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Abstract—The fluid equations, named after Claude-Louis
Navier and George Gabriel Stokes, describe the motion of
fluid substances. These equations arise from applying Newton’s
second law to fluid motion, together with the assumption
that the stress in the fluid is the sum of a diffusing viscous
term (proportional to the gradient of velocity) and a pressure
term - hence describing viscous flow. Due to specific of NS
equations they could be transformed to full/partial inhomoge-
neous parabolic differential equations: differential equations in
respect of space variables and the full differential equation in
respect of time variable and time dependent inhomogeneous
part. Finally, orthogonal polynomials as the partial solutions
of obtained Helmholtz equations were used for derivation of
analytical solution of incompressible fluid equations in 1D, 2D
and 3D space for rectangular boundary. Solution in 3D space
for any shaped boundary is expressed in term of 3D global
solution of 3D Helmholtz equation accordantly.

Index Terms—Analytical solution, Incompressible fluid,
Helmholtz equation, Navier-Stokes equations.

I. INTRODUCTION

In physics, the fluid equations, named after Claude-Louis
Navier and George Gabriel Stokes, describe fluid substances
motion. These equations arise from applying Newton’s sec-
ond law to fluid motion, together with the assumption that
the stress in the fluid is the sum of a diffusing viscous term
(proportional to the gradient of velocity) and a pressure term
- hence describing viscous flow. Equations were introduced
in 1822 by the French engineer Claude Louis Marie Henri
Navier [1] and successively re-obtained, by different argu-
ments, by a several authors including Augustin-Louis Cauchy
in 1823 [2], Simeon Denis Poisson in 1829, Adhemar Jean
Claude Barre de Saint-Venant in 1837, and, finally, George
Gabriel Stokes in 1845 [3]. Detailed and thorough analysis
of the history of the fluid equations could be found in by
Olivier Darrigol [4]. The invention of the digital computer
led to many changes. John von Neumann, one of the CFD
founding fathers, predicted already in 1946 that automatic
computing machines’ would replace the analytic solution of
simplified flow equations by a numerical’ solution of the
full nonlinear flow equations for arbitrary geometries. Von
Neumann suggested that this numerical approach would even
make experimental fluid dynamics obsolete. Von Neumann’s
prediction did not fully come true, in the sense that both
analytic theoretical and experimental research still coexist
with CFD. Crucial properties of CFD methods such as
consistency, stability and convergence need mathematical
study [5].
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iminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
e-mail: (algirdas.maknickas@vgtu.lt).

Aim of this article is to propose new approach for solution
of incompressible fluid equations. The article has three basic
parts: first part explains how to solve NS in one dimension,
second part extend solution into two-dimensional space and,
finally, third part summarize with three-dimensional space.

II. PARABOLIC FORMULATION OF EQUATIONS

Incompressible fluid equations are expressed as follow

ρ

(
∂v

∂t
+ (v · ∇)v

)
− µ∆v +∇p = f, (1)

∂ρ

∂t
+∇ · (ρv) = 0, (2)

where equation (2) for incompressible flow reduces to dρ
dt =

0 or ρ = const due to ∇v = 0. Equations of fluid motion (1)
could be expressed in full time derivative replacing covariant
time derivative by

d

dt
=

∂

∂t
+ (v · ∇). (3)

So, we obtain

dv

dt
− a2∆v =

1

ρ
(−∇p+ f). (4)

3 inhomogeneous parabolic like equation for full time deriva-
tive, where a =

√
µ/ρ.

III. ONE DIMENSIONAL INHOMOGENEOUS SOLUTION

Consider the initial-boundary value problem for v =
v(x, t)

dv

dt
− a2∆v =

1

ρ
(−∇p+ f) in Ω× (0,∞), (5)

v(x, 0) = v0(x) x ∈ Ω, (6)
∂v

∂n
= 0 on ∂Ω× (0,∞), (7)

where p = p(x, t) and f = f(x, t), Ω ⊂ Rn, n the exterior
unit normal at the smooth parts of ∂Ω, a2 a positive constant
and v0(x) a given function.

