A General Iterative Scheme for Variational Inequality Problems and Fixed Point Problems

Wichan Khongtham

Abstract—We introduce a general iterative scheme for finding a common of the set solutions of variational inequality problems for an inverse-strongly monotone mapping and the set of common fixed points of a countable family of nonexpansive mappings in a real Hilbert space. We show that the sequence converges strongly to a common element of the above two sets under some parameters controlling conditions. The results presented in this paper improve and extend the corresponding results announced by many others.

Index Terms—Fixed point, variational inequality, optimization problem, nonexpansive mapping

I. INTRODUCTION

ET H be a real Hilbert space with inner product and Inorm, are denoted by $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$, respectively. Let C be a nonempty closed convex subset of H, and let $B: C \rightarrow H$ be a nonlinear map. The classical variational inequality which is denoted by VI(C,B) is to find $v \in C$ such that $\langle Bv, u - v \rangle$ $\geq 0, \forall u \in C$. The variational inequality has been extensively studied in literature. See, for example, [6], [7], [9], and the references therein. A mapping A of C into H is called α inverse-strongly monotone, see [12]-[13], if there exists a positive real number α such that $\langle Au - Av \rangle \ge \alpha \|Au - Av\|^2$, $\forall u, v \in C$. A mapping T of C into itself is called nonexpansive if $\|Tu - Tv\| \le \|u - v\|, \forall u, v \in C$. We denoted by F(T) the set of fixed points of T. A mapping $f: C \rightarrow C$ is said to be contractive with coefficient $\alpha \in (0,1)$, if $\|f(u)-f(v)\| \le \alpha \|u-v\|, \forall u, v \in C.$ Let G be a strongly positive bounded linear operator on H: that is, there is a constant $\overline{\gamma} > 0$ with property $\langle Gx, x \rangle \ge \overline{\gamma} \|x\|^2, \forall x \in H.$ Recently, many authors proposed some new iterative schemes for finding element in $F(S) \cap VI(C, B)$, see [1]-[3], [5], [8], [13], and reference therein. Moreover, Jung [4] introduced the following iterative scheme as the following. Let C a nonempty closed convex subset of a real Hilbert space H such that $C \pm C \subset C$. Let A be an α - inversestrongly monotone mapping of C into H and S be a

nonexpansive mapping of C into itself such that $F(S) \cap VI(C, A) \neq \emptyset$. Let $u \in C$ and let B be a strong positive bounded linear operator on C with constant $\overline{\gamma} \in (0,1)$ and f be a contractive of C into itself with constant $k \in (0,1)$. Assume that $\mu > 0$ and $0 < \gamma < (1+\mu)\overline{\gamma}/k$. Let $\{x_n\}$ be a sequence generated by $x_1 = x \in C$,

$$\begin{split} y_n &= \alpha_n (u + \gamma f(x_n)) + (I - \alpha_n (I + \mu B)) SP_C(x_n - \lambda_n A x_n), \\ x_{n+1} &= (1 - \beta_n) y_n + \beta_n SP_C(y_n - \lambda_n A y_n), n \geq 1. \end{split}$$

They proved that under certain appropriate conditions imposed on $\{\alpha_n\}, \{\lambda_n\}$, and $\{\beta_n\}$ of parameters, then the sequence $\{x_n\}$ converges strongly to $q \in F(S) \cap VI(C, A)$, which is a solution of the optimization problem:

$$\min_{\mathbf{E}F(\mathbf{S}) \cap \mathrm{VI}(\mathbf{C},\mathbf{A})} \frac{\mu}{2} \langle \mathbf{B}\mathbf{x}, \mathbf{x} \rangle + \frac{1}{2} \| \mathbf{x} - \mathbf{u} \|^2 - \mathbf{h}(\mathbf{x}),$$

where h is a potential function for γf . In this paper motivated by the iterative scheme proposed by Jung [4], we will introduce a general iterative for a common element of the set solution of variational inequality problem for an inversestrongly monotone mapping and the set of common fixed points of a countable family of nonexpansive mappings which will present in the main result.

II. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space H. It well known that H satisfies the Opial's condition, that is, for any sequence $\{x_n\}$ with $\{x_n\}$ converges weakly to x (denote by $x_n \xrightarrow{w} x$), the inequality: $\liminf_{n\to\infty} ||x_n - x|| < \liminf_{n\to\infty} ||x_n - y||$ holds for every $y \in H$ with $y \neq x$. For every point $x \in H$, there exist a unique nearest point in C, denoted by $P_C x$, such that $||x - P_C x|| \le ||x - y||$ for all $y \in C$. P_C is called the metric projection of H onto C. It well known that P_C is a nonexpansive mapping of H onto C and satisfies $\langle x - y, P_C x - P_C y \rangle \ge ||P_C x - P_C y||^2$, $\forall x, y \in H$. Moreover, $P_C x$ is characterized by the following properties: $P_C x \in C$ and $||x - y||^2 \ge ||x - P_C x||^2 + ||y - P_C y||^2$, $x \in H, y \in C$. It is easy to see that $u \in VI(C, A) \Leftrightarrow u = P_C(u - \lambda Au)$, $\lambda > 0$.

Proposition 2.1 (See [4].) Let C b e a bounded nonempty closed convex subset of a real Hilbert space H and let B be an α - inverse-strongly monotone mapping of C into H. Then, VI(C,B) is nonempty.

A set-valued mapping $M: H \to 2^{H}$ is called monotone if for all $x, y \in H$, $f \in Mx$ and $g \in My$ imply $\langle x - y, f - g \rangle \ge 0$.

Manuscript received February 13, 2014; revised April 3, 2014. This work was supported in part by Maejo University, Chiang Mai, Thailand, 50290,under Grant OT-57-005.

W. Khongtham is with Faculty of Science, Maejo University, Chiang Mai, Thailand, 5029 (PHONE: 66-5387-3519; Fax: 66-5387-8225; e-mail: wichan k@mju.ac.th).

Proceedings of the World Congress on Engineering 2014 Vol II, WCE 2014, July 2 - 4, 2014, London, U.K.

A monotone mapping $M: H \rightarrow 2^{H}$ is maximal if the graph G(T) of T is not properly contained in the graph of any other monotone mapping. It well known that a monotone mapping T is maximal if and only if for $(x, f) \in H \times H, \langle x - y, f - g \rangle \ge 0$ for every $(y,g) \in G(T)$ implies $f \in Tx$. Let B be an inverse-strongly monotone mapping C into H and let $N_{C}v$ be the normal cone to C at v, that is, $N_{C}v = \{w \in H : \langle v - u, w \rangle \ge 0$, for all $u \in C\}$, and define

$$Tv = \begin{cases} Bv + N_{C}v, v \in C, \\ \emptyset, v \neq C. \end{cases}$$

Then T is maximal monotone and $0 \in Tv$ if and only if $v \in VI(C, B)$ (see [9], [10], [12]).

The following Lemmas will be useful for proving our theorem in the next section.

Lemma 2.1 (See [9].) Assume $\{a_n\}$ is a sequence of nonnegative real numbers such that

$$a_{n+1} \leq (1-\alpha_n)a_n + \delta_n, \ n \geq 0$$

where $\{\alpha_n\}$ is a sequence in (0,1) and $\{\delta_n\}$ is a sequence in R such that

(1)
$$\sum_{n=1}^{\infty} \alpha_n = \infty;$$

(2) $\limsup \frac{\delta_n}{\delta_n} < 0 \text{ or } \sum_{n=1}^{\infty} |\delta_n|$

(2)
$$\limsup_{n \to \infty} \frac{o_n}{a_n} \le 0 \text{ or } \sum_{n=1}^{\infty} |\delta_n| < \infty.$$

Then $\lim_{n \to \infty} a_n = 0.$

Lemma 2.2 (See [11].) Let K be a nonempty closed convex subset of a Banach space and let $\{T_n\}$ be a sequence of mappings of K into itself. Suppose that $\sum_{n=1}^{\infty} \sup\{\|T_{n+1}z - T_nz : z \in K\|\} < \infty$. Then, for each $y \in K$, $\{T_ny\}$ converges strongly to some point of K. Moreover, let T be a mapping of K into itself defined by $Ty = \lim_{n \to \infty} T_n y$ for all $y \in K$. Then $\lim_{n \to \infty} \sup\{\|Tz - T_nz\| : z \in K\} = 0$.

