
Branch and Bound Method for Scheduling
Precedence Constrained Tasks on Parallel

Identical Processors

N.S.Grigoreva ∗

Abstract—The multiprocessor scheduling problem
is one of the classic NP-hard optimization problems.
This paper deals with the problem of scheduling tasks
to parallel processors with the goal of minimizing ex-
ecution time. The branch and bound algorithm pro-
duces a feasible IIT(inserted idle time) schedule for a
fixed length T. In order to optimize over T we must
iterate the scheduling process over possible values of
T. The upper and lower bound on T is defined. New
dominance criteria are introduced to curtail the enu-
meration tree. By this approach it is generally possi-
ble to eliminate most of the useless nodes generated
at the lowest levels of decision tree. To illustrate the
efficiency of our approach we tested it on randomly
generated task graphs.

Keywords: multiprocessor scheduling, parallel proces-

sors, Branch and Bound algorithm, IIT (inserted idle

time), task graph

1 Introduction

The problem of minimizing the makespan while schedul-
ing tasks to parallel identical processors is a classical com-
binatorial optimization problem. Following the 3-field
classification scheme proposed by Graham et al. [1], this
problem is denoted by P |prec|Cmax. Branch and bound
algorithm is presented for the scheduling problem with
tasks have to be executed on several parallel identical
processors. This problem relates to the scheduling prob-
lem [2,3],it has many applications, and it is NP -hard [4].
Branch and bound method [5,6] allows to obtain an exact
solution or, when the number of iterations is restricted, a
fairly good approximation of the solution. A new method
for evaluating partial solutions, selecting the next task
and new ways of reducing the exhaustive search was de-
signed. To illustrate the effectiveness of this approach we
tested it on randomly generated task graphs.

We consider a system of tasks U = {u1u2, . . . , un}.
The execution time of each task t(ui) is known.
Precedence constructions between tasks are
represented by a directed acyclic task graph

∗Manuscript accepted March, 21,2014. N.S.Grigoreva is with
St.Petersburg State University, Department of Mathematics and
Mechanics, St.Petersburg,Russia, Email: n.s.grig@gmail.com

G = ⟨U,E⟩. E is a set of directed arcs, an arc
e = (ui, uj) ∈ E if and only if ui ≺ uj . The expression
ui ≺ uj means that the task uj may be initiated only
after completion of the task ui. Set of tasks is performed
on parallel identical processors, any task can run on any
processor and each processor can perform no more than
one task at a time. Task preemption is not allowed.
The usual objective function is completion time of the
scheduled task graph also referred to as makespan or
schedule length.

For this model, we can consider two problems. In the
first problem the number of processors m is known and
the goal is to minimize the execution time - makespan.
In the second one the makespan is known, the goal is to
minimize the number of processors. To solve these two
problems, we can apply the same algorithm.

Subtask of these two problems is the task of constructing
a feasible schedule for the given number of processors and
the given execution time. A schedule for a task set U is
the mapping of each task ui ∈ U to a start time τ(ui)
and a processor num(ui). Length of schedule S is the
quantity

TS = max{τ(ui) + t(ui)|ui ∈ U}.

To solve this problem we apply the branch and bound
method in conjunction with binary search. Branch and
bound method constructs a feasible schedule S of length
T for m processors. The algorithm may be used in a
binary search mode to find the smallest number of pro-
cessors or the smallest makespan. First we propose an
approximate IIT algorithm named CP/IIT (critical path/
inserted idle time). Then by combining the CP/IIT al-
gorithm and B&B method this paper presents BB/IIT
algorithm which can find optimal solutions to parallel
scheduling problem.

2 Approximate algorithm

A lot of research in scheduling has concentrated on the
construction of nondelay schedule. A nondelay schedule
is a feasible schedule in which no processor is kept idle at
a time when it could begin processing a task. An inserted
idle time schedule (IIT) has been defined by J.Kanet and

Proceedings of the World Congress on Engineering 2014 Vol II,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19253-5-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

V.Sridharam [7] as a feasible schedule in which a proces-
sor is kept idle at a time when it could begin processing a
task. We propose an approximate IIT algorithm named
CP/IIT (critical path/ inserted idle time).

For each task ui, we define the earliest starting time
vmin(ui) and the latest start time vmax(ui). The earli-
est starting time is numerically equal to the length of the
maximal path in the graph G from the initial vertex to
the vertex ui. The latest start time vmax(ui) of task ui,
is numerically equal to the difference between the length
of the required schedule TS and the length of the maxi-
mal path from the task ui, to the final vertex. The latest
start time vmax(ui) of task ui is a priority of task. Let k
tasks are put in the schedule and partial schedule Sk is
constructed.

