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mathematics, computer science, biology and many more.

Abstract — The most popular separation criterion of Similarity between all these applications is that for a
establishing rules for discrimination and recognition  golution-finding approach features have to be extracted and
(classification) of patterns is the Fisher discriminant ,on analyzed for recognition and classification purpose.

(separation) ratio. The approach proposed by Fisher assumes . " .
equality of population covariance matrices, but does not Three processes take place in pattern recognition task. First

explicitly require multivariate normality. However, optimal ~ Step is data acquisition. Data acquisition is the process of
classification performance of Fisher's discriminant function can converting data from one form (speech, character, pictures
only be expected when multivariate normality is present as etc.) into another form which should be acceptable to the
well, since only good discrimination can ensure good allocation. computing device for further processing. Second step is data
In practice, we often are in need of analyzing input data o5\ sis After data acquisition the task of analysis begins.
samples, which are not adequate for Fisher’s classification rule, . . .

such that the distributions of the groups are not multivariate During dat_a analys_ls s_tep the learning about _the data takes
normal or covariance matrices of those are different or there Place and information is collected about the different events
are strong multi-nonlinearities. In this paper, distance-based and pattern classes available in the data. This information or
approaches for pattern classification (recognition) via knowledge about the data is used for further processing.
embedding are proposed which allow one to classify, say, radar Third step used for pattern recognition is classification. Its
clutter into one of several major categories, including bird, purpose is to decide the category of new data on the basis of

weather, and target classes. These approaches do not requirek led ived f dat Vsi Th
the arbitrary selection of priors as in the Bayesian classifier nowledge received from data analysiS process. ere are

and represent the improved pattern recognition (classification) Many sub-problems in the design process. Many of these
procedures that allows one to take into account the cases which problems can indeed be solved. More complex learning,
are not adequate for Fisher’s classification rule. Moreover, they searching and optimization algorithms are developed with
allow one to classify sets of multivariate observations, where gdvances in computer technology. There remain many
each of the sets contains more than one observation. For the fascinating unsolved problems.

cases, which are adequate for Fisher’'s classification rule, the . L .
proposed approaches give the results similar to that of Fisher's Pe_lttern recqgn_ltlon aim is to classify d"’_‘ta_ (pat_terns) bf';lsed
classification rule. For illustration, a numerical example is On either a priori knowledge or on statistical information
given. extracted from the patterns. The patterns to be classified are
usually groups of measurements or observations, defining
Index Terms — Pattern, embedding, classification, distance- points in an appropriate multidimensional spatéany
based approaches pattern recognition methods can be decomposed into two
stages: discrimination followed by classification. In some
cases, the decomposition is explicit while in others it is a
PATTERN recognition provides the solution to variousmatter of interpretation. Discrimination and classification
problems from speech recognition, face recognition t&present multivariate techniques concerned with separating
classification of handwritten characters and medic@istinct sets of objects (or observations) and allocating new
diagnosis. The various application areas of patte@bjects (observations) to previously defined groups. There
recognition are like bioinformatics, document classificatiorgxist situations in which one may interested in (1)
image analysis, data mining, industrial automation, biometriiscrimination: separating, say, two classes of objects or (2)
recognition, remote sensing, handwritten text analysigjassification: assigning a new object to one of two classes
medical ~ diagnosis, speech  recognition,  statisticgpr both).
The most popular separation criterion of establishing rules
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Fisher's linear discriminant analysis has been successfuigpulations have the same covariance matkix £ ).
used as dimensionality reduction technique to maryormality is not required. We obtain a sample from each of
classification problems, such as face recognition antle two populations and compuig,y,, andS,. A simple

multimedia information retrieval. The Fisher discrimi”a”brocedure for classification into one of the two classes

criterion is the benchmark for the linear discrimination iNenoted byC; and C, can be based on the discriminant
multidimensional space [1]. The criterion purpose of thﬁmction

Fisher linear discriminant for pattern analysis is to find an = Wy= (J,-7,)Sly 1
optimal discriminant direction based on the Fisher criterion Z=Wy= (Y1~ ¥2) Sy, (1)

so that the projected set of training samples on it has f@erey is the vector of measurements on a new sampling
maximal ratio of between-class distance to within-classyit that we wish to classify into one of the two classes
distance [2]. Sammon extended the Fisher linegpqn iations),w is a direction which is determined from

discriminant method to the optimal discriminant plane ifl\ayimization of the ratio of between-class to within-class
1970 [3]. Then Foley and Sammon [4] further extended this, /iances proposed by Fisher

in 1975 and proposed the optimal set of discriminant vectors
by which the well-known Foley-Sammon Transform (FST) _ [W'(yl—yz)]2
can be constituted. Their important result has attracted many Je = WS w (2)
researchers' attention in the field of pattern recognition and
has been used in many pattern classification applications. S;, is the pooled within-class covariance matrix, in its bias-
corrected form given by

