
 

 

Abstract—We introduce a general iterative scheme for 

finding a common of the set solutions of variational inequality 

problems for an inverse-strongly monotone mapping and the 

set of common fixed points of a countable family of 

nonexpansive mappings in a real Hilbert space. We show that 

the sequence converges strongly to a common element of the 

above two sets under some parameters controlling conditions. 

The results presented in this paper improve and extend the 

corresponding results announced by many others. 

 
Index Terms—Fixed point, variational inequality, 

optimization problem, nonexpansive mapping  

 

I. INTRODUCTION 

ET H  be  a real Hilbert space with inner product and 

norm, are denoted by ,  and ,  respectively. Let C be 

a nonempty closed convex subset of H, and let B: C H   

be a nonlinear map. The classical variational inequality which 

is denoted by VI(C,B) is to find v C such that Bv,u v  

0, u C.    The variational inequality has been extensively 

studied in literature. See, for example, [6], [7], [9], and the 

references therein. A mapping A of C into H is called   

inverse-strongly monotone, see [12]-[13], if there exists a 

positive real number  such that 
2

Au Av Au Av ,     

 u,v C.   A mapping T of C into itself is called 

nonexpansive if  Tu Tv u v , u,v C.      We denoted 

by F(T) the set of fixed points of T. A mapping f : C C  is 

said to be contractive with coefficient (0,1), if 

f (u) f (v)   u v , u,v C.    Let G be a strongly 

positive bounded linear operator on H: that is, there is a 

constant 0   with property 
2

Gx,x x , x H.     

Recently, many authors proposed some new iterative 

schemes for finding element in F(S) VI(C,B), see [1]-[3],  

[5], [8], [13], and reference therein. Moreover, Jung [4] 

introduced the following iterative scheme as the following. 

Let C a nonempty closed convex subset of a real Hilbert 

space H such that C C C.   Let A be an   inverse-

strongly monotone mapping of C into H and S be a 
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nonexpansive mapping of C into itself such that 

F(S) VI(C,A) .  Let u C  and let B be a strong 

positive bounded linear operator on C with constant 

(0,1)  and f be a contractive of C into itself with constant 

k (0,1).  Assume that 0  and 0 (1 ) / k.      Let 

n{x }  be a sequence generated by 1x x C,   

 n n n n C n n ny (u f (x )) (I (I B))SP (x Ax ),       
 

    n 1 n n n C n n nx (1 )y SP (y Ay ),n 1.     
 

They proved that under certain appropriate conditions 

imposed on n{ }, n{ },  and n{ }  of parameters, then the 

sequence n{x }converges strongly to q F(S) VI(C,A),   

which is a solution of the optimization problem: 
21

2 2
x F(S) VI(C,A)

min Bx,x x u h(x),


 
     

where h is a potential function for f . In this paper motivated 

by the iterative scheme proposed by Jung [4], we will 

introduce a general iterative for a common element of the set 

solution of variational inequality problem for an inverse-

strongly monotone mapping and the set of common fixed 

points of a countable family of nonexpansive mappings which 

will present in the main result. 

II. PRELIMINARIES 

Let C be a nonempty closed convex subset of  a real 

Hilbert space H. It well known that H satisfies the Opial’s 

condition, that is, for any sequence n{x }with n{x }  

converges weakly to x (denote by w

nx x ), the 

inequality: n n
n n

liminf x x liminf x y
 

   holds for every 

y H  with y x. For every point x H,  there exist a 

unique nearest point in C, denoted by CP x, such that 

Cx P x x y    for all y C.  CP is called the metric 

projection of H onto C. It well known that CP is a 

nonexpansive mapping of H onto C and satisfies 
2

C C C Cx y,P x P y P x P y ,    x,y H.  Moreover, CP x  

is characterized by the following properties: CP x C  and  

2 2 2

C Cx y x P x y P y ,     x H,y C.  It is easy to 

see that Cu VI(C,A) u P (u Au),     0.    

 

Proposition 2.1 (See [4 ].) Let C b e a bounded nonempty 

closed convex subset of a real Hilbert space H and let B  be 

an   inverse-strongly monotone mapping of C into H. 

Then, VI(C,B) is nonempty. 

