
 

  
Abstract — The most popular separation criterion of 

establishing rules for discrimination and recognition 
(classification) of patterns is the Fisher discriminant 
(separation) ratio. The approach proposed by Fisher assumes 
equality of population covariance matrices, but does not 
explicitly require multivariate normality. However, optimal 
classification performance of Fisher's discriminant function can 
only be expected when multivariate normality is present as 
well, since only good discrimination can ensure good allocation. 
In practice, we often are in need of analyzing input data 
samples, which are not adequate for Fisher’s classification rule, 
such that the distributions of the groups are not multivariate 
normal or covariance matrices of those are different or there 
are strong multi-nonlinearities. In this paper, distance-based 
approaches for pattern classification (recognition) via 
embedding are proposed which allow one to classify, say,  radar 
clutter into one of several major categories, including bird, 
weather, and target classes. These approaches do not require 
the arbitrary selection of priors as in the Bayesian classifier 
and represent the improved pattern recognition (classification) 
procedures that allows one to take into account the cases which 
are not adequate for Fisher’s classification rule. Moreover, they 
allow one to classify sets of multivariate observations, where 
each of the sets contains more than one observation. For the 
cases, which are adequate for Fisher’s classification rule, the 
proposed approaches give the results similar to that of Fisher’s 
classification rule. For illustration, a numerical example is 
given. 
 

Index Terms — Pattern, embedding, classification, distance-
based approaches 

I. INTRODUCTION 

ATTERN recognition provides the solution to various 
problems from speech recognition, face recognition to 

classification of handwritten characters and medical 
diagnosis. The various application areas of pattern 
recognition are like bioinformatics, document classification, 
image analysis, data mining, industrial automation, biometric 
recognition, remote sensing, handwritten text analysis, 
medical diagnosis, speech recognition, statistics, 
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mathematics, computer science, biology and many more. 
Similarity between all these applications is that for a 
solution-finding approach features have to be extracted and 
then analyzed for recognition and classification purpose. 
Three processes take place in pattern recognition task. First 
step is data acquisition. Data acquisition is the process of 
converting data from one form (speech, character, pictures 
etc.) into another form which should be acceptable to the 
computing device for further processing. Second step is data 
analysis. After data acquisition the task of analysis begins. 
During data analysis step the learning about the data takes 
place and information is collected about the different events 
and pattern classes available in the data. This information or 
knowledge about the data is used for further processing. 
Third step used for pattern recognition is classification. Its 
purpose is to decide the category of new data on the basis of 
knowledge received from data analysis process. There are 
many sub-problems in the design process. Many of these 
problems can indeed be solved. More complex learning, 
searching and optimization algorithms are developed with 
advances in computer technology. There remain many 
fascinating unsolved problems. 

 Pattern recognition aim is to classify data (patterns) based 
on either a priori knowledge or on statistical information 
extracted from the patterns. The patterns to be classified are 
usually groups of measurements or observations, defining 
points in an appropriate multidimensional space. Many 
pattern recognition methods can be decomposed into two 
stages: discrimination followed by classification. In some 
cases, the decomposition is explicit while in others it is a 
matter of interpretation. Discrimination and classification 
represent multivariate techniques concerned with separating 
distinct sets of objects (or observations) and allocating new 
objects (observations) to previously defined groups. There 
exist situations in which one may interested in (1) 
discrimination: separating, say, two classes of objects or (2) 
classification: assigning a new object to one of two classes 
(or both). 

The most popular separation criterion of establishing rules 
for discrimination and classification of patterns is the Fisher 
discriminant (separation) ratio. Fisher's idea was to trans-
form the (p≥2) multivariate observations y to univariate 
observations z such that the z's derived from populations π1 
and π2 were separated as much as possible. Fisher suggested 
taking linear combinations of y to create z’s because they are 
simple enough functions of the y to be handled easily. 
Fisher's approach does not assume that the populations are 
normal. It does, however, implicitly assume that the pop-
ulation covariance matrices are equal, because a pooled 
estimate of the common covariance matrix is used. 
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Fisher’s linear discriminant analysis has been successfully 
used as dimensionality reduction technique to many 
classification problems, such as face recognition and 
multimedia information retrieval. The Fisher discriminant 
criterion is the benchmark for the linear discrimination in 
multidimensional space [1]. The criterion purpose of the 
Fisher linear discriminant for pattern analysis is to find an 
optimal discriminant direction based on the Fisher criterion 
so that the projected set of training samples on it has the 
maximal ratio of between-class distance to within-class 
distance [2]. Sammon extended the Fisher linear 
discriminant method to the optimal discriminant plane in 
1970 [3]. Then Foley and Sammon [4] further extended this 
in 1975 and proposed the optimal set of discriminant vectors 
by which the well-known Foley-Sammon Transform (FST) 
can be constituted. Their important result has attracted many 
researchers' attention in the field of pattern recognition and 
has been used in many pattern classification applications. 