The classification problem consists in the following. S = 0y 1)Si;(r122 DS, ; 3)

There arem classes (populations), the elements (objects) of h* e

which are characterized fpymeasurements (features). Nexts, and S, are the unbiased estimates of the covariance
suppose that we are Investigating a certain object on thytrices of classe8; andC,, respectively, and there ane
basis of the corresponding measurements. We postulateppservations in clas§; (n+n,=n). The solution fomw that

that this object can be regarded as a “random drawing” froffaximizes J- can be obtained by differentiating: with
one of them populations but we do not know from whichyespect tav and equating to zero. This yields

one. We suppose that samples are available, each sample

being drawn from a different class (population). The  2w'(y,-V,)| . _ W' (Y, —Y5)

elements of these samples are realizations-difnensional CwWSw (y1-Y2) CWSLw

random variables. After a sample pflimensional vectors

of observations on the object is drawn from a class knowngince we are interested in the directiomofand noting that

priori to be one of the above setrofclasses, the problem is W (¥, —Y,)/ WS;,wis a scalar), we must have

to infer from which class the sample has been drawn. The

decision rule should be in the form of associating the sample wi 31‘21(71 -Y,). (5)

of observations on the object with one of theamples and

declaring that the object has come from the same class as\#@ may take equality without loss of generality. For

sample with which it is associated. convenience we speak of classifyingather than classifying
Classification is often referred to simply as discriminarihe subject or object associated with

analysis. In engineering and computer science, classificationTo determine whetheris closer toy, or y,, we check to

is usually called pattern recognition. Some writers use th@e ifzin (1) is closer to the transformed meanor to Z,,

term classification analysis to describe cluster analysis, |

which the observations are clustered according to variable

Il. PATTERN CLASSIFICATION PROBLEM

Jslzw} =0. (4

5 o — (v v Volo

values rather than into predefined classes. 2= WY1 = (Y1~ ¥2) SV, ©6)
In classification, a sampling unit (subject or object) whose o e — (o < velo

class membership is unknown is assigned to a class on the 5= WY2= (Y17 V2) Sz (7)

basis of the vector gf measured valuey, associated with rishers linear classification procedure Hdsignsy to C; if

the unit. To cI_assn‘y the unit, we must have available 2_ w'y is closer toz than toz, and assigny to C, if zis
previously obtained sample of observation vectors from each

class. Then one approach is to compgraith the mean closer toz, . It will be noted thar is closer toz if
vectorsy,; ¥y, ....,y¥ of thek samples and assign the unit to

4+7
the class whosg; is closest toy. 2z 2 ®)

lll. FISHER SAPPROACH TOPATTERN CLASSIFICATION INTo | 119 1S true in general becaugg is always greater thae,,
Two CLASSES which can easily be shown as follows:

When there are two populations (classes), we can use a Z-2,=W(V-Y,)= @1_72)15521(71_72» 0 (9)
classification procedure due to Fisher [1]. The principal

assumption for Fisher's procedure is that the twbecauseS;;is positive definite. Thusg > Z,. [If w were of
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the form w = (Y,-V,)'Si3, thenz, —z would be positive.] . _S.S, _ (m-1S,+(,-1)S, (_1+_1} _s, (_14&)

Since (z+Z,)/2 is the midpoint,z >(z +Z,)/2implies ? n mn m+n,—2 nn An nf
thatz is closer toz . By (9) the distance fronz; to z, is (29)

the same as that froiyy to y,. With equal sample sizes, the large sample procedure is

To express the classification rule in termsypfwe first €ssentially the same as the procedure based on the pooled
write (_Zl + 22)/2 in theform covariance matrix.
B. Classification Based on Generalized Euclidean

2+7Z, _W({ity)) _ (71‘72)'5121(71*'72)' (10)  Distance
2 2 2 Let us assume that the two populations have the same
Then the classification rule becomes: Assign C; if covariance matrix; = ). _
If y is embedded in the sample frady, the generalized
§.-v )'51_1(7 +,) Euclidean distance (squared) between two mean vectors
Wy = (Y- V,)Sy >—+—22 22 1720 (11) V.,andy, is given by
and assigy to C, if a. 2= ¥.17Y2'§.17¥>) . (20)