 A set-valued mapping 
HM : H 2 is called monotone if 

for all x,y H, f Mx and g My imply x y,f g  0.  
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A monotone mapping HM : H 2  is maximal if the graph 

G(T) of T is not properly contained in the graph of any other 

monotone mapping. It well known that a monotone mapping 

T is maximal if and only if for
 
(x,f ) H H, x y,f g   

 
 0 for every (y,g) G(T) implies f Tx. Let B be an 

inverse-strongly monotone mapping C into H and let CN v  

be the normal cone to C at v, that is, CN v {w H :  v u,
 

w 0,  for all u C}, and define  

CBv N v, v C,
Tv

, v C.

 
 

 
 

Then T is maximal monotone and 0 Tv if and only if  

v VI(C,B) (see [9], [10], [12]). 

 The following Lemmas will be useful for proving our 

theorem in the next section. 

 

Lemma 2.1  (See [9].) Assume  na  is a sequence of 

nonnegative real numbers such that 

1 (1 )a ,   n n n na 0n   

where  n  is a sequence in (0,1) and  n  is a sequence in  

R such that 

(1) 1 ;
    nn  

(2) limsup 0





n

nn

or 1 .
    nn  

Then  lim 0.n na   

 

Lemma 2.2 (See [11].) Let K be a nonempty closed convex 

subset of a Banach space and let  nT be a sequence of 

mappings of K into itself. Suppose that 

 n 1 nn 1sup T z T z : z K .
      Then, for each   y K,  

 nT y converges strongly to some point of K. Moreover, let 

T be a mapping of K into itself defined by n nTy lim T y  

for all y K.  Then  n nlim sup Tz T z : z K 0.   
 

 

Lemma 2.3 (See [4 ].) In a real Hilbert space H, there holds 

the inequality 
2 2

2 , .z y z y z y     

 

Lemma 2.4 (See [4 ].) Let C be a bounded nonempty closed 

convex subset of a real Hilbert space H, and let g : C R  

   be a proper lower semicontinuous differentiable 

convex function. If *x is a solution to the minimization 

problem 
*

x C
g(x ) inf g(x),


  then

*g (x),x x  0,x C.  In 

particular, if *x solves the optimization problem 

 
21

2 2
x C
min Bx,x x u h(x),




    

then u f (I  
* *B))x ,x x 0,x C,     where h is a 

potential function for f .
 

 Lemma 2.5  (See [9].) Assume A is a strongly positive linear  

bounded operator on a Hilbert space H with coefficient 
 

0   and 
1

0 A .


    Then I A 1 .     

III. MAIN RESULT 

In this section, we prove a strong convergence theorem. 

Theorem 3.1. Let C be a nonempty closed convex subset of  

a real Hilbert space H such that C C C.   Let B be an   

inverse-strongly monotone mapping of C into H and n{T }be 

a sequence of nonexpansive mappings of C into itself such 

that n
n 1

: F(T ) VI(C,B) .




    Let u C  and let A be a 

strongly positive bounded linear operator on C with constant 

(0,1)  and f be a contractive of C into itself with constant 

(0,1).  Assume that 0  and 0 (1 ) / .       Let 

n{x }  be a sequence generated by 1x x C, 
 

 
n n n n n C n n ny (u f (x )) (I (I A))T P (x Bx ),       

 

     
                  (3.1) 

n 1 n n n n C n n nx (1 )y T P (y By ),n 1,     
 
     

 
          

 
where n n{ } [0,1),{ } [0,2 ],     and n{ } [0,1]  satisfy 

the following conditions: 

 i) n
n
lim 0;


    n
n 1

;




     

 ii) n [0,b)  for all n 0 and for some b (0,1);  

 iii) n [r,s]  for all n 0 and for some r, s with 0 r s    

       2 ;  

 iv) n 1 n n 1 n
n 1 n 1

, ,
 

 
 

         and n 1 n
n 1

.





     

Suppose that
  

n 1 n
n 1

sup{ T z T z : z D}





   
  

for any  

bounded subset D of C. Let T be mapping of H into itself 

defined by n
n

Tx lim T x,


 for all x C  and suppose that 

n
n 1

F(T) F(T ).




  Then, n{x }converges strongly to F(T)
 

VI(C,B), which is a solution of the optimization problem 

 

               

21
2 2

x F(T) VI(C,B)
min Ax,x x u h(x),



 
  

  
       (3.2)                                                  

 

where h is a potential function for f .  