II.  PATTERN CLASSIFICATION PROBLEM 

The classification   problem   consists   in   the following.  
There   are m classes (populations), the elements (objects) of 
which are characterized by p measurements (features). Next, 
suppose that we are investigating a certain object on the 
basis of the corresponding p measurements. We postulate 
that this object can be regarded as a “random drawing” from 
one of the m populations but we do not know from which 
one. We suppose that m samples are available, each sample 
being drawn from a different class (population). The 
elements of these samples are realizations of p-dimensional 
random variables. After a sample of p-dimensional vectors 
of observations on the object is drawn from a class known a 
priori to be one of the above set of m classes, the problem is 
to infer from which class the sample has been drawn. The 
decision rule should be in the form of associating the sample 
of observations on the object with one of the m samples and 
declaring that the object has come from the same class as the 
sample with which it is associated.  

Classification is often referred to simply as discriminant 
analysis. In engineering and computer science, classification 
is usually called pattern recognition. Some writers use the 
term classification analysis to describe cluster analysis, in 
which the observations are clustered according to variable 
values rather than into predefined classes.  

In classification, a sampling unit (subject or object) whose 
class membership is unknown is assigned to a class on the 
basis of the vector of p measured values, y, associated with 
the unit. To classify the unit, we must have available a 
previously obtained sample of observation vectors from each 
class. Then one approach is to compare y with the mean 
vectors kyyy  ..., , , 21  of the k samples and assign the unit to 

the class whose iy  is closest to y. 

III.  FISHER’S APPROACH TO PATTERN CLASSIFICATION INTO 

TWO CLASSES 

When there are two populations (classes), we can use a 
classification procedure due to Fisher [1]. The principal 
assumption for Fisher’s procedure is that the two 

populations have the same covariance matrix (Σ1 = Σ2). 
Normality is not required. We obtain a sample from each of 
the two populations and compute ,, 21 yy  and S12. A simple 

procedure for classification into one of the two classes 
denoted by C1 and C2 can be based on the discriminant 
function, 

,)( 1
1221 ySyyyw −′−=′=z    (1) 

 

where y is the vector of measurements on a new sampling 
unit that we wish to classify into one of the two classes 
(populations), w is a direction which is determined from 
maximization of the ratio of between-class to within-class 
variances proposed by Fisher, 
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S12 is the pooled within-class covariance matrix, in its bias-
corrected form given by 
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S1 and S2 are the unbiased estimates of the covariance 
matrices of classes C1 and C2, respectively, and there are ni 
observations in class Ci (n1+n2=n). The solution for w that 
maximizes JF can be obtained by differentiating JF with 
respect to w and equating to zero. This yields 
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Since we are interested in the direction of w (and noting that 
wSwyyw 1221 /)( ′−′ is a scalar), we must have 

 

 ).( 21
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We may take equality without loss of generality. For 
convenience we speak of classifying y rather than classifying 
the subject or object associated with y. 

To determine whether y is closer to 1y or 2y , we check to 

see if z in (1) is closer to the transformed mean 1z  or to 2z , 

where 

,)( 1
-1
122111 ySyyyw ′−=′=z   (6) 

 

  .)( 2
-1
122122 ySyyyw ′−=′=z  (7) 

 

Fisher’s linear classification procedure [1] assigns y to C1 if 
z = w′y is closer to 1z  than to 2z  and assigns y to C2 if z is 

closer to 2z . It will be noted that z is closer to 1z  if 
 

  .
2

21 zz
z

+>  (8) 

 

This is true in general because 1z  is always greater than ,2z  

which can easily be shown as follows: 
 

,0)()()( 21
1

12212121 >−′−=−′=− − yySyyyywzz  (9) 
 

because 1
12
−S is positive definite. Thus .21 zz >  [If w were of 
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the form ,)( 1
1212
−′−=′ Syyw  then 12 zz − would be positive.] 

