃X = In is given by[−Y
X

]
= U−1

1

[
S
In

]
, (6)

where S ∈ Am×n.
The proof of Lemma 2 is analogous to that of

Lemma 4.1.32 of [9], in which Lemma 1 above is used
instead of Corollary 4.1.26 of [9].

Proof of Lemma 2: It is necessary to show that (i)
every Ỹ and X̃ of the form (5) satisfies Ỹ N + ÑD = Im,
and (ii) every Ỹ and X̃ satisfy Ỹ N + X̃D = Im are of the
form (5) for some R.

To prove (i), observe that U −1
2 U2 = Im+n. Hence

Ỹ N + X̃D = [ X̃ Ỹ ]
[

D
N

]

= [ Im R ] U−1
2

[
D
N

]

= [ Im R ]
[

Im

O

]
= Im.

To prove (ii), suppose that Ỹ ′ and X̃ ′ satisfies Ỹ ′N+X̃ ′D =
Im. Decompose U2 as follows:[

D G21

N G22

]
:= U2.

Define R = Ỹ ′G22 + X̃ ′G21. Then

[ X̃ ′ Ỹ ′ ] U2 = [ X̃ ′ Ỹ ′ ]
[

D G21

N G22

]
= [ Im R ] .

The proof concerning Y and X can be given analogously.
It is necessary to show that (i) every Y and X of the form
(6) satisfies ÑY +D̃X = In, and (ii) every Y and X satisfy
ÑY + D̃X = In are of the form (6) for some S.

To prove (i), observe that U −1
1 U1 = Im+n. Hence

ÑY + D̃X = [−Ñ D̃ ]
[−Y

X

]

= [−Ñ D̃ ] U−1
1

[
S
In

]

= [ O In ]
[

S
In

]
= In.

To prove (ii), suppose that Y ′ and X ′ satisfies ÑY ′+D̃X ′ =
In. Decompose U1 as follows:[

G11 G12

−Ñ D̃

]
:= U1.

Then, define S = −G11Y
′ + G12X

′. Now we have

U1

[−Y ′

X ′

]

=
[

G11 G12

−Ñ D̃

] [−Y ′

X ′

]

=
[

S
Im

]
.
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