1S, 22

If y is embedded in the sample frddy, the generalized
uclidean distance between two mean vecig@nd Y, is

Wy:(Vl_T/z)Sl_%y < (371_72)’521_21(71"'?2). (12)

Fisher's approach [1] using (11) and (12) is essentiaIE/
nonparametric because no distributional assumptions wegigen by

made. However, if the two populations are normal with ~ (Y17 Y2)(1-Y2)
equal covariance matrices, then this method s dy, = 1S5, | (21)
(asymptotically) optimal; that is, the probability of )
misclassification is minimized. Then the classification rule becomes: Assign C, if
IV. APPROACHES TAPATTERN CLASSIFICATION INTO TWO d 12>dp (22)
CLASSES VIAEMBEDDING
and assigly to C, if

A. Classification Based on Mahalanobis Distance ~ ~

thp, >d 1o (23)

Let us assume that the two populations have the same

covariance matrix; = 2,). _ .
f(Z,=2)d t hold, th tead 17).
If y is embedded in the sample fraBy, the Mahalanobis (21=%) does not ho en insteadab we use (17)

distance between two mean vectgrg and Y, is given by C. Classification Based on Modified Euclidean Distance
. Let us assume that the two populations have the same
d1,=0.1-Y2)S 12(V.1-V2) (13)  covariance matrix¥; = 5,).

_ _ _ If y is embedded in the sample froB;, the modified
If y is embedded in the sample frdp, the Mahalanobis Eyclidean distance between two mean vectprgand V;,

distance between two mean vectgrsindy,_ is given by is given by
dy, = 01—, ysl—21. V1-V2). (14) a.l:(y.l_yﬂ) (y.l_Y12)’ (24)
IS, 121
Then the classification rule becomes: Assign C; if where
2 2
dip>d, (15) Vi =20y / D.n. (25)
i=1 i=1

and assigly to G, if _ . .
If y is embedded in the sample frady, the generalized

dp, >d . (16) Euclidean distance between two mean vecigysand y,,
_ is given by
If (¥, = %,) does not hold, then instead®if we use i - V2 -V12)' Vo —Vi2) -
2 - .
. S : ISi2, |
Sp=2+32 an S
n

Then the classification rule becomes: Assign C; if
Remark If n;=n,=n, then - - -

ditdy>di+dy (27)
n-1 1
ntn-o 2’ (18)  and assigy to C, if
S0 di+d, >d ,+d,. (28)
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If (£, =%,) does not hold, then instead%f we use (17). given by

— (T - Yol N
V. KNOWN APPROACHES TAPATTERN CLASSIFICATION INTO d.ij = - Yj )S.ij v.i ‘Yj)- (33)

SEVERAL CLASSES )
If y has been embedded in the sample f@mthen the

A. Classification Based on Mahalanobis Distance Mahalanobis distance between two vectgfsand y; is
Equal Population Covariance Matrices this section we given by

discuss classification rules for several classes. As in the two- 4. =@ -V, ):Sj—.l W -V,.) (34)
class case, we use a sample from each & thesses to find

the sample mean vectoys )y, .....Y . For a vectoy whose Let 1«
class membership is unknown, one approach is to use a dr(y)zz Zdi" ri{, 2, ...,k (35)
distance function to find the mean vector thas closest to i=1j=i+l :
and assigly to the corresponding class. o .
We assume. = 5, = =5, and can estimate the be the total Mahalanobis distance in the case of pattern
1 — 2 — . . . -_— e . .
common population covariance matrix by a pooled samp%aSS'f'Cat'on intck classes, where
covariance matrix o
) ) 4 qj :d.ij’ |f|=r, (36)
Su =2, (0 -DS {Z n- k} , (29) and
i= i=1 dj =dj,, ifj=r. (37)

whgreni ands, are the sample size an.d covariance matrix oIfhen the classification rule becomes: Assygto the class
theith class. We comparngto eachy;,i=1, 2, ...k, by the C., 1T{L, 2, ..., K}, for which d. (y) s largest.