Let be timek[i] the time of the termination of the pro-
cessor i after completion all its tasks. The approximate
schedule is constructed by CP/IIT algorithm as follows:

1. Determine the processor l0 such as
tmin(l0) = min{timek[i]|i ∈ 1..m}

2. Select the task u0, such as all its predecessors are
included in the schedule and
vmax(u0) = min{vmax(ui)|ui /∈ Sk}

3. If r0 = vmin(u0) − tmin(l0) > 0 then choose a task
u∗ /∈ Sk, which can be executed during the idle time
of processor without increasing the start time of the
task u0, namely vmin(u

∗) + t(u∗) ≤ vmin(u0).

4. If the task u∗ is found, then we assign the task u∗ to
the processor l0 otherwise we assign the task u0 to
the processor l0.

In order to examine the effectiveness of CP/IIT algorithm
we tested it on randomly generated task graph. The re-
sults are shown in Table 1.

3 Branch and bound method for
constructing a feasible schedule
BB(U, T,m;S)

For the formal description of the branch and bound
method we must give a definition of partial solutions.
It is convenient to represent the schedule as a permu-
tation of jobs. For each permutation of tasks π =
(ui1 , ui2 , . . . , uin), one can construct a schedule Sπ as fol-
lows: to find the earliest time of the release of processors
tmin, to find the processor that was released at this time,
then the task is assigned to the processor at the earliest
possible time, but not before tmin, then every permuta-
tion will uniquely identify the schedule Sπ. Partial so-
lution σk, where k the number of jobs will be regarded
as a partial permutation σk = (ui1 , ui2 , . . . , uik), which is
determined partial schedule.

Definition 1 The solution γn = (l1, l2, . . . , ln) is called
the extension of partial solutions σk = (q1, q2, . . . , qk), if
l1 = q1, l2 = q2, . . . , lk = qk.

Definition 2 A partial solution σk is called a feasible if
there exists an extension of σk, which is a feasible sched-
ule.

For each task ui, we define the earliest starting time
vmin(ui) and the latest start time vmax(ui). In order to
make the feasible schedule, it is necessary that each task
ui ∈ U, the start time of its execution τ(ui) satisfies the
inequality

vmin(ui) ≤ τ(ui) ≤ vmax(ui).

In order to describe the branch and bound method it is
necessary to determine the set of tasks that we need to
add to a partial solution, the order in which task will be
chosen from this set and the rules that will be used for
eliminating partial solutions.

3.1 Selection of task

Let I be the total idle time of processors in a fea-
sible schedule S of length TS for m processors, then
I = m · TS −

∑n
i=1 t(ui). For a partial solution σk we

know r(ui)— idle time of processor before start the task
ui. Let Ik be the remaining pool of idle for a partial
solution σk. Then Ik = I −

∑k
i=1 r(ui). We know the

completion time of processors timek[1 : m]. Denote
tmin(k) = min{timek[i]|i ∈ 1 : m} then tmin(k) is the
earliest time of ending all tasks were included in a partial
solution σk.

At each level k will be allocated a set of tasks Uk, which
we call the possible assignments. These are tasks that
need to add to a partial solution σk−1, so check all the
possible continuation of the partial solutions.

Definition 3 Task u /∈ σk is called the ready task at the
level k, if all its predecessors were included in the partial
solution σk and the earliest starting time vmin(u) satisfies
the inequality vmin(u)− tmin(k) ≤ Ik.

Task selection procedure Select(Uk, tmin(k);u0)

From the set Uk we choose task u0 with the minimum
latest start time. If before beginning this task proces-
sor will be idle we are trying to find a task that can be
performed during idle time of processor.

1. Select the task u0, such as
vmax(u0) = min{vmax(ui)|ui ∈ Uk}.

2. If r0 = vmin(u0) − tmin(k) > 0 then choose a task
u∗ ∈ Uk, which can be executed during the idle time
of processor without increasing the start time of the
task u0 namely, vmin(u

∗) + t(u∗) ≤ vmin(u0).

Proceedings of the World Congress on Engineering 2014 Vol II,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19253-5-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

3. If the task u∗ is found, then we assign the task u∗ to
the processor otherwise we assign the task u0 to the
same processor.

3.2 Deleting of invalid partial solutions

The main way of reducing of the exhaustive search will
be the earliest possible identification unfeasible solutions.

Definition 4 Let the task ucr /∈ σk is such as
vmax(ucr) = min{vmax(u)|u /∈ σk}. The task ucr /∈ σk

is called the delayed task for σk, if vmax(ucr) < tmin(k).