 

Proof. From the condition i), we may assume that 
1

n (1 A ) .   Applying Lemma 2.5 and by the same 

argument as that in the proof of Jung ([4], Theorem 3.1, pp. 

6-7),we have that n(I (I A))u,u   n n1 Au,    

u 0, n nI (I A)) 1 (1 ) ,      n nt v x v ,  

and n nv v y v ,   where v , nt C n n nP (x Bx ),   

and n C n n nv P (y By ).  Let (I   A). It follows that  

n n n n n ny v u ( f (x ) v) (I )(T v)         
   

             n n n n n(1 (1 ) ) t v u x v        
 

                n f (v) v   
f (v) v u

n (1 )
((1 ) ) ,

  

 
     

 
and 

n 1 n n n n n nx v (1 )(y v) (T v T v)        
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                f (v) v u

n (1 )
max x v , .

  

 
   

By induction that  f (v) v u

n 1 (1 )
x v max x v , ,n 1.

  

 
     

Hence n{x }is bounded, so are n n n{y },{t },{v }, n{f(x )},  

n n{By },{Bx }, n n n n{T t },{ T t },  and n n{T v }. Moreover, we  

observe that 

 

n 1 n n 1 n n 1 n nt t x x Bx                   (3.3)                   

 

and  

 

 n 1 n n 1 n n 1 n nv v x x Bx .                  (3.4)                                   

 

It follows from the assumption and using (3.1), (3.3), and 

(3.4), we have 

 

n 1 n n 1 n n n 1 ny y ( u f (x ) T t )         
   

                  n 1 n 1 nx x   
 

                  n 1 n 1 n(1 (1 ) ) ) x x             
            (3.5) 

                  n n 1 n n(1 (1 ) ) Bx       

             
     n n 1 n nsup{ T z T z : z {t }}.                    

 

Then, we obtain 

 

n 2 n 1 n 1 n 1 nx x (1 (1 ) ) x x           
       (3.6) 

                        1 n 1 n 2 n 1 n 3G G G ,               

 

where  1 n n 1 nG sup u f (x ) T t : n ,     

 2 n nG sup Bx By : n ,   and 3 n nG sup T v

ny : n  n 1 n nsup{ T z T z : z {v }}.   Applying  

lemma 2.1 to (3.6), we have  

 

                                   n 1 n
n
lim x x 0.


                      (3.7) 

 

By using (3.3) and (3.5), we have 

 

                                     
n 1 n

n
lim t t 0


                       (3.8) 

 

and 

          

                 
                  

n 1 n
n
lim y y 0.


                    (3.9) 

 

From (3.1), we note that
 

 
n n n n n n ny T t (u f (x ) T t 0       n ,   (3.10)                                                                                                                        

 

and 

 

                n n n nv t y x .                  (3.11) 

 

Moreover, by (3.1), (3.11), and the condition ii), we have 

 

       
b

n 1 n n 1 n n n n(1 b)
x y x x T t y . 

           (3.12)        

 

From (3.12) and using (3.7) and (3.10), we obtain 

 

                               n 1 nx y 0   as n .             (3.13) 

We apply that 

 

n n n n 1 n 1 nx y x x x y 0       as n .    (3.14)       

   

Let p . By the same argument as in [4 ] ( Theorem 3.1, 

pp. 11-12), we can show  that 

 
2 2 2

n n n ny p u f (x ) p x p       
        

n n n2 u f (x ) t p     
                    (3.15) 

               

2

n n(1 (1 ) )r(s 2 ) Bx Bp .      
                          

                                                       
 

 

Then, we obtain 

 
2

n n(1 (1 ) ) r(s 2 ) Bx Bp      
          

2

n n n n n nu f (x ) p ( x p y p ) x y         
(3.16)

2

n n n n n nu f (x ) p ( x p y p ) x y             

    n n n2 u f (x ) p t p .                                         

 

It follows from the condition i), we have 

 

                nBx Bp 0  as n                           (3.17) 

 

Similarly, we can show that 

 
2 2 2

n n n n n n n nt p x p x t 2 x t ,Bx       
     (3.18)

 

                 
Bp

22

n nBx Bp .                                    