Since 2/)( 21 zz +  is the midpoint, z > 2/)( 21 zz + implies 

that z is closer to 1z . By (9) the distance from 1z  to 2z  is 

the same as that from 1y  to 2y . 

To express the classification rule in terms of y, we first 
write 2/)( 21 zz + in the form 
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Then the classification rule becomes: Assign y to C1 if 
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and assign y to C2 if  
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Fisher’s approach [1] using (11) and (12) is essentially 
nonparametric because no distributional assumptions were 
made. However, if the two populations are normal with 
equal covariance matrices, then this method is 
(asymptotically) optimal; that is, the probability of 
misclassification is minimized. 

IV.  APPROACHES TO PATTERN CLASSIFICATION INTO TWO 

CLASSES VIA EMBEDDING 

A. Classification Based on Mahalanobis Distance 

Let us assume that the two populations have the same 
covariance matrix (Σ1 = Σ2).  

If y is embedded in the sample from C1, the Mahalanobis 
distance between two mean vectors 1•

y and 2y  is given by 
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If y is embedded in the sample from C2, the Mahalanobis 
distance between two mean vectors 1y and 

•2y is given by  
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Then the classification rule becomes: Assign y to C1 if 
 

   ,1212 ••
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and assign y to C2 if  
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If (Σ1 = Σ2) does not hold, then instead of S12 we use 
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Remark. If n1=n2=n, then 
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With equal sample sizes, the large sample procedure is 
essentially the same as the procedure based on the pooled 
covariance matrix. 

B. Classification Based on Generalized Euclidean 
Distance 

Let us assume that the two populations have the same 
covariance matrix (Σ1 = Σ2).  

If y is embedded in the sample from C1, the generalized 
Euclidean distance (squared) between two mean vectors 

1•
y and 2y  is given by  
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If y is embedded in the sample from C2, the generalized 
Euclidean distance between two mean vectors 1y and 

•2y  is 

given by 
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Then the classification rule becomes: Assign y to C1 if 
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and assign y to C2 if 
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If (Σ1 = Σ2) does not hold, then instead of S12 we use (17). 

C. Classification Based on Modified Euclidean Distance 

Let us assume that the two populations have the same 
covariance matrix (Σ1 = Σ2).  

If y is embedded in the sample from C1, the modified 
Euclidean distance between two mean vectors 1•

y and 12y  

is given by 
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If y is embedded in the sample from C2, the generalized 
Euclidean distance between two mean vectors 

•2y and 12y  

is given by 
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Then the classification rule becomes: Assign y to C1 if 
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and assign y to C2 if  
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If (Σ1 = Σ2) does not hold, then instead of S12 we use (17). 

V. KNOWN APPROACHES TO PATTERN CLASSIFICATION INTO 

SEVERAL CLASSES 

A. Classification Based on Mahalanobis Distance 

Equal Population Covariance Matrices. In this section we 
discuss classification rules for several classes. As in the two-
class case, we use a sample from each of the k classes to find 
the sample mean vectors kyyy  ..., , , 21 . For a vector y whose 

class membership is unknown, one approach is to use a 
distance function to find the mean vector that y is closest to 
and assign y to the corresponding class. 

We assume Σ1 = Σ2  = · · · = Σk and can estimate the 
common population covariance matrix by a pooled sample 
covariance matrix 
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where ni and Si are the sample size and covariance matrix of 
the ith class. We compare y to each ,iy i=1, 2, ..., k, by the 

distance function 
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and assign y to the class for which 2
iD is smallest. This 

classification rule is based on the assumption Σ1 = Σ2  = · · · 
= Σk. The resulting classification rules are sensitive to 
heterogeneity of covariance matrices. Observations tend to 
be classified too frequently into classes whose covariance 
matrices have larger variances on the diagonal. Thus, the 
population covariance matrices should not be assumed to be 
equal if there is reason to suspect otherwise. 