Lemma 1 Let delayed task ucr for a partial solution
σk = σk−1 ∪ uk exists, then:

1. The partial solution σk is unfeasible.

2. For any task u ∈ Uk, such that
max{tmin(k−1), vmin(u)}+ t(u) > vmax(ucr) a par-
tial solution σk−1 ∪ u is unfeasible.

3. If vmax(uk) < tmin(k) and
tmin(k − 1) + t(ucr) > vmax(uk), then the partial
solution σk−1 is unfeasible.

Another method for determining unfeasible partial solu-
tions based on a comparison of resource requirements of
tasks and total processing power. In this case we propose
to modify the algorithm for determining the interval of
concentration [8] for the complete schedule. We apply
this algorithm to a partial schedule σk and determine its
admissibility.

We consider time intervals [t1, t2] ⊆ [tmin(k), TS]. Let
MP (t1, t2) be the total time of free processors in time
interval [t1, t2] then

MP (t1, t2) =

m∑
i=1

max{0, (t2 −max{t1, timek[i]})}.

For all task ui /∈ σk we find minimal time of its be-
gin: v(ui) = max{vmin(ui), tmin(k)}. Let L([t1, t2]) be
a length of time interval [t1, t2].

Let Mk(t1, t2) be the total minimal time of tasks in time
interval [t1, t2], then

Mk(t1, t2) =
∑

ui /∈σk

min{L(xk(ui)), L(y(ui))},

where

xk(ui) = [v(ui), v(ui) + t(ui)] ∩ [t1, t2],

y(ui) = [vmax(ui), vmax(ui) + t(ui)] ∩ [t1, t2].

Let

est(σk) = max
[t1,t2]∈[tmin(k),TS]

{Mk(t1, t2)−MP (t1, t2).}

Lemma 2 If est(σk) > 0 then a partial solution σk is
unfeasible.

The pseudo-code of Branch and bound method for con-
structing a feasible schedule BB(U, T,m;S) is shown in
Algorithm 1.

Algorithm 1 BB/IIT algorithm

1: Set k := 1; time[i] = 0; i ∈ 1 : m; σ0 = ∅;
2: while (k > 0) and (k < n+ 1) do
3: Determine the processor l0 such as tmin(l0) =

min{(timek[i]|i ∈ 1..m)}
4: Determine the task ucr such as vmax(ucr) =

min{vmax(u)|u /∈ σk−1};
5: if vmax(ucr) ≤ tmin(l0) then
6: Compute EST = est(σk−1);
7: if EST ≤ 0 then
8: Select the task u0, use procedure

Select(Uk, tmin(k);u0)
9: Set the task u0 on processor l0 and create par-

tial solution σk = σk−1 ∪ u0

10: else
11: Perform step back and create partial schedule

σk−1

12: else
13: There is delayed task ucr. Delete all unfeasible

partial solution by using Lemma 1
14: end if
15: end if
16: end while
17: if k = 0, then
18: Makespan of optimal schedule is greater then TS .
19: end if
20: if k = n, then
21: We find feasible schedule S = σn and its makespan

is equal TS

22: end if

4 Computation result

To test method and efficacy evaluations we conducted
computational experiment. In the computational experi-
ment, we intended to test the BB/IIT algorithm and to
test the effectiveness of methods to remove invalid par-
tial solutions. For branch and bound method to build
a feasible solution, it had to accomplish the task in less
than 60 seconds. If a feasible schedule S of length T
for m processors was not received for 60 seconds, it was
assumed that this does not exist and makespan T in-
creased. This approach provided a schedule for all test

Proceedings of the World Congress on Engineering 2014 Vol II,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19253-5-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

problems, but whether or not the solutions obtained are
exact or approximate remains an open question. There-
fore, the quality of the solutions was estimated against to
the lower estimate of the makespan LB. Lowbound LB
of length optimal schedule is

LB = max{tcp, ⌈
n∑

i=1

t(ui)/m⌉},

where tcp is the length critical path in task graph. To
illustrate the effectiveness of our algorithm we tested it
on two types graphs.

In the first group a set of task graph were generated
using a random task graph generator with 50, 100,150
tasks. The processing time of the tasks has been cho-
sen randomly from the interval [1:50]. In the second one
we used Standard Task Graph Set which is available at
http://www.kasahara.elec.waseda.ac.jp/schedule/.

In the first group we divided all tests on 5 series. There
are 100 tests in series. We compare the length Z0 of
initial solution (obtained by CP/IIT algorithm) and the
length ZCP of initial solution obtained by CP algorithm.