Lemma 2.3 (See [4].) In a real Hilbert space H, there holds the inequality

$$||z+y||^2 \le ||z||^2 + 2\langle y, z+y \rangle.$$

Lemma 2.4 (See [4].) Let C be a bounded nonempty closed convex subset of a real Hilbert space H, and let $g: C \to R$ $\cup \{\infty\}$ be a proper lower semicontinuous differentiable convex function. If x^* is a solution to the minimization problem $g(x^*) = \inf_{x \in C} g(x)$, then $\langle g'(x), x - x^* \rangle \ge 0, x \in C$. In

particular, if x^{*} solves the optimization problem

$$\min_{\mathbf{x}\in\mathbf{C}}\frac{\mu}{2}\langle\mathbf{B}\mathbf{x},\mathbf{x}\rangle+\frac{1}{2}\|\mathbf{x}-\mathbf{u}\|^2-\mathbf{h}(\mathbf{x}),$$

then $\langle u + (\gamma f - (I + \mu B))x^*, x - x^* \rangle \le 0, x \in C$, where h is a potential function for γf .

Lemma 2.5 (See [9].) Assume A is a strongly positive linear bounded operator on a Hilbert space H with coefficient

$$\overline{\gamma} > 0 \ \text{and} \ 0 < \rho \le \left\|A\right\|^{-1}. \ \text{Then} \ \left\|I - \rho A\right\| \le 1 - \rho \overline{\gamma}.$$

III. MAIN RESULT

In this section, we prove a strong convergence theorem. **Theorem 3.1.** Let C be a nonempty closed convex subset of a real Hilbert space H such that $C \pm C \subset C$. Let B be an α inverse-strongly monotone mapping of C into H and $\{T_n\}$ be a sequence of nonexpansive mappings of C into itself such that $\Omega := \bigcap_{n=1}^{\infty} F(T_n) \cap VI(C, B) \neq \emptyset$. Let $u \in C$ and let A be a strongly positive bounded linear operator on C with constant $\overline{\gamma} \in (0,1)$ and f be a contractive of C into itself with constant $\alpha \in (0,1)$. Assume that $\mu > 0$ and $0 < \gamma < (1+\mu)\overline{\gamma} / \alpha$. Let $\{x_n\}$ be a sequence generated by $x_1 = x \in C$,

$$y_{n} = \alpha_{n}(u + \gamma f(x_{n})) + (I - \alpha_{n}(I + \mu A))T_{n}P_{C}(x_{n} - \lambda_{n}Bx_{n}),$$
(3.1)
$$x_{n+1} = (I - \beta_{n})y_{n} + \beta_{n}T_{n}P_{C}(y_{n} - \lambda_{n}By_{n}), n \ge 1,$$

where $\{\alpha_n\} \subset [0,1), \{\lambda_n\} \subset [0,2\alpha]$, and $\{\beta_n\} \subset [0,1]$ satisfy the following conditions:

i)
$$\lim_{n\to\infty} \alpha_n = 0; \quad \sum_{n=1}^{\infty} \alpha_n = \infty;$$

- ii) $\beta_n \in [0, b)$ for all $n \ge 0$ and for some $b \in (0, 1)$;
- iii) $\lambda_n \in [r,s]$ for all $n \ge 0$ and for some r, s with $0 < r < s < 2\alpha$;

iv) $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$, $\sum_{n=1}^{\infty} |\beta_{n+1} - \beta_n| < \infty$, and $\sum_{n=1}^{\infty} |\lambda_{n+1} - \lambda_n| < \infty$. Suppose that $\sum_{n=1}^{\infty} \sup\{\|T_{n+1}z - T_nz\|: z \in D\} < \infty$ for any bounded subset D of C. Let T be mapping of H into itself defined by $Tx = \lim_{n \to \infty} T_nx$, for all $x \in C$ and suppose that $F(T) = \bigcap_{n=1}^{\infty} F(T_n)$. Then, $\{x_n\}$ converges strongly to $\omega \in F(T) \cap VI(C, B)$, which is a solution of the optimization problem

$$\min_{x \in F(T) \cap VI(C,B)} \frac{\mu}{2} \langle Ax, x \rangle + \frac{1}{2} \|x - u\|^2 - h(x), \qquad (3.2)$$

where h is a potential function for γf .

and

$$\|\mathbf{x}_{n+1} - \mathbf{v}\| = \|(1 - \beta_n)(\mathbf{y}_n - \mathbf{v}) + \beta_n(\mathbf{T}_n \mathbf{v}_n - \mathbf{T}_n \mathbf{v})$$

Proceedings of the World Congress on Engineering 2014 Vol II, WCE 2014, July 2 - 4, 2014, London, U.K.