Unequal Population Covariance Matrices. If Σ1= Σ2 = · · · 
= Σk does not hold, the classification rules can easily be 
altered to preserve optimality of classification rates. In place 
of (30), we can use 
 

 ),()()( -12
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where Si is the sample covariance matrix for the ith class. As 

before, we would assign y to the class for which )(2 yiD is 

smallest (with Si in place of Spl). 

VI.  APPROACHES TO PATTERN CLASSIFICATION INTO 

SEVERAL CLASSES VIA EMBEDDING 

A. Classification Based on Total Mahalanobis Distance 

Equal Population Covariance Matrices. Let us assume 
that each of the k populations has the same covariance 
matrix (Σ1 = Σ2  = · · · = Σk). The Mahalanobis distance 
between two mean vectors iy and jy , where i, j∈{1, 2, …, 

k}, i≠j,  is given by 
 

).()( 1
jiijjiijd yySyy −′−= −  (32) 

 

If y has been embedded in the sample from Ci, then the 
Mahalanobis distance between two vectors i•

y and jy  is 

given by 
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If y has been embedded in the sample from Cj, then the 
Mahalanobis distance between two vectors iy and 

•j
y  is 

given by  
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be the total Mahalanobis distance in the case of pattern 
classification into k classes, where 
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Then the classification rule becomes: Assign y to the class 
Cr, r∈{1, 2, …, k}, for which )(yrd is largest.  

Unequal Population Covariance Matrices.  If (Σ1 = Σ2  = 
· · · = Σk) does not hold, then instead of Sij we use  
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B. Classification Based on Total Generalized Euclidean 
Distance  

Equal Population Covariance Matrices. Let us assume 
that each of the k populations has the same covariance 
matrix (Σ1 = Σ2  = · · · = Σk). The generalized Euclidean 
distance between two mean vectors iy  and jy , where i, 

j∈{1, 2, …, k}, i≠j,  is given by 
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If y is embedded in the sample from Ci, the generalized 
Euclidean distance between two vectors i•

y and jy  is given 

by 
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If y is embedded in the sample from Cj, then the 
generalized Euclidean distance between two vectors iy and 

•j
y  is given by 
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Let 
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be the total generalized Euclidean distance in the case of 
pattern classification into k classes, where 
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Then the classification rule becomes: Assign y to the class 

Cr, r∈{1, 2, …, k}, for which )(
~
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Unequal Population Covariance Matrices.  If  (Σ1 = Σ2  = 
· · · = Σk) does not hold, then instead of Spl we use 
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C. Classification Based on Total Modified Euclidean 
Distance 

Equal Population Covariance Matrices. Let us assume 
that each of the k populations has the same covariance 
matrix (Σ1 = Σ2  = · · · = Σk). The modified Euclidean 
distance between two mean vectors iy and y , i∈{1, 2, …, 

k}, is given by 
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represents the ‘overall average’. 
If y has been embedded in the sample from Ci, then the 

modified Euclidean distance between two vectors i•
y and 

y  is given by 
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be the total modified Euclidean distance in the case of 
pattern classification into k classes, where 
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Then the classification rule becomes: Assign y to to the class 
Cr, r∈{1, 2, …, k}, for which )(yrd

(

is largest. 

Unequal Population Covariance Matrices.  If (Σ1 = Σ2  = 
· · · = Σk) does not hold, then instead of Spl we use (45). 

VII.  ILLUSTRATIVE EXAMPLE OF PATTERN CLASSIFICATION 

Consider the observations on p=2 variables from k=3 
populations (classes) [5]. The input data samples are given 
below. 
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We found that 
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Suppose that we have to classify the new observation 
y′=[1, 3] into the above classes. Let us assume that each of 
the k=3 populations has the same covariance matrix (Σ1 = Σ2 
= Σ3). 

Classification Based on Total Mahalanobis Distance. It 
follows from (35) that 
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we assign y to class C2. 
Classification Based on Total Generalized Euclidean 

Distance. It follows from (42) that 
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we assign y to class C2. 
Classification Based on Total Modified Euclidean 

Distance. It follows from (49) that  
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Thus, since 
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we assign y to class C2. 
It will be noted that the procedures proposed in this paper 

give the same result in the above case that of Fisher’s 
procedure which was used in [5]. 