So according to [6] equation (4), when x is normed to
a = 1, could be rewritten as follow

dv

dt
= vxx +Q(x, t), x ∈ Ω, t > 0. (8)

We expand v and Q in the eigenfunctions sin (nπx) on
space Ω ∈ [0, L] where sin(nπxL ) and sin(mπxL ) functions
orthogonality could be applied. So, we obtain

Q(x, t) =

∞∑
n=1

qn(t) sin (
nπx

L
), (9)
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with

qn(t) =
1

I1

∫
Ω

Q(x, t) sin (
nπx

L
)dx, (10)

I1 =

∫
Ω

sin2 (
nπx

L
)dx (11)

and

v(x, t) =
∞∑
n=1

un(t) sin (
nπx

L
). (12)

Thus we get the inhomogeneous ODE

u̇n(t) +
(nπ
L

)2

un(t) = qn(t), (13)

whose solution is

un(t) = un(0) exp (−(nπ/L)2t)

+
t∫

0

qn(τ) exp (−(nπ/L)2(t− τ))dτ, (14)

where
un(0) =

1

I1

∫
Ω

v0(x) sin (
nπx

L
)dx. (15)

Again, we substitute all obtained equations into (12), denote
sin2 (x, y) = sin(πx)sin(πy) and have

v(x, t) =∫
Ω

ds(v0(s)(
∞∑
n=1

1
I1

sin2 (nsL ,
nx
L ) exp (−(nπ/L)2t)) +

t∫
0

dτQ(s, τ)

×
∞∑
n=1

1
I1

sin2 (nsL ,
nx
L ) exp (−(nπ/L)2(t− τ))). (16)

Now we must apply continuity condition

∇ · v =
∂v(x, t)

∂x
= 0. (17)

This is equation of extreme for coordinate x. Solving this
equation gives extreme point xex. Finally, solution of 1D
incompressible Navier-Stokes equation is

v(x, t) =∫
Ω

ds(v0(s)
∞∑
n=1

1
I1

sin2 (nsL ,
nxex

L ) exp (−(nπ/L)2t) +

t∫
0

dτQ(s, τ)

×
∞∑
n=1

1
I1

sin2 (nsL ,
nxex

L ) exp (−(nπ/L)2(t− τ))). (18)

If we investigate each point of fluid in moving coordinate
system of this point, Galilean transform must by applied
v(r0 − vt, t).

IV. TWO DIMENSIONAL INHOMOGENEOUS SOLUTION

Consider the initial-boundary value problem for v =
v(x, y, t)

dvi

dt
− a2∆vi =

1

ρ
(−∇ip+ fi) in Ω× (0,∞), (19)

vi(x, y, 0) = vi0(x, y) x, y ∈ Ω, (20)
∂vi

∂n
= 0 on ∂Ω× (0,∞), (21)

where p = p(x, y, t) and f = f(x, y, t), Ω ⊂ R2n, n the
exterior unit normal at the smooth parts of ∂Ω, a2 a positive
constant and vx0 (x, y), vy0 (x, y) a given function.

So, when x and y are normed to a = 1, equation (4) could
be rewritten as follow

dvi

dt
= vixx + viyy +Qi(x, y, t), x, y ∈ Ω, t > 0. (22)

A. Rectangular boundary

We expand v and Q in the eigenfunctions exp ( jnπxLx
)

exp ( jmπyLy
) on space Ω ∈ [0, Lx]× [0, Ly] where exp ( jnπxLx

)

exp ( jmπyLy
) and exp ( jn

′πx
Lx

) exp ( jm
′πy
Ly

) functions orthog-
onality could be applied, where j =

√
−1. Let’s denote

dΩ = dxdy and exp2(x, y) = exp (jπx+ jπy). So, we
obtain

Qi(x, y, t) =
∞∑

m,n=1

qimn(t) exp2 (
nx

Lx
,
my

Ly
), (23)

with

qimn(t) =
1

I2

∫∫
Ω

Qi(x, y, t) exp2 (
nx

Lx
,
my

Ly
)dΩ, (24)