$$\leq \max\left\{ \left\| x_n - v \right\|, \frac{\left\| y_1^{f(v) - \overline{\kappa} v} \right\| + \left\| u \right\|}{(1+\mu)\overline{\gamma} - \gamma \alpha} \right\}.$$
By induction that $\left\| x_n - v \right\| \leq \max\left\{ \left\| x_1 - v \right\|, \frac{\left\| y_1^{f(v) - \overline{\kappa} v} \right\| + \left\| u \right\|}{(1+\mu)\overline{\gamma} - \gamma \alpha} \right\}, n \geq 1.$
Hence $\{x_n\}$ is bounded, so are $\{y_n\}, \{t_n\}, \{v_n\}, \{f(x_n)\}, \{By_n\}, \{Bx_n\}, \{T_n t_n\}, \{\overline{\kappa}T_n t_n\}, \text{ and } \{T_n v_n\}.$ Moreover, we observe that

$$\|\mathbf{t}_{n+1} - \mathbf{t}_{n}\| \le \|\mathbf{x}_{n+1} - \mathbf{x}_{n}\| + |\lambda_{n+1} - \lambda_{n}| \|\mathbf{B}\mathbf{x}_{n}\|$$
 (3.3)

and

$$\|\mathbf{v}_{n+1} - \mathbf{v}_{n}\| \le \|\mathbf{x}_{n+1} - \mathbf{x}_{n}\| + |\lambda_{n+1} - \lambda_{n}| \|\mathbf{B}\mathbf{x}_{n}\|.$$
 (3.4)

It follows from the assumption and using (3.1), (3.3), and (3.4), we have

$$\begin{split} \|y_{n+1} - y_{n}\| &\leq |\alpha_{n+1} - \alpha_{n}|(\|u\| + \|\gamma f(x_{n})\| + \|\overline{\kappa}\| \|T_{n+1}t_{n}\|) \\ &+ \alpha_{n+1}\gamma \alpha \|x_{n+1} - x_{n}\| \\ &+ (1 - (1 + \mu)\overline{\gamma})\alpha_{n+1}) \|x_{n+1} - x_{n}\| \\ &+ (1 - (1 + \mu)\overline{\gamma}\alpha_{n}) |\lambda_{n+1} - \lambda_{n}| \|Bx_{n}\| \\ &+ \alpha_{n}\overline{\kappa} \sup\{\|T_{n+1}z - T_{n}z\| : z \in \{t_{n}\}\}. \end{split}$$
(3.5)

Then, we obtain

$$\begin{aligned} \| \mathbf{x}_{n+2} - \mathbf{x}_{n+1} \| &\leq (1 - (1 + \mu)\overline{\gamma} - \gamma \alpha) \alpha_{n+1} \| \mathbf{x}_{n+1} - \mathbf{x}_{n} \| \\ &+ G_{1} |\alpha_{n+1} - \alpha_{n}| + G_{2} |\lambda_{n+1} - \lambda_{n}| + G_{3}, \end{aligned}$$
(3.6)

where $G_1 = \sup\{\|u\| + \gamma \|f(x_n)\| + \|\overline{\kappa}\| \|T_{n+1}t_n\| : n \in N\},\$ $G_2 = \sup\{\|Bx_n\| + \|By_n\| : n \in N\}, \text{ and } G_3 = \sup\{\|T_nv_n\| + \|y_n\| : n \in N\} + \overline{\kappa}\sup\{\|T_{n+1}z - T_nz\| : z \in \{v_n\}\}.$ Applying lemma 2.1 to (3.6), we have

$$\lim_{n \to \infty} \| \mathbf{x}_{n+1} - \mathbf{x}_n \| = 0.$$
 (3.7)

By using (3.3) and (3.5), we have

$$\lim_{n \to \infty} \| \mathbf{t}_{n+1} - \mathbf{t}_n \| = 0 \tag{3.8}$$

and

$$\lim_{n \to \infty} \|\mathbf{y}_{n+1} - \mathbf{y}_n\| = 0.$$
(3.9)

From (3.1), we note that

$$\left\| \mathbf{y}_{n} - \mathbf{T}_{n} \mathbf{t}_{n} \right\| \leq \alpha_{n} \left\| (\mathbf{u} + \gamma f(\mathbf{x}_{n}) - \vec{\kappa} \mathbf{T}_{n} \mathbf{t}_{n} \right\| \to 0 \ n \to \infty, \quad (3.10)$$

and

$$\|\mathbf{v}_{n} - \mathbf{t}_{n}\| \le \|\mathbf{y}_{n} - \mathbf{x}_{n}\|.$$
 (3.11)