VIII.  CONCLUSION AND FUTURE WORK 

Linear discriminants may be used to discriminate any 
number of classes of patterns, but are perhaps most 
commonly used when there are only two classes. An 
example of such a problem is in detection, where it is 
required that a target pattern, such as a vehicle in a radar 
image, is detected from among the uninteresting background 
patterns. Many detection problems are specified so that the 
classifier must produce either a particular detection rate or 
an upper bound for the rate at which false detections are 
produced. Each of these specifications will be referred to as 
an “operating point” for the classifier. The Fisher 
discriminant [1] is the benchmark for the linear 
discrimination between two classes in multidimensional 
space. It is extremely quick to calculate since it is based only 
on the first and second moments of each distribution. Also, it 
may be shown to maximize a measure of the separation 
which is not specific to a particular distribution type. This 
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makes the Fisher discriminant extremely robust.  
Since many fault diagnosis problems can be considered as 

a multi-class classification problems, pattern recognition 
methods with good generalization and accurate 
performances have been proposed in recent years. Choi et al. 
[6] proposed a fault detection and isolation methodology 
based on principal component analysis–Gaussian mixture 
model and discriminant analysis–Gaussian mixture model. 
Fisher’s linear discriminant analysis (FLDA) has been 
proved to outperform the principal component analysis 
(PCA) in discriminating different classes, in the aspect that 
PCA aims at reconstruction instead of classification, while 
FLDA seeks directions that are optimal for discrimination 
[7].  Fisher’s linear discriminant analysis is a widely used 
multivariate statistical technique with two closely related 
goals: discrimination and classification. The technique is 
very popular among users of discriminant analysis. Some of 
the reasons for this are its simplicity and unnecessity of strict 
assumptions. In its original form, proposed by Fisher, the 
method assumes equality of population covariance matrices, 
but does not explicitly require multivariate normality. 
However, optimal classification performance of Fisher's 
discriminant function can only be expected when 
multivariate normality is present as well, since only good 
discrimination can ensure good allocation.  

In practice, we often are in need of analyzing input data 
samples, which are not adequate for Fisher’s classification 
rule, such that the distributions of the groups are not 
multivariate normal or covariance matrices of those are 
different or there are strong multi-nonlinearities. In 
particular, the situation of pattern classification, which 
sometimes produces non-linear separation of classes, is not 
adequate for Fisher’s classification rule. One solution to 
address this problem would be the application of kernels to 
input data, which would essentially transform the input to a 
higher dimensional space, wherein the probability of linearly 
separating the classes is higher. In kernel methods, there is a 
strong possibility that the higher dimensional space may be 
non-linear in nature as opposed to the linear input space; and 
the separation of classes would be linear in feature space and 
non-linear in input space. Any kernel-based method 
employed for classification, includes two major steps [8, 9]: 
(i) mapping the non-linearly separable input data from its 
current lower dimensional space (input space) to a linearly 
separable data in the (feature space), and (ii) classifying 
patterns in the feature space. The use of kernels would 
become clear from the illustration shown in Fig. 1. 

Assume that the input data is of the form, 
 

  .) ..., , , ,( 321 ′= myyyyy  (60) 
 

Then, using a function F, we can map the input data set y 
into a higher dimensional space as, 
 

.)( ..., ),( ),( ),(()() ..., , , ,( 321321 ′=→′= mm yFyFyFyFyyyy yFy  
 

  (61) 
 

This is essentially same as mapping the input space Y into a 
new space F. The space F is known as the Feature Space. 
It also takes into consideration the input features introduced 

in order to classify the data to the correct category label. 
 

 

Fig. 1.  Dimension transformation. 
 

This paper proposes the improved approaches to pattern 
classification which represent the new distance-based 
embedding procedures that allow one to take into account 
the cases which are not adequate for Fisher’s classification 
rule. Moreover, these approaches allow one to classify sets 
of multivariate observations, where each of the sets contains 
more than one observation. For the cases, which are 
adequate for Fisher’s classification rule, the proposed 
approaches give the results similar to that of FLDA. 

The methodology described here can be extended in sev-
eral different directions to handle various problems of 
pattern classification (recognition) that arise in practice (in 
particular, the problem of changepoint detection in a 
sequence of multivariate observations).  
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