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On Algebraization of Classical First Order Logic

Nabila M. Bennour, Kahtan H. Alzubaidy

Abstract - Algebraization of first order logic and its
deduction are introduced according to Halmos approach.
Application to functional polyadic algebra is done.

Index Term: Polyadic algebra, Polyadic ideal, Polyadic filter,
Functional polyadic algebra.

I. INTRODUCTION
There are mainly three approaches to the algebraization of
first order logic. One approach is to develop cylindric
algebras[1]. The second approach is by polyadic algebra[2].
the third one is by category theory [3].
In 1956 P. R. Halmos introduced polyadic algebra to express
first order logic algebraically.
Polyadic algebra is an extension of Boolean algebra with
operators corresponding to the usual existential and universal
quantifiers over several variables together with endomorphi-
sms to represent first order logic algebraically.
Certain polyadic filters and ultra filters have been used to
express deduction in polyadic algebra. These ideas are
applied to the specific case functional polyadic algebra.

II. POLYADIC ALGEBRA

General definition [3]
Suppose that B is a complete Boolean algebra. An
existential quantifier on B is a mapping 3: B — B such
that
i) 3(0)=0
i) a<3(a) forany aeB.
iii) 3(a A 3(b)) =3(a) A 3(b) forany a,b € B.

(B,3) is called monadic algebra.

Let ' = {r‘r: Il >1 isa transformation}. Denote the

set of all endomorphisms on B by End(B)and the set of
all quantifierson B by Qant(B) .

A polyadic algebrais (B, I, S,d) where

S:1' - End(B)and 3:2' — Qant(B) such that for

any J,Ke2'and o,7 € | we have

1)3(p)=id
2)3(J UK)=3(3)3(K)
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3)S(o7r) =S(0)S(7)

4)S(id) =id

5) S(o)3(J) =S(r)3J) if G| Ly = T|H

6) 3(3)S(r) =S(r)3(r*(J)) if z is one to one on
771(J).The cardinal number || is called the degree of the

algebra. If |I|=n we get the so called N -adic algebra. If

| =¢ then 2' = {¢} and 1' = {id}. Therefore we get
only the identity quantifier 3(¢) =1id. Thus O -adic
algebra is just the Boolean algebra B. If |I| =1 then

' = {id}. Therefore there are only two quantifiers 3(¢)
and 3(1) . Thus 1-adic algebra is the monadic algebra.

Polyadic Ideals And Filters

A subset U of a Boolean algebra B is called a Boolean
ideal if

i) 0eU

i) avbeU forany a,beU

iii)ifaeU and b<a thenbeU

A subset F of a Boolean algebra B is called a Boolean
filter if

i) 1leF
i) anbeF forany a,beF

iijifaceFand b>athenbeF.

A subset U of a polyadic algebra B is called a polyadic
ideal of B if
i) U isaBoolean ideal

iy If J 1 and aeU then 3(J)a)eU

iiiyifacU and o e l' then S(c)a)eU

A subset F of a polyadic algebra B is called a polyadic
filter of B if
i) F isaBoolean filter

iy If J 1 and ae Fthen v(J)a)e F
iiiifac Fand o' then S(o)a)eF .
Proposition 1) [3]

A subset U of a polyadic algebra B is an ideal of it if and

only if U is an ideal of the Boolean algebra B and
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3(1)a)eU forevery acU. F isafilter of B if and
only if F is a filter of the Boolean algebra B and
v(1)Ya)e F whenever ac F |

Proof

Let U be an ideal of a polyadic algebra , by the definition

U is an ideal of a Boolean algebra and 3(1 {a) U .

Let U be an ideal of a Boolean algebra B and
EI(I )(a) eU forevery aeU.

1t J <1, then 3(J )a) < 3(1)a), so that

3(J )a) e U . Now we verify that S(o)(@) e U , if
aeU and o e ' Wehave a<3(I)a) and
S(c)a)< S(e)3(1)Xa) , so it means to show that every

S(G) acts as identity transformation from 1" since there is
nothing out of | .Then

S(o)a(1Ya)=(id )3(1 {a)=3(1 )a), therefore
S(o)a)eU.

A similar argument proves the second part.

Proposition 2) [3]

There is a one to one correspondence between ideals and
filters : if U is an ideal , then the set U'=F of all a’
with @ € U is a filter . Analogously, if F is a filter , then

U=F'={a'":aeF}isanideal.

Proposition 3)
The set of all polyadic ideals and the set of all polyadic
filters are closed under the arbitrary intersections.

Let B be a polyadic algebra and I' < B . LetU (I") denote
the least polyadic ideal containing I' and F(I") denote the
least polyadic filter containing I" .We say that U (I") and
F(I") are generated by I".