I2 =

∫∫
Ω

(exp2 (
nx

Lx
,
my

Ly
))2dΩ (25)

and

vi(x, y, t) =
∞∑

m,n=1

uimn(t) exp2 (
nx

Lx
,
my

Ly
). (26)

Thus we get the inhomogeneous ODE

u̇imn(t) + k2
m,nu

i
mn(t) = qimn(t), (27)

k2
m,n =

(
nπ
Lx

)2

+
(
mπ
Ly

)2

. (28)

whose solution is

uimn(t) = uimn(0) exp (−k2
m,nt)

+
t∫

0

qijmn(τ) exp (−k2
m,n(t− τ))dτ, (29)

where

uimn(0) =
1

I2

∫∫
Ω

vi0(x, y) exp2 (
nx

Lx
,
my

Ly
)dΩ. (30)

Again, we substitute all obtained equations into (26) and have

vi(x, y, t) =∫∫
Ω

ds′ds(vi0(s′, s)S(s, s′, x, y) exp (−k2
m,nt) +

t∫
0

Qi(s′, s, τ)S(s, s′, x, y) exp (−k2
m,n(t− τ)))dτ),

S(s, s′, x, y) =
∞∑
m=1
n=1

1
I2

exp2 ( nsLx
, ms

′

Ly
) exp2 (nxLx

, myLy
). (31)

Now we must apply continuity condition

∇ · v =
∂vx(x, y, t)

∂x
+
∂vy(x, y, t)

∂y
= 0. (32)
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So, we obtain relation conditions between vx0mnf and vy0mnf ,
Qxmnf and Qymnf

(vx0nmf +Qxnmf )
nπ

Lx
+ (vy0nmf +Qynmf )

mπ

Ly
= 0, (33)

where vi0f , Q
i
f are

vi0nmf = 1
I2

∫∫
Ω

vi0(s′, s) exp2 ( nsLx
, ms

′

Ly
)ds′ds, (34)

Qinmf = 1
I2

∫∫
Ω

ds′ds

×
t∫

0

Qi(s′, s, τ) exp2 ( nsLx
, ms

′

Ly
) exp (k2

mnτ)dτ. (35)

Finally, solutions of 2D incompressible Navier-Stokes equa-
tions are

vx(x, y, t) =
∞∑

m,n=1
(vx0mnf +Qxmnf )

× exp (− jπmx(vy0mnf+Qy
mnf )

Ly(vx0mnf+Qx
mnf ) + jπmy

Ly
− k2

mnt), (36)

vy(x, y, t) =
∞∑

m,n=1
(vy0mnf +Qymnf )

× exp ( jπnxLx
− jπny(vx0mnf+Qx

mnf )

Lx(vy0mnf+Qy
mnf )

− k2
mnt). (37)

If we investigate each point of fluid in moving coordinate
system of this point, Galilean transform must by applied
v(r0 − vt, t).

B. Any shaped boundary

For any shaped boundary ∂Ω, equation (23) could be
replaced by

Qi(x, y, t) =

∞∑
m,n=1

qimn(t)Hmn
∂Ω (x)Hmn

∂Ω (y) (38)

and equation (26) by

vi(x, y, t) =
∞∑

m,n=1

uimn(t)Hmn
∂Ω (x)Hmn

∂Ω (y). (39)

where Hmn
∂Ω (x)Hmn

∂Ω (y) are partial solutions of Helmholtz
2D equation for given boundary ∂Ω and could be taken for
example from [7]. So equation (31) transforms to

vi(x, y, t) =
∞∑

m,n=1
(vi0mnf +Qimnf )

×Hmn
∂Ω (x)Hmn

∂Ω (y) exp (−k2
mnt), (40)

vimnf = 1
I2mn

∫∫
Ω

vi0(s′, s)Hmn
∂Ω (s)Hmn

∂Ω (s′)ds′ds, (41)

