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Abstract—This paper presents a computational study of
laminar, viscous incompressible flow past a circular cylinder
undergoing figure-eight-type motion using the two-dimensional
Navier-Stokes equations. The numerical method is based on
Fourier spectral method together with finite difference approx-
imations. The response of the flow are investigated at a fixed
Reynolds number, R = 200. The oscillation frequency was fixed
to the vortex shedding frequency from a fixed cylinder, f0, while
the amplitudes of oscillations were varied from 0.1 to 1.0a,
where a represents the radius of the cylinder. The response of
the flow through the fluid forces acting on the surface of the
cylinder are investigated.

Index Terms—lock-on; streamwise oscillation; transverse os-
cillation; figure-eight-type motion; fluid forces.

I. INTRODUCTION

VORTEX-shedding from oscillating bluff bodies is
an important engineering problem because it is

associated with the surface fluid forces. Hence, many
researchers had discussed this problem with different types
of oscillatory motions. However, the problem of flow past
a cylinder performing one-degree of freedom (1-DoF)
forced streamwise or transverse oscillation is discussed by
many researchers (see the recent works by Al-Mdallal [1];
Al-Mdallal et al. [2]; Barrero-Gil and Fernandez-Arroyo [3];
Carmo al et. [4]; Konstantinidis and Liang [5]; Marzouk
and Nayfeh [6]; Suthon and Dalton [7] and the references
therein). However, there is only very few studies have
focused on the problem of flow past a circular cylinder with
combined two-degree of freedom (2-DoF) streamwise and
transverse oscillation (we may refer the reader to Al-Mdallal
[8], [9] Baranyi [10]; Didier and Borges [11]; Stansby
and Rainey [12]; Williamson et al. [13]). The problem of
a circular cylinder undergoing a figure-eight-type motion,
which is a special case of combined two-degree of freedom
(2-DoF) streamwise and transverse oscillation, in a uniform
stream was also received some attention in few studies;
see for example Jeon and Gharib [14] and Reid [15] and
Baranyi [16]. Therefore, this problem is considered in the
present study.

This paper is organized as follows. The governing
equations for the physical model are presented in section II.
In section III, we describe the numerical approach employed
to obtain the numerical solution. In section IV, numerical
simulation results are discussed. Finally, concluding remarks
are highlighted in section V.
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II. COMPUTATIONAL FLOW MODEL

The cylinder, whose axis coincides with the z-axis, is
placed horizontally in a cross-stream of an infinite extend
where the flow of a viscous incompressible fluid of constant
velocity U past the cylinder in the positive x-direction. The
cylinder is at rest and at t = 0 it suddenly starts to move
with combined two-degree of freedom (2-DoF) streamwise
and transverse oscillation forming a figure-eight-type motion.
The imposed streamwise and transverse oscillatory motions
are, respectively, described by

X(t) = Ax sin(2πfx t), Y (t) = Ay sin(2πfy t), (1)

where Ax and Ay; fx and fy are, respectively, the dimension-
less amplitudes and frequencies of the two simple harmonic
motions. To create a figure-8-type motion with a clockwise
orientation, we assume that fy = 2fx. In this study, we
assume that A = Ax = Ay .

III. NUMERICAL APPROACH

The governing equations for two-dimensional unsteady
incompressible viscous flow in terms of the vorticity, ζ, and
stream function, ψ, in dimensionless form are given by

e2ξ
∂ζ

∂t
=

2

R

(
∂2ζ

∂ξ2
+
∂2ζ

∂θ2

)
+
∂ψ

∂ξ

∂ζ

∂θ
− ∂ψ

∂θ

∂ζ

∂ξ
, (2)

∂2ψ

∂ξ2
+
∂2ψ

∂θ2
= e2ξζ. (3)

using the modified polar coordinate (ξ, θ) system where
ξ = ln(r). Here r =

√
x2 + y2 represents the dimensionless

radial coordinate. Note that, a frame of reference is used in
which the axes translate and oscillate with the cylinder. Here
The boundary conditions for ψ and ζ are based on the no-slip
and impermeability conditions on the cylinder and the free
stream condition away from it. These conditions are utilized
to derive sets of integral conditions on ζ by applying one
of the Green’s identities to the domain of the field of flow,
for more details see Dennis and Chang [17], [18]. Further,
all flow variables must be periodic functions of the angular
coordinate θ with period 2π. In summary, the associated
conditions with equations (2) and (3) are

ψ =
∂ψ

∂ξ
= 0, when ξ = 0, (4)

∫ ∞

0

∫ 2π

0

e(2−p)ξζ(ξ, θ, t) cos(pθ)dθdξ = 2πẎ (t)δ1,p,

(5a)
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∫ ∞

0

∫ 2π

0

e(2−p)ξζ(ξ, θ, t) sin(pθ)dθdξ = 2π(1−Ẋ(t))δ1,p,

(5b)

ζ → 0 as ξ → ∞. (6)

ζ(ξ, θ, t) = ζ(ξ, θ + 2π, t), ψ(ξ, θ, t) = ψ(ξ, θ + 2π, t).
(7)

Notice that p ∈ {0, 1, · · ·}, where δ1,p = 1 if n = 1; δ1,p =
if n ̸= 1.