Moreover, by (3.1), (3.11), and the condition ii), we have

$$\|\mathbf{x}_{n+1} - \mathbf{y}_{n}\| \leq \frac{b}{(1-b)} \Big[\|\mathbf{x}_{n+1} - \mathbf{x}_{n}\| + \|\mathbf{T}_{n}\mathbf{t}_{n} - \mathbf{y}_{n}\| \Big].$$
(3.12)

From (3.12) and using (3.7) and (3.10), we obtain

$$\|\mathbf{x}_{n+1} - \mathbf{y}_n\| \to 0 \text{ as } n \to \infty.$$
 (3.13)

We apply that

$$\|\mathbf{x}_{n} - \mathbf{y}_{n}\| \le \|\mathbf{x}_{n} - \mathbf{x}_{n+1}\| + \|\mathbf{x}_{n+1} - \mathbf{y}_{n}\| \to 0 \text{ as } n \to \infty.$$
 (3.14)

Let $p \in \Omega$. By the same argument as in [4] (Theorem 3.1, pp. 11-12), we can show that

$$\begin{aligned} \left\| \mathbf{y}_{n} - \mathbf{p} \right\|^{2} &\leq \alpha_{n} \left\| \mathbf{u} + \gamma \mathbf{f}(\mathbf{x}_{n}) - \overline{\kappa} \mathbf{p} \right\|^{2} + \left\| \mathbf{x}_{n} - \mathbf{p} \right\|^{2} \\ &+ 2\alpha_{n} \left\| \mathbf{u} + \gamma \mathbf{f}(\mathbf{x}_{n}) - \overline{\kappa} \right\| \left\| \mathbf{t}_{n} - \mathbf{p} \right\| \\ &+ (1 - \alpha_{n} (1 + \mu) \overline{\gamma}) \mathbf{r}(\mathbf{s} - 2\alpha) \left\| \mathbf{B} \mathbf{x}_{n} - \mathbf{B} \mathbf{p} \right\|^{2}. \end{aligned}$$
(3.15)

Then, we obtain

$$\begin{split} &-(1-\alpha_{n}(1+\mu)\overline{\gamma})r(s-2\alpha)\left\|\mathbf{B}\mathbf{x}_{n}-\mathbf{B}\mathbf{p}\right\|^{2} \\ &\leq \alpha_{n}\left\|\gamma\mathbf{u}+f(\mathbf{x}_{n})-\overline{\kappa}\mathbf{p}\right\|^{2}+\left(\left\|\mathbf{x}_{n}-\mathbf{p}\right\|+\left\|\mathbf{y}_{n}-\mathbf{p}\right\|\right)\left\|\mathbf{x}_{n}-\mathbf{y}_{n}\right\| \\ &\leq \alpha_{n}\left\|\gamma\mathbf{u}+f(\mathbf{x}_{n})-\overline{\kappa}\mathbf{p}\right\|^{2}+\left(\left\|\mathbf{x}_{n}-\mathbf{p}\right\|+\left\|\mathbf{y}_{n}-\mathbf{p}\right\|\right)\left\|\mathbf{x}_{n}-\mathbf{y}_{n}\right\| \\ &+2\alpha_{n}\left\|\gamma\mathbf{u}+f(\mathbf{x}_{n})-\overline{\kappa}\mathbf{p}\right\|\left\|\mathbf{t}_{n}-\mathbf{p}\right\|. \end{split}$$

It follows from the condition i), we have

$$\left\|\mathbf{B}\mathbf{x}_{n} - \mathbf{B}\mathbf{p}\right\| \to 0 \text{ as } n \to \infty \tag{3.17}$$

Similarly, we can show that

$$\|\mathbf{t}_{n} - \mathbf{p}\|^{2} \leq \|\mathbf{x}_{n} - \mathbf{p}\|^{2} - \|\mathbf{x}_{n} - \mathbf{t}_{n}\|^{2} + 2\lambda_{n} \langle \mathbf{x}_{n} - \mathbf{t}_{n}, \mathbf{B}\mathbf{x}_{n} - \mathbf{B}\mathbf{p} \rangle - \lambda_{n}^{2} \|\mathbf{B}\mathbf{x}_{n} - \mathbf{B}\mathbf{p}\|^{2}.$$
(3.18)