distance function Unequal Population Covariance Matricesf (&, =%, =
D2(y) = (Y‘Vi)'sb%(y -y (30) - - - =2y does not hold, then instead§fwe use

and assigry to the class for whichD?is smallest. This Sj =i+i. (38)

classification rule is based on the assumphlipr 2, = - - - o

= Z. The resulting classification rules are sensitive tog  Classification Based on Total Generalized Euclidean
heterogeneity of covariance matrices. Observations tend t®jstance

be classified too frequently into classes whose covarianceEqua| Population Covariance Matriceget us assume
matrices have larger variances on the diagonal. Thus, i@t each of thek populations has the same covariance

population covariance matrices should not be assumed torhatrix &, = ¥, = - - - =5,). The generalized Euclidean

equal if there is reason to suspect otherwise. distance between two mean vectgfs and y;, wherei,
Unequal Population Covariance Matricel$ 2,= 2, = - - - j{1, 2, ..., K}, i#j, is given by

= 2, does not hold, the classification rules can easily be

altered to preserve optimality of classification rates. In place ~ V-V -Yy)

dij = |S

of (30), we can use ol | (39)

DF(Y)=(y-%)S'(y-V), i=1,2, ..k (31) If y is embedded in the sample froBy the generalized

. . . Euclidean distance between two vectgrsandy . is given
whereS is the sample covariance matrix for ftieclass. As 3 yi'sg

before, we would assigy to the class for Whichiz(y) is by T -5YT -7
W Y WL Y

smallest (withS; in place ofS,). a. i = s | . (40)
pI(. i)

VI.  APPROACHES TAPATTERN CLASSIFICATION INTO
SEVERAL CLASSES VIAEMBEDDING If y is embedded in the sample fro®, then the

generalized Euclidean distance between two vedoesd
A. Classification Based on Total Mahalanobis Distance _

. ] ) Y. is given by
Equal Population Covariance Matricedet us assume L
that each of thek populations has the same covariance aij _G-y)Gi -y (41)
matrix ¢, = £, = - - - =%). The Mahalanobis distance : 1Spiiy |
between two mean vectofg and ¥, wherei, jI{1, 2, ..., Let

K}, i#j, is given by

_ k-1 k _
d, (y) = d;, ro{1,2, ...k, 42
¢ = -%)S'@ V). (32) v ;jzll r{ } @2

If y has been embedded in the sample f@mthen the be the total generalized Euclidean distance in the case of
Mahalanobis distance between two vectgrs and Vi is  pattern classification intk classes, where
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d =d, ifi=r, (43)
and
d =d;., ifj=r. (44)

Then the classification rule becomes: Assjgto the class
G, rl{1, 2, ..., Kk}, for which ar (y)is largest.

Unequal Population Covariance Matrice$f (Z; =3, =
- - - =2,) does not hold, then instead$f we use

kg
s=>"" (45)

=l
C. Classification Based on Total Modified Euclidean

Distance

Equal Population Covariance Matricedet us assume

We found that

3 ol el Y o) o

_{ 1 - 033333]
pl = :

(53)
- 033333 4

Suppose that we have to classify the new observation
y'=[1, 3] into the above classes. Let us assume that each of
the k=3 populations has the same covariance ma¥ix=(>,
=23).

Classification Based on Total Mahalanobis Distanite
follows from (35) that

d, § )= 2086 d, §)= 2633 d, ¢ )= 1549 (54)

that each of thek populations has the same covarianc@hus, since

matrix &; = ¥, = - - - =%). The modified Euclidean
distance between two mean vectgfsand y , il{1, 2, ...,

k}, is given by

= ¥i -9 _V)’ (46)
|Sp| |
where
k k
y=>ny/>n (47)
i=1 i=1

represents the ‘overall average’'.
If y has been embedded in the sample fl@mthen the
modified Euclidean distance between two vectgrs and

y is given by
i = Y.i V'V ‘7)' (L2 ..k (48)
) [Spic.iy |
Let
a,(y):ﬁai, r{1, 2, ...k, (49)

i=1

be the total modified Euclidean distance in the case
pattern classification intk classes, where

d=d

ifi=r. (50)

Then the classification rule becomes: Assigo to the class
C., r{1, 2, ..., K}, for which d, (y)is largest.

Unequal Population Covariance Matricedf (Z; =2, =
- -+ =2,) does not hold, then instead§f we use (45).