 

Then, we obtain 

 
2

n n n(1 (1 ) ) x t   

2

n n n n n nu f (x ) p ( x p y p ) x y         
                      

 n n n n n2(1 (1 ) ) x t ,Bx Bp      
       (3.19)

 

22

n n n(1 (1 ) ) Bx Bp         

    n n n2 u f (x ) p t p .                                       

 

It follows from (3.14), (3.17), and the condition i), we obtain 

 

                              n n
n
lim x t 0


                              (3.20) 

and so 

 

n n n n n ny t y x x t 0      as n .             (3.21) 

 

For p , we define a subset D of H by D y C: y p    

K , where  f (p) p u

(1 )
K max p x , .

  

 
   Clearly,  D  is 
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bounded, closed convex subset of H, T(D) D and n{t }  

D. By our assumption, where  n 1 n
n 1

sup T z T z : z





 
 

 D  and Lemma 2.2, we have  n
n
lim sup Tz T z : z D


   

0. Then we have 
  

 n n
n
lim sup Tz T z : z {t }


  
n
lim


 

 nsup Tz T z : z D 0.   This implies that 

 
 

                             n nlim Tz T z 0.                     (3.22) 

 

From (3.1), the condition i), and using  (3.10), (3.19), we 

note that 

 

n n n n n n n nT t t T t y y t 0     
     

 (3.23) 

 

and   

 

n n n 1 n n n n n n n nT t x (u f (x ) T t y T t          

0 as n .                                                                 (3.24) 

 

Using  (3.13), and (3.19),  we have n 1 nx t 0,    as 

n . Then we have 

 
n n n n n n n n 1 n 1 nTt t Tt T t T t x x t 0.          

  
                                                                                  (3.25) 

 

Then, from (3.21) and (3.25), we obtain 

 

n n n n n n ny Tt y t t T t 0       as n .      (3.26) 

 

Next we show that n
n

limsup u ( f ) , y 0,


      where 

  is a solution of the optimization (3.2). First we prove that  

n
n

limsup u ( f ) ,Tt 0.


      Since n{t }
 

is bounded, 

we can choose a subsequence ni
{t } of n{t }such that 

 

n n
n

limsup u ( f ) ,T t


     

 (3.27) 

ni
n

i
lim u ( f ) ,T t .


       

 

Without loss of generality, we may assume that 
w

ni
t   

 z, where z C. We will show that z . First, let us show 

n
n 1

z F(T) F(T ).




   Assume that z F(T). Since 
w

ni
t   

 z, nz T z, and (2.23), it follows by the Opial’s condition 

that 

 

n ni ii i
liminf t z liminf t Tz

 
    

      n n ni i ii
liminf t Tt Tt Tz


   

       (3.28)

    nii
liminf Tt Tz


     

 

                       nii
liminf t z .


          

               

This is a contradiction. Hence z F(T). From the property 

of the maximal monotone, B is an   inverse-strongly 

monotone, and (3.20), we obtain z VI(C,B). Therefore,
 z . By Lemma 2.4 and (3.25), we have 

 

               
n

n

limsup u ( f ) ,Tt 0.


                    (3.29) 

 

Hence, by (3.26) and (3.29), we obtain 

 

n
n

limsup u ( f ) , y


       

               
n n

n

limsup u ( f ) , y Tt


       

                  n
n

limsup u ( f ) ,Tt


        

 

              
n n

n

limsup u ( f ) y Tt


       

                 n
n

limsup u ( f ) ,Tt


        

               0.   

 

Finally, we prove that n nlim x 0,   where is a 

solution of (3.2). We observe that 

 
2 2

n 1 n nx (1 2((1 ) ) ) x         
               

                       

22 2
n n((1 ) ) x   

                    (3.30)  

                       n n n n2 x y x      

                       n n2 u ( f ) ,y          

            

and applying Lemma 2.1, 2.3,  and 2.4 to (3.30), we have 

n
n
lim x 0.


  This completes the proof. 

IV. CONCLUSION 

We introduced an iterative scheme for finding a common 

element of the set solutions of variational inequality problems 

and the set of common fixed point of a countable family of 

nonexpansive. Then, we proved that the sequence of the 

proposed iterative scheme converges strongly to a common 

element of the above two sets, which is a solution of a 

certain optimization problems. Theorem 3.1 improve and 

extends Theorem 3.1 of Jung [4] and reference therein in the 

sense that our  iterative scheme and convergence theorem  

are for the more general class of nonexpansive mappings. 
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