Then, we obtain

$$\begin{aligned} &(1-\alpha_{n}(1+\mu)\overline{\gamma})\left\|\mathbf{x}_{n}-\mathbf{t}_{n}\right\|^{2} \\ &\leq \alpha_{n}\left\|\mathbf{u}+\gamma f(\mathbf{x}_{n})-\overline{\kappa}p\right\|^{2}+\left(\left\|\mathbf{x}_{n}-p\right\|+\left\|\mathbf{y}_{n}-p\right\|\right)\left\|\mathbf{x}_{n}-\mathbf{y}_{n}\right\| \\ &+2(1-\alpha_{n}(1+\mu)\overline{\gamma})\lambda_{n}\left\langle\mathbf{x}_{n}-\mathbf{t}_{n},\mathbf{B}\mathbf{x}_{n}-\mathbf{B}p\right\rangle \\ &-(1-\alpha_{n}(1+\mu)\overline{\gamma})\lambda_{n}^{2}\left\|\mathbf{B}\mathbf{x}_{n}-\mathbf{B}p\right\|^{2} \\ &+2\alpha_{n}\left\|\mathbf{u}+\gamma f(\mathbf{x}_{n})-\overline{\kappa}p\right\|\left\|\mathbf{t}_{n}-p\right\|. \end{aligned} \tag{3.19}$$

It follows from (3.14), (3.17), and the condition i), we obtain

$$\lim_{n \to \infty} \left\| \mathbf{x}_n - \mathbf{t}_n \right\| = 0 \tag{3.20}$$

and so

$$\|\mathbf{y}_{n} - \mathbf{t}_{n}\| \le \|\mathbf{y}_{n} - \mathbf{x}_{n}\| + \|\mathbf{x}_{n} - \mathbf{t}_{n}\| \to 0 \text{ as } n \to \infty.$$
 (3.21)

$$\begin{split} & \text{For } p \in \Omega \text{, we define a subset } D \text{ of } H \text{ by } D = \left\{ y \in C : \left\| y - p \right\| \\ & \leq K \right\} \text{, where } K = \max \left\{ \left\| p - x \right\|, \frac{\left\| \gamma f(p) - \overline{\kappa} p \right\| + \left\| u \right\|}{(1 + \mu) \overline{\gamma} - \gamma \alpha} \right\} \text{. Clearly, } D \text{ is } \end{split}$$

ISBN: 978-988-19253-5-0 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online) Proceedings of the World Congress on Engineering 2014 Vol II, WCE 2014, July 2 - 4, 2014, London, U.K.

bounded, closed convex subset of H, $T(D) \subseteq D$ and $\{t_n\}$ \subseteq D. By our assumption, where $\sum_{n=1}^{\infty} \sup \{ \|T_{n+1}z - T_nz\| : z \in \mathbb{C} \}$ D} and Lemma 2.2, we have $\lim_{n\to\infty} \sup\{||Tz - T_nz|| : z \in D\}$ = 0. Then we have $\lim_{n \to \infty} \sup \left\{ \|Tz - T_n z\| : z \in \{t_n\} \right\} \le \lim_{n \to \infty}$ $\sup\{||Tz - T_n z|| : z \in D\} = 0$. This implies that

$$\lim_{n \to \infty} \left\| \operatorname{Tz} - \operatorname{T}_n z \right\| = 0. \tag{3.22}$$

From (3.1), the condition i), and using (3.10), (3.19), we note that

$$\|T_n t_n - t_n\| \le \|T_n t_n - y_n\| + \|y_n - t_n\| \to 0$$
(3.23)

and

$$\begin{aligned} \left\| T_n t_n - x_{n+1} \right\| &\leq \alpha_n \left\| (u + \gamma f(x_n) - \overline{\kappa} T_n t_n \right\| + \beta_n \left\| y_n - T_n t_n \right\| \to \\ 0 \text{ as } n \to \infty. \end{aligned} \tag{3.24}$$

Using (3.13), and (3.19), we have $||x_{n+1}-t_n|| \to 0$, as $n \rightarrow \infty$. Then we have

$$\|Tt_n - t_n\| \le \|Tt_n - T_nt_n\| + \|T_nt_n - x_{n+1}\| + \|x_{n+1} - t_n\| \to 0.$$
(3.25)