Proposition 4)
Let B be a polyadic algebra and I" < B . Then
i)U(F):{beB:bsxlvxzv...vxn for some X;, X,,..., X eF}u{O}
ii)F(F):{be B:b>X AX, A AX, TOF SOME X, Xy ..y X er}u{l}
Proof
) Let
J :{be B:b<X VX, Vv..vX, forsome x,X,,..Xx, eF}u{O}
0eJ.Letb,b,eJd.Thenb, < x, vXx,v..vX,
and b, <y, Ay, A Ay,

forsome X;,y; €.

b, vb, <X, VX, V. VX, VY, VY, V..V, .
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Therefore b, v b, € J . If
asb<x,vX,Vv..vX, thenaeJ.Then J is

a Boolean ideal containing I" . Therefore U () < J .

If beJ,then b, <X, v X, V..V X, where X, € T
ie. X, eU(T). Then b eU(T). Thus U(T)=J asa
Boolean ideal. Leta € J then a< X, vV X, V..V X,

A1) <A1 % vx vevx ) =300 ) vAN ) v v 3T)X,)

Therefore

(1 Ya)eU().
ii) A similar argument leads to (ii).

A filter F of a polyadic algebra is called ultrafilter if F is

maximal with respect to the property that 0 ¢ F .
Ultrafilters satisfy the following important properties [4].

Proposition 5)

Let F be a filter of a polyadic algebra B . Then

i) F isan ultrafilter of B iff forany a € F exactly one
of a,a' belongsto F .

i) F is ultrafilter of B iff O F and avbeF iff
acForbeF foranya,beF.

iii) If ae B—F, then there is an ultrafilter L such that
FclLadael.

Let I' < B . The ultrafilter containing F (I") is denoted by
UF().

A mapping u: B, — B, between two Boolean algebras is
called a Boolean homomorphism if

) u(@anb)=u(@)n u()

i) u(@’)=(u(a))

Obviously, (av b)= u(a)v u(b), x(0)=0,
u1)=1.

A mapping 1 B, — B, between two polyadic algebras is

called polyadic homomorphism if
i) 4w isaBoolean homomorphism

i) 43d=3u
iii) uo =ou forany o el

Obviously, vV =Vu .
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I1l. DEDUCTION
Notation: for T < B and beB, T'+b reads b is
deduced from I' in B. Now , we define I'+b in a
polyadic algebra B iff b € F(F).
By definitions of filter and deduction + we have :

Proposition 6)
i) 'rland I'+0
i) fI'EX, I'Fy thenI'-XAY.

General properties of deduction are given by the following:
Theorem 7)

i) fbel thenT kDb

i) fTrband T X then Z+b

iii)If Zraforany ael and I'+b,then X +Db

iv) If T b , then &(T") - o(b) for any substitution &
v) If T Db, then T'j+b for some finite T, < T
Proof.

iy bel' ~beF() ..Trb

i) b ~beF([) ~b2XAX,A..AX, for
some X; € I'

rcs ~beF(E) .Zrb

iijLet Trb  .be F(I)

b2 X AX, AAX, forsome X, € T

2 X, A Xy, Ao A X, by proposition (6)

X, AX, A A X, € F(Z) ~beF(2)
L ZED
ivy Trb . beF() Db X AX, AL AKX,

for some X; e I'
alb)>a(x, A%, A, )=0(X ) AT(X,) A A o(X,)
for some a(xi)e F(G(F )

~o)eF(o(T) . o)-olb)

v) By proposition 4 (ii) and proposition (6)
IV. FUNCTIONAL POLYADIC ALGEBRA

Let B = (B,v,/\,' ,0,1) be a complete Boolean algebra,
BA = {p‘p A—>B is a function} where A isan
algebra of type F. For p,Q € B* define pvqg, paqQ,

p’ and 0,1 pointwise as follows:
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(pva)(@)=p@)va),

(pAq)(@) = p(a) ~q(@) ., p'(a) = (p(a))
0(a) =0, 1(a) =1 forany a € A. We have

!
’

Proposition 8) [2]
(BA VA, ,O,l) is a functional Boolean algebra.

Proposition 9) [5]
(BA,EI) is a monadic algebra, where 3:B* — B* is

given by 3(p)(a) =sup{p(a):a e A}

Proposition 10) [2]
(B A1,S, EI) is a polyadic algebra, where

S:1' > End(B*) and 3:2' — Qant(B").