Comparative results are presented in Table 1. The first
column of this table contains the name of series tests,
in the second one m is a number of processors. The
third one contains the relative error of initial solution
RZ = (Z0 − LB)/LB and the fourth one contains the
relative error RT = (T −LB)/LB, where T is the length
of schedule obtained by BB/IIT algorithm. Then the
fifth column contains the relative error of initial solution
RCP = (ZCP − LB)/LB and the the last one contains
the relative error RTCP = (TCP − LB)/LB where TCP

is the the length of schedule obtained by B&B algorithm
with select procedure CP.

Table I. Average data for any series of tests.

Series m RZ RT RCP RTCP
s1 3 0.087 0.006 0.062 0.004
s2 4 0.062 0.013 0.095 0.011
s3 5 0.161 0.021 0.177 0.028
s4 5 0.128 0.057 0.248 0.143
s5 5 0.042 0.007 0.105 0.022

Average 0.096 0.021 0.137 0.042

Approximate solution with the error RZ of less then
10 percent in average were obtained by CP/IIT algo-
rithm. The average relative error of schedules obtained
by BB/IIT algorithm is equal 2 percent.

Table 2 shows the results (percent of optimal solutions
found) for the first group of instances. The column Nopt

shows the cases (in percents) where optimal schedules
were obtained by BB/IIT method. The next column

shows the number of cases (in percents) in which approx-
imate solutions within the error of 0.05 were obtained,
but optimal solutions could not be obtained because of
CPU time limit. But an intermediate solution can be an
optimal solution. The next two columns shows the num-
ber of cases in which RT ∈ (0.05, 0.1] and RT greater
then 0.1.

Table II. Results for the relative error of makespan of
schedule.

Series m Nopt RT < 0.05 RT < 0.1 RT > 0.1
s1 3 56 26 14 4
s2 4 70 19 11 0
s3 5 61 23 15 1
s4 5 57 29 11 0
s5 5 69 30 17 3

Average 62.6 23.4 13.6 1.6

It is seen from Table 2 that optimal solution were ob-
tained for 63 percent (in average) of the cases tested. For
86 percent of the cases approximate solutions having er-
ror of less than 5 percent were obtained.

In the second group of tests we use tests from Standard
Task Graph Set. Standard Task Graph Set is a kind
of benchmark for evaluation of multiprocessor schedul-
ing algorithms, where optimal decisions are known. We
considered tests from Standard Task Graph Set with n=
50 and n=100, where n is the number of tasks. Optimal
schedules were found by BB/IIT algorithm in 95 percent
tests with n=50 and in 89 percent tests with n=100.

5 Conclusion

In this work we proposed a new branch and bound
method for solving the multiprocessor scheduling prob-
lem of makespan minimization. We also presented a
new approximate IIT (inserted idle time) algorithm. We
found that the minimum execution time multiprocessor
scheduling problem can be solved within reasonable time
for moderate-size systems. With an increasing number
of tasks, branch and bound method requires more time
to obtain the optimal solution. Limiting the number of
iterations seems justified and promising way to obtain a
good approximate solution. Computer experiment con-
firmed efficiency of branch and bound method with this
restriction.

References

[1] Graham,R.L.,Lawner E.L., Lenstra J.K.,and Rin-
nooy Kan. “Optimization and approximation in de-
terministic sequencing and scheduling: A survey”
Annals of Discrete Mathematics,1979,V5,pp.287-326

Proceedings of the World Congress on Engineering 2014 Vol II,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19253-5-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

[2] Computer and job-shop scheduling theory, Ed. by
E.G.Coffman, John Wiley,1976.

[3] Brucker P. Scheduling Algorithms, Springer.1997.

[4] Ullman J.D. “NP-complete scheduling problems”
Journal Comput.System Sci. 1975. 10. pp. 384–393.

[5] Kasahara H., Narita S. “Practical multiprocessor
scheduling algorithms for efficient parallel process-
ing”, IEEE Tranzactions on computers.1984,V4.
pp.22–33, No.11

[6] Grigoreva N.S., “Branch and bound algorithm for
multiprocessor scheduling problem”, Vestnic SP-
bGU.seria 10. 2009. Iss.1 pp.44–55.[in Russian]

[7] Kanet J.J.,Sridharan V., “Scheduling with inserted
idle time: problem taxonomy and literature re-
view”,Operation Research.2000.V48.Iss.1. pp. 99–
110.

[8] Fernandez E. and Bussell B., “Bounds the number
of processors and time for multiprocessor optimal
schedules”,IEEE Trans. on Computers.1973.pp.745–
751.

[9] Graham R.L., “Bounds for certain multipro-
cessing Anomalies”,Bell System Tecnical journal
1966.V45.Issue 9.pp.1563–1581.

Proceedings of the World Congress on Engineering 2014 Vol II,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19253-5-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