Qimnf = 1
I2mn

∫∫
Ω

ds′ds
∫ t

0
dτ

×Qi(s′, s, τ)Hmn
∂Ω (s)Hmn

∂Ω (s′) exp (k2
mnτ)), (42)

where I2mn is expressed as follow

I2mn =

∫∫
∂Ω

(Hmn
∂Ω (x)Hmn

∂Ω (y))2dxdy. (43)

Applying of continuity condition ∇ · v = 0 gives similar to
equations (33)(36)(37) relations between n and m. Finally,
we obtain

vi(x, y, t) =
∞∑
n=1

(vi0m(n)nf +Qim(n)nf )

×Hm(n)n
∂Ω (x)H

m(n)n
∂Ω (y) exp (−k2

m(n)nt), (44)

where m(n) notes dependence of m and n. If we investigate
each point of fluid in moving coordinate system of this point,
Galilean transform must by applied v(r0 − vt, t).

V. THREE DIMENSIONAL INHOMOGENEOUS SOLUTION

Consider the initial-boundary value problem for v =
v(x, y, z, t)

dvi

dt
− a2∆vi =

1

ρ
(−∇ip+ fi) in Ω× (0,∞), (45)

vi(x, y, z, 0) = vi0(x, y, z) x, y, z ∈ Ω, (46)
∂vi

∂n
= 0 on ∂Ω× (0,∞), (47)

where p = p(x, y, z, t) and f = f(x, y, z, t), Ω ⊂ R3n,
n the exterior unit normal at the smooth parts of ∂Ω, a2

a positive constant and vx0 (x, y, z), vy0 (x, y, z), vz0(x, y, z) a
given function.

So, when x, y and z are normed to a = 1, equation (4)
could be rewritten as follow

dvi

dt
= vixx + viyy + vizz +Qi(x, y, z, t), (48)

where x, y, z ∈ Ω, t > 0.

A. Rectangular boundary

Let’s denote

exp3 (x, y, z) = exp(jπx) exp(jπy) exp(jπz). (49)

We expand v and Q in the eigenfunctions exp3 (nxLx
, myLy

, pzLz
)

on space Ω ∈ [0, Lx] × [0, Ly] × [0, Lz] where
exp ( jnπxLx

) exp ( jmπyLy
) exp ( jpπzLz

), exp ( jn
′πx
Lx

) exp ( jm
′πy
Ly

)

exp ( jp
′πz
Lz

) functions orthogonality could be applied. Let’s
denote dΩ = dxdydz. So, we obtain

Qi(Ω, t) =

∞∑
m=1
n=1
p=1

qimn(t) exp3 (
nx

Lx
,
my

Ly
,
pz

Lz
), (50)

with

qimnp(t) = 1
I3

∫∫∫
Ω

Qi(Ω, t) exp3 (nxLx
, myLy

, pzLz
)dΩ, (51)

I3 =
∫∫∫
Ω

(exp3 (nxLx
, myLy

, pzLz
))2dΩ (52)

and

vi(x, y, z, t) =
∞∑

m,n,p=1

uimn(t) exp3 (
nx

Lx
,
my

Ly
,
pz

Lz
). (53)

Thus we get the inhomogeneous ODE

u̇imnp(t) + k2
mnpu

i
mnp(t) = qimnp(t), (54)

k2
mnp =

(
nπ
Lx

)2

+
(
mπ
Ly

)2

+
(
pπ
Ly

)2

, (55)

whose solution is

uimnp(t) = uimnp(0) exp (−k2
mnpt)

+
t∫

0

qimnp(τ) exp (−k2
mnp(t− τ))dτ, (56)
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where

uimnp(0) =
1
I3

∫∫∫
Ω

vi0(x, y, z) exp3 (nπxLx
, mπyLy

, pπzLz
)dΩ. (57)

Again, we substitute all obtained equations into (53) and have

vi(x, y, z, t) =∫∫∫
Ω

vi0(s′′, s′, s)(S(Ω′,Ω) exp (−k2
mnpt))dΩ′ +

∫∫∫
Ω

dΩ′
t∫

0

dτ

×Qi(s′′, s′, s, τ)(S(Ω′,Ω) exp (−k2
mnp(t− τ))), (58)