Now, let BA" = {p‘p A 5B isa function};
k =0.1,2,.... Define
S(o)p(ay,ay) = P,y @yq) forany o el !

and (a,...,a,) € A“. we have

Proposition 11)

(B A" 1, S, EI) is a polyadic algebra
Proof

EOLCHERELT LIRS O

S 3(g)=id

i) 30 UM) =sup{p(a,,a,)}
=Sup{p(a, --a,)jsup{p(@y - a,)}
=3(J)p(ay,..a)3AM)p(a,..... &)

SIAQUM)=3(J)I(M)
i) S(id) p(ay,.-,a,) = P(Qig gy r--Aia ) = P(ay-- )
- S(d)=id
iV) S(or) p(al""ak) = p(ao'r(l) e aa'r(k)) = p(aa(f(n)v'"l ao‘(r(k)))

:S(O—)p(ar(l)""’ar(k)):S(G)S(T)p(al"“’ak)
- S(o7) =S(0)S(7)
V) $(0)3(3)P(as a,) = S(@)sUP (p(@,.r 8, )

:stjp{p(ag(l) R0 )j
= Sljp{p(ar(l) e Beg |

if O"HZr|H

WCE 2014



Proceedings of the World Congress on Engineering 2014 Vol II,

WCE 2014, July 2 - 4, 2014, London, U.K.

= S(@)sup{p(a, . a,)}

=S(2)3(3) p(ay...a,)
$(0)3J) =S()33) ifa], =17, ,

vi) 3(3)S(7)p(ay,- a) =3Q) p(a’r(l) 1y ar(k))

= Slﬁp{p(ar(l) ""’ar(k))}
ifris1—1on 77" (J)
= Su(p){p(af(1)’---’ar(k))}
13

= SH(E)){S(Z') p(al.---,ak)}

=S(r)3( () p(ay,... a,)
- 3(3)S(2) = S(2)3(r 1 (3))

Finally, let | = {1,2,...} be a countable set,
B :{p‘p:A' —Bis a function},

acA':a:l > Aisafunction.For ocel', oa is
defined by ca(i) = a(o(i)) Viel.

We have

Proposition 12)

B* isa polyadic algebra

Proof

i) 3(¢)p(a) =s3p{p(a)}= p(a)

= 3(9) =
i) 3w M)p(@) = sup{p(a)} = sup{p(a)jsup{p(a)}
=3(J)p(@)3(M)p(a)
I IuM)=3)3(M)
iy S(id) p(a(i)) = p(a(id(i))) = p(a(i))
-~ S(id)=id
V) s(or )p(a(i))= plac(z(i)))= ploal(i)))
= S(0)p(za(i)) = S(o)s(z)p(ali))
~.S(o7)=5(c)s(r)

v) $(o)30) p(a() = S(o)sup{p(a(i)} = sup {p(ac (i)}

= sgp{p(ar(i))}

if O-‘I—J = z‘| 1-J
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S(T)Sljp{p(a(l))} S(z)a(3 )p(a(i))
= S(e)3(3)=s(xR()
33)s(r)pla®)=33)p(az ()= supip(az ()}

= Sup{p(ar(i))} if 7 is1-1on 7 °(J)
{

- sp {5()p(a0) = S pla)

()

= S()al- () )p(adi))
~3(3)s(x)=s(x)az*(3))

Natural inference rules of polyadic logic are now transferred
into certain algebraic rules in BA governing the algebraic
deduction in F(I') where T' < B*. These are given as
follows:

Theorem 13)
Let T < B”.Then
i) T'rland I'0.

i) [Fpaqiff’Fpand I'+q.
i) C-p iff T p'.

vy T-pvqiffCFporl'+q.

vy Trpitf TFV(J)p.

vi) F(T)r p(ay) iff F(T)+

Proof.

i) By proposition 6(i)

ii) Follows from definition of filter and proposition 1

iii) This is so because if both I'p and '+ p' we get

p(a)and (p(a)) '
contradiction.
iviLet '-pv(

- p@)vaa)eF()
~.(p(a)va(a))'e F(r)
(p(a))'A(g(a))'e F(T)

- (p(a)ye F(N)or(q(a))'e F(T)
. p(a) e F(T) or q(a) € F(I).
Thus I'-porI'+Q.
LetI'-porI'+Q

p(a) € F(I) or q(a) € F(I)
- p(a)va(a) = p(a)
~p@)va(a) e F(F) . Therefore T'+-pv Q.
v)Thisisby Vp < p and V(F(I")) < F(T).

3(J)p(a).

in F(T"). Thus we get O which is a
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vi)This is so by the definition
3(3)p(a) =sup{p(a) :a € A},
If we alter the definition of deduction to I'+p if

peUF(F) we get the following dichotomy by
proposition 5

Theorem 14)
Either ' por '+ p".
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