The numerical method of solution was initially developed
by Collins and Dennis [19] and has been successfully
implemented to simulations of flows past oscillating
cylinders [see for example, Badr and Dennis [20], Badr
et al. [21], Dennis et al. [22], Mahfouz and Badr [23],
Kocabiyik et al. [24], Lawrence [25], Al-Mdallal [1],
Al-Mdallal and Kocabiyik [26] and Al-Mdallal et al. [2]].
The numerical method is based on Fourier spectral method
together with finite difference approximations. Note that
the computational domain along ξ direction is unbounded,
hence we choose an artificial outer boundary, ξ∞ = 7,
for the numerical treatment. The finite difference schemes
require dividing the space computational domain [0, ξ∞]
into M +1 equal subintervals whose endpoints are the mesh

points ξi = ih for i = 0, 1, ...,M + 1 where h =
ξM+1

M + 1
represents the uniform grid step. Further, we set ∆tj+1 be
a non-uniform time increment given by ∆tj+1 = tj+1 − tj ,
where j = 1, 2, ... and t1 = 0. Hence, for each time step
tj+1 we need to determine the solutions at the mesh points
ξi, for i = 0, 1, ...,M + 1.

The simulations are carried out by using the time step
∆tj+1 = 10−4 for the first 100 steps, then was increased
to ∆tj+1 = 10−3 for the next 100 steps and finally
∆tj+1 = 10−2 for the rest of the calculations. The number
of points in the ξ direction is taken as 349 with a grid
size of ∆z = 0.02. The maximum number of terms in the
Fourier series is taken as N = 60 for all cases considered
in this paper.

Numerical simulations via C++ were carried out on 4
Dell Blade Servers. Each server has a PE M600 Quad Core
Xeon E5450 processor, 2 X 146 GB SAS HD, 8 CPU
x2.992 Ghz, and 8 GB RAM, located in the Department of
Physics at United Arab Emirates University.

IV. NUMERICAL SIMULATION RESULTS

The full set of results for the cases of R = 200:
f/f0 = 0.5 − 4 when 0 ≤ A ≤ 1.0 will be reported
elsewhere, but here we concentrate and analyze only for the
cases when A = 0.1 − 1.0 and f/f0 = 1.0. The predicted
value for the natural shedding frequency f0 by the present
simulation at R = 200 is 0.0977.

The time history of the lift coefficients in the domain
60 ≤ t ≤ 140 are shown in Figure 1 for the case of
R = 200, fx/f0 = 1.0 and 0.1 ≤ A ≤ 1.0. It is clearly
seen that when A ≤ 2.0, the lift coefficient shows a
semi-repetitive signature every one period of streamwise
oscillation, Tx. This inspire us to conclude that the vortex
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Fig. 1. The time variation of CL for R = 200, f/f0 = 1.0: (a)A = 0.1,
(b) A = 0.2, (c) A = 0.3, (d) A = 0.4, (e) A = 0.5, (f) A = 0.6, (g)
A = 0.7, (h) A = 0.8, (i) A = 0.9, (j) A = 1.0.
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Fig. 2. Equivorticity lines at an instant corresponding to the cylinder dis-
placement (X(t), Y (t)) = (0, 0) over 4 periods of streamwise oscillations,
4Tx, for R = 200, A = 0.1, 0.2 and f/f0 = 1.0 (quasi-locked on regime).

shedding in the near-wake region is quasi-locked-on in this
range.

To support this conclusion, Figure 2 displays a series of
instantaneous equivorticity contours over four forcing periods
for R = 200, A = 0.1, 0.2 and f/f0 = 1.0. The snapshots
are taken at the instant (X(t), Y (t)) = (0, 0) and every one
full cycle of streamwise oscillation thereafter. It is evident
from this figure that the near-wake frequency is almost but
not completely locked-on to the cylinder oscillation frequen-
cies. Notice that the size of the shedding vortices decreases as
the oscillation amplitude increases. A final remark on Figure
2 is that the vortex shedding produces the quasi-locked-on
2S mode per Tx, in which two vortices are shed alternatively
from both sides of the cylinder over Tx.
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Fig. 3. Equivorticity lines at an instant corresponding to the cylinder
displacement (X(t), Y (t)) = (0, 0) (t = 92.12), for R = 200, A =
0.3− 1.0 and f/f0 = 1.0 (non-lock on regime).

A remarkable conclusion is that: as the oscillation ampli-
tude increases beyond 0.2, the vortex shedding becomes more
complicated due to the strong interaction between the body of
the cylinder and the surrounding fluid. This interaction causes
the development of several secondary vortices on both sides
of the cylinder as well as the occurrence of the coalescence
phenomenon in the near wake region as shown in Figure
3. Moreover, it is noted a separated region forms at the
front part of the cylinder surface at relatively high values
of oscillation amplitude (A ≥ 0.6).

Table I shows the predicted values of the maximum lift
coefficient, CL,max, the minimum lift coefficient, CL,min,
the RMS lift coefficient, CL,rms, the mean lift coefficient,
ĈL, the maximum drag coefficient, CD,max, the minimum
drag coefficient, CD,min, the RMS drag coefficient, CD,rms,
the mean drag coefficient, ĈD, the maximum moment coef-
ficient, CM,max, the minimum moment coefficient, CM,min,
the RMS moment coefficient, CM,rms and the mean moment
coefficient, ĈM for the case of R = 200, f/f0 = 1.0
and 0.1 ≤ A ≤ 1.0. It is clearly seen that the quantities
CL,max, CD,max, CL,rms, CD,rms and CM,rms are strictly
increasing as the oscillation amplitude, A, increases. How-
ever, we notice that CL,min, CD,min and CM,min are strictly
decreasing with the increase of A. Therefore, we may report
that magnitudes of drag, lift and moment coefficients are
increasing as the oscillation amplitude, A, increases. On the
other hand, it is notable that the quantities ĈL and ĈD have
a trend to increase as A increases.

V. CONCLUSION

The problem of flow past an oscillation cylinder in
a figure-8-type motion is investigated numerically. The
numerical method is based on Fourier spectral method

together with finite difference approximations. Quasi-lock-
on modes were verified at low oscillation amplitudes. The
effect of increasing the oscillation amplitude on the lift,
drag and moment coefficients is also investigated.
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