Then, from (3.21) and (3.25), we obtain

$$||y_n - Tt_n|| \le ||y_n - t_n|| + ||t_n - T_nt_n|| \to 0 \text{ as } n \to \infty.$$
 (3.26)

Next we show that $\limsup \langle u + (\gamma f - \overline{\kappa})\omega, y_n - \omega \rangle \leq 0$, where ω is a solution of the optimization (3.2). First we prove that $\limsup \langle u + (\gamma f - \overline{\kappa})\omega, Tt_n - \omega \rangle \leq 0. \text{ Since } \{t_n\} \text{ is bounded},$ $n \rightarrow \infty$

we can choose a subsequence $\{t_{n_i}\}$ of $\{t_n\}$ such that

$$\begin{split} &\limsup_{n \to \infty} \left\langle u + (\gamma f - \overline{\kappa}) \omega, T_n t_n - \omega \right\rangle \\ &= \lim_{i \to \infty} \left\langle u + (\gamma f - \overline{\kappa}) \omega, T_n t_{n_i} - \omega \right\rangle. \end{split} \tag{3.27}$$

Without loss of generality, we may assume that $t_n \xrightarrow{w} \rightarrow t_n$

z, where $z \in C$. We will show that $z \in \Omega$. First, let us show $z \in F(T) = \bigcap_{n=1}^{\infty} F(T_n)$. Assume that $z \notin F(T)$. Since $t_{n_1} \xrightarrow{w} F(T)$. z, $z \neq T_n z$, and (2.23), it follows by the Opial's condition that

$$\begin{split} \liminf_{i \to \infty} \left\| \mathbf{t}_{\mathbf{n}_{i}} - \mathbf{z} \right\| &< \liminf_{i \to \infty} \left\| \mathbf{t}_{\mathbf{n}_{i}} - \mathbf{T} \mathbf{z} \right\| \\ &\leq \liminf_{i \to \infty} \left(\left\| \mathbf{t}_{\mathbf{n}_{i}} - \mathbf{T} \mathbf{t}_{\mathbf{n}_{i}} \right\| + \left\| \mathbf{T} \mathbf{t}_{\mathbf{n}_{i}} - \mathbf{T} \mathbf{z} \right\| \right) \\ &= \liminf_{i \to \infty} \left\| \mathbf{T} \mathbf{t}_{\mathbf{n}_{i}} - \mathbf{T} \mathbf{z} \right\| \end{split} \tag{3.28}$$

$$\leq \liminf_{i\to\infty} \|\mathbf{t}_{n_i} - \mathbf{z}\|.$$

This is a contradiction. Hence $z \in F(T)$. From the property of the maximal monotone, B is an α – inverse-strongly monotone, and (3.20), we obtain $z \in VI(C, B)$. Therefore, $z \in \Omega$. By Lemma 2.4 and (3.25), we have

$$\limsup_{n \to \infty} \left\langle \mathbf{u} + (\gamma \mathbf{f} - \overline{\kappa})\omega, \mathbf{T}\mathbf{t}_n - \omega \right\rangle \le 0.$$
(3.29)

Hence, by (3.26) and (3.29), we obtain

n

$$\begin{split} \limsup_{n \to \infty} & \left\langle \mathbf{u} + (\gamma \mathbf{f} - \overline{\kappa}) \boldsymbol{\omega}, \mathbf{y}_n - \boldsymbol{\omega} \right\rangle \\ & \leq \limsup_{n \to \infty} \left\langle \mathbf{u} + (\gamma \mathbf{f} - \overline{\kappa}) \boldsymbol{\omega}, \mathbf{y}_n - \mathbf{T} \mathbf{t}_n \right\rangle \\ & + \limsup_{n \to \infty} \left\langle \mathbf{u} + (\gamma \mathbf{f} - \overline{\kappa}) \boldsymbol{\omega}, \mathbf{T} \mathbf{t}_n - \boldsymbol{\omega} \right\rangle \\ & \leq \limsup_{n \to \infty} \left\| \mathbf{u} + (\gamma \mathbf{f} - \overline{\kappa}) \boldsymbol{\omega} \right\| \left\| \mathbf{y}_n - \mathbf{T} \mathbf{t}_n \right\| \\ & + \limsup_{n \to \infty} \left\langle \mathbf{u} + (\gamma \mathbf{f} - \overline{\kappa}) \boldsymbol{\omega}, \mathbf{T} \mathbf{t}_n - \boldsymbol{\omega} \right\rangle \\ & \leq \mathbf{0} \end{split}$$