S(Ω′,Ω) =
∞∑

m,n,p=1

1
I3
Smnp(s, s

′, s′′)Smnp(x, y, z), (59)

Smnp(x, y, z) = exp3 (nπxLx
, mπyLy

, pπzLz
). (60)

Now we must apply continuity condition

∇ · v =
∂vx(x,y,z,t)

∂x + ∂vy(x,y,z,t)
∂y + ∂vz(x,y,z,t)

∂z = 0. (61)

So, we obtain relation conditions between n, m and p

(vx0nmpf +Qxnmpf )nπLx
+ (vy0nmpf +Qynmpf )mπLy

+(vz0nmpf +Qznmpf ) pπLz
= 0, (62)

where vi0f , Q
i
f are

vi0mnpf = 1
I3

∫∫∫
Ω

vi0(s′′, s′, s)Smnp(s, s
′, s′′)dΩ′, (63)

Qimnpf = 1
I3

∫∫∫
Ω

dΩ′

×
t∫

0

dτQi(s′′, s′, s, τ)Smnp(s, s
′, s′′). (64)

Finally, solutions of 3D incompressible Navier-Stokes are

vi(x, y, z, t) =
∞∑

m,n=1
(vi0mnpf +Qimnpf )

×Smnp(m,n)(x, y, z) exp (−k2
mnp(m,n)t), (65)

Smnp(m,n)(x, y, z) = exp3 (nxLx
, myLy

, p(m,n)z
Lz

), (66)

where integers p(m,n) must satisfy (62) relations for each m
and n and could be expressed by substituting of p/Lz corre-
sponding expression as the sum of two others n/Lx,m/Ly .
If we investigate each point of fluid in moving coordinate
system of this point, Galilean transform must by applied
v(r0 − vt, t).

B. Any shaped boundary

For any shaped boundary ∂Ω, equation (50) could be
replaced by

Qi(x, y, z, t) =
∞∑

m,n,p=1

qi(t)Hmnp
∂Ω,k(x, y, z) (67)

and

vi(x, y, z, t) =

∞∑
m,n,p=1

ui(t)Hmnp
∂Ω,k(x, y, z), (68)

where Hmnp
∂Ω,k(x, y, z) are partial solutions of Helmholtz 3D

equation for given boundary ∂Ω. and could be taken for
example from [8].So equation (58) transforms to

vi(x, y, z, t) =
∞∑

m,n=1
(vi0mnpf +Qimnp)

×Hmnp
∂Ω,k(x, y, z) exp (−k2

mnpt), (69)

vi0mnpf =
∫∫∫
Ω

vi0(s′′, s′, s)Hmnp
∂Ω,k(s, s′, s′′)dΩ′, (70)

Qimnp =
∫∫∫
Ω

dΩ′
t∫

0

dτ

×Qi(s′′, s′, s, τ)Hmnp
∂Ω,k(s, s′, s′′) exp (k2

mnpτ). (71)

Applying of continuity condition ∇ · v = 0 gives relations
between n,m and p or p = p(m,n). Finally, we obtain

vi(x, y, z, t) =
∞∑

m,n=1
(vi0mnp(m,n)f +Qimnp(m,n))

×Hmnp(m,n)
∂Ω,k (x, y, z) exp (−k2

mnp(m,n)t). (72)

If we investigate each point of fluid in moving coordinate
system of this point, Galilean transform must by applied
v(r0 − vt, t).

VI. CONCLUSIONS

Due to the form of fluid equations they could be trans-
formed into the full/partial inhomogeneous parabolic differ-
ential equations: differential equations in respect to space
variables and full differential equations in respect to the time
variable and inhomogeneous time dependent part. Finally,
orthogonal polynomials as the partial solutions of obtained
Helmholtz equations were used for derivation of analytical
solution of velocities for incompressible fluid in 1D, 2D and
3D space for rectangular boundary. Solution in 3D space
for any shaped boundary is expressed in term of 3D global
solution of 3D Helmholtz equation accordantly.
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