VII. ILLUSTRATIVE EXAMPLE OF PATTERN CLASSIFICATION
Consider the observations @¥2 variables fromk=3

d, ¢ )= max d,(y), (55)
r0{1,2,3}
we assigry to clas<C,.
Classification Based on Total Generalized Euclidean
Distance.lt follows from (42) that

d, ¢ )=1514 d, § )= 2191 d, )= 751 (56)

Thus, since

dy )= max d,(y), (57)
r0{1,2,3}
we assigry to clasC,.
Classification Based on Total Modified Euclidean
Distance.lt follows from (49) that

d, ¢ )= 5066 d,§)= 7312 d, )= 2596 (58)

Thus, since

d, )= max d,(), (59)

we assigry to clas<C,.

It will be noted that the procedures proposed in this paper
give the same result in the above case that of Fisher's
pfocedure which was used in [5].

VIIl.  CONCLUSION AND FUTURE WORK

Linear discriminants may be used to discriminate any
number of classes of patterns, but are perhaps most
commonly used when there are only two classes. An
example of such a problem is in detection, where it is
required that a target pattern, such as a vehicle in a radar
image, is detected from among the uninteresting background
patterns. Many detection problems are specified so that the
classifier must produce either a particular detection rate or
an upper bound for the rate at which false detections are

popu|ation5 (C|asses) [5] The input data Samp'es are g|VaWduced Each of these Specifications will be referred to as

below.
16,=3) 1t;=3) 1:=3)
-2 5 0 6 1 -2
C=| 0 3, G=2 4|, C3=| 0 0| (51
-1 1 1 2 -1 -4
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an “operating point” for the classifier. The Fisher
discriminant [1] is the benchmark for the linear
discrimination between two classes in multidimensional
space. It is extremely quick to calculate since it is based only
on the first and second moments of each distribution. Also, it
may be shown to maximize a measure of the separation
which is not specific to a particular distribution type. This
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makes the Fisher discriminant extremely robust. in order to classify the data to the correct category label.
Since many fault diagnosis problems can be considered =<

a multi-class classification problems, pattern recognitio

methods with good generalization and accurat

Separation may be easier in higher dimensions

A

performances have been proposed in recent years. Choiel @ ~ @ P
[6] proposed a fault detection and isolation methodolog g E“\‘ PY
based on principal component analysis—Gaussian mixtu | @ ® feature

L. . . . \ I e
model and discriminant analysis—Gaussian mixture mode¢e | us \0 map >
Fisher's linear discriminant analysis (FLDA) has beel \u‘“%ﬁ) =
proved to outperform the principal component analysi ® X GFE sl
(PCA) in discriminating different classes, in the aspect thi ® o ~—

separating hyperplane
simple in higher dimensions

PCA aims at reconstruction instead of classification, whil ., p1ex in low dimensions
FLDA seeks directions that are optimal for discrimination
[7]. Fisher's linear discriminant analysis is a widely used
multivariate statistical technique with two closely related This paper proposes the improved approaches to pattern
goals: discrimination and classification. The technique idassification which represent the new distance-based
very popular among users of discriminant analysis. Some @fbedding procedures that allow one to take into account
the reasons for this are its simplicity and unnecessity of strigfe cases which are not adequate for Fisher's classification
assumptions. In its original form, proposed by Fisher, thele. Moreover, these approaches allow one to classify sets
method assumes equality of population covariance matrice$,multivariate observations, where each of the sets contains
but does not explicitly require multivariate normality.more than one observation. For the cases, which are
However, optimal classification performance of Fisher'adequate for Fisher's classification rule, the proposed
discriminant  function can only be expected whempproaches give the results similar to that of FLDA.
multivariate normality is present as well, since only good The methodology described here can be extended in sev-
discrimination can ensure good allocation. eral different directions to handle various problems of
In practice, we often are in need of analyzing input dajsattern classification (recognition) that arise in practice (in
samples, which are not adequate for Fisher’s classificatiparticular, the problem of changepoint detection in a

Fig. 1. Dimension transformation

rule, such that the distributions of the groups are netquence of multivariate observations).

multivariate normal or covariance matrices of those are
different or there are strong multi-nonlinearities. In

particular, the situation of pattern classification, which This research was supported

ACKNOWLEDGMENT
in part by Grant No.

sometimes produces non-linear separation of classes, is §gl1936, Grant No. 07.2036, Grant No. 09.1014, and Grant
adequate for Fisher's classification rule. One solution 1Qy 09 1544 from the Latvian Council of Science and the
address this problem would be the application of kemels {@yional Institute of Mathematics and Informatics of Latvia.

input data, which would essentially transform the input to a
higher dimensional space, wherein the probability of linearly
separating the classes is higher. In kernel methods, there ?
strong possibility that the higher dimensional space may
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