Finally, we prove that $\lim_{n\to\infty} \|x_n - \omega\| = 0$, where ω is a solution of (3.2). We observe that

$$\begin{aligned} \left\| \mathbf{x}_{n+1} - \boldsymbol{\omega} \right\|^2 &\leq (1 - 2((1+\mu)\overline{\gamma} - \gamma\alpha)\alpha_n) \left\| \mathbf{x}_n - \boldsymbol{\omega} \right\|^2 \\ &+ \alpha_n^2 ((1+\mu)\overline{\gamma})^2 \left\| \mathbf{x}_n - \boldsymbol{\omega} \right\|^2 \\ &+ 2\alpha_n \gamma \alpha \left\| \mathbf{x}_n - \boldsymbol{\omega} \right\| \left\| \mathbf{y}_n - \mathbf{x}_n \right\| \\ &+ 2\alpha_n \left\langle \mathbf{u} + (\gamma \mathbf{f} - \overline{\kappa}) \boldsymbol{\omega}, \mathbf{y}_n - \boldsymbol{\omega} \right\rangle \end{aligned}$$
(3.30)

and applying Lemma 2.1, 2.3, and 2.4 to (3.30), we have $\lim \|\mathbf{x}_n - \boldsymbol{\omega}\| = 0$. This completes the proof. n→∞

IV. CONCLUSION

We introduced an iterative scheme for finding a common element of the set solutions of variational inequality problems and the set of common fixed point of a countable family of nonexpansive. Then, we proved that the sequence of the proposed iterative scheme converges strongly to a common element of the above two sets, which is a solution of a certain optimization problems. Theorem 3.1 improve and extends Theorem 3.1 of Jung [4] and reference therein in the sense that our iterative scheme and convergence theorem are for the more general class of nonexpansive mappings.

ACKNOWLEDGMENT

We would like to thank the anonymous referee for valuable comments.

REFERENCES

[1] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, "Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space," Nonlinear Anal., vol. 67 pp. 2350-2360, 2007.

Proceedings of the World Congress on Engineering 2014 Vol II, WCE 2014, July 2 - 4, 2014, London, U.K.

- [2] F. E. Browder and W. V. Petryshyn, "Construction of fixed points of nonlinear mappings in Hilbert space," J. Math. Anal. Appl., vol. 20, pp. 197-225, 1967.
- [3] H. Iiduka and W. Takahashi, "Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings," Nonlinear Anal., vol. 61, pp. 341-350, 2005.
- [4] J.S. Jung, "A general iterative approach to variational inequality problems and optimization problems," Fixed Point Theory Appl. (2011), Article ID 284363, doi: 10.1155/2011/284363.
- [5] Y. Khongtham and S. Plubtieng, "A general iterative for equilibrium problems of a countable family of nonexpansive mappings in Hilbert spaces," Far East J. Math. Sci. (FJMS), vol. 30, pp. 583-604, 2009.
- [6] G. Marino and H.-K. Xu, "A general iterative method for nonexpansive mappings in Hilbert spaces," J. Math. Anal. Appl., vol. 318, pp.43-52, 2006.
- [7] N. Nadezhkina and W. Takahashi, "Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings," J. Optim. Theory Appl., vol. 128, pp. 191-201, 2006.
- [8] Z. Opial, "Weak convergence of the sequence of successive approximation for nonexpansive mappings,"Bull. Amer. Math. Soc., vol. 73, pp. 561-597, 1967.
- [9] S. Plubtieng and R. Punpaeng, "A general iterative method for equilibrium problems and fixed point problem in Hilbert spaces," J. Math. Anal. Appl., vol. 336, pp. 455-469, 2007.
- [10] R.T. Rockafellar, "Monotone operators and the proximal point algorithm," SIAM Journal on Control and Optimization, vol. 14 pp. 877-898, 1976.
- [11] T. Suzuki, "Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals," J. Math. Anal. Appl., vol. 305, 2005.
- [12] W. Takahashi and M. Toyoda, "Weak convergence theorems for nonexpansive mappings and monotone mappings," J. Optim. Theory Appl., vol. 11, pp. 417-428, 2003.
- [13] H.-K. Xu, "Viscosity approximation methods for nonexpansive mappings," J. Math. Anal. Appl., vol. 298, pp. 279-291, 2004.