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Abstract—The present paper reports a numerical investiga-
tion on the stability of of non-isothermal poiseuille flow in a
vertical pipe filled with porous medium. The flow is induced
by external pressure gradient and buoyancy force. The non-
Darcy Brinkman-extended model has been considered. Here,
it is assumed that the buoyancy force acting in the opposite
direction of the forced flow. To study the instability mechanism
of the poiseuille flow, the linear theory of stability analysis
has been used for three different values 0.7, 7.0, and 70 of
Prandtl number (Pr). To this end, coupled ordinary differential
equations obtained from linear theory of stability analysis, have
been solved numerically using Spectral collocation method.
Four different values 10−1, 10−2, 10−3, and 10−4 of Darcy
number (Da) have been considered to study the impact of
permeability of the medium on the flow stability. The numerical
experiments on the stability show that, the first azimuthal mode
is always least stable mode. Second, effect of azimuthal numbers
die out on decreasing permeability of the media. Third, the
instability boundary curves in zero azimuthal mode for Da
equal to 10−1 and 10−2 show anticipated results for air and
water. Further, the influence of media permeability on base
flow stability shows that the stability of the flow increases on
decreasing of Da.

Index Terms—Porous media, mixed convection, linear stabil-
ity, spectral methods.

I. INTRODUCTION

An instability mechanism of isothermal/non-isothermal is

an attractive problem in the research area of fluid dynamics,

especially transition of poiseuille flow is still a field of active

and ongoing research. It is well known that the linear theory

of stability analysis fails to capture the instability boundary

of isothermal pipe, channel, and annulus. Recently, Kerstin

Avila and his group [1] have used the linear theory of stability

to capture the instability boundary points of poiseuille flow

in isothermal pipe assuming that the surface of the pipe is

not smooth. There are some other works experimental and

theoretical related to the non-isothermal pipe for viscous

fluid flow only. But, if the pipe is filled with porous media

(isotropic/anisotropic) then how the physics of the stability

characteristics of poiseuille flow will change still was not

clear.

Many previously published results indicate that non-

isothermal flow instability and transition differ substantially

from those of an isothermal flow. The earliest work on

the stability of non-isothermal pipe flow was conducted by,

among others, Hanratty, Rosen and Kabel [2] and Scheele

and Hanratty [3]. Based on fully-developed and laminar

parallel flow approximations, Hanratty et al. [2] obtained

analytical solutions for mixed convection flow in a vertical

pipe and observed experimentally that the flow is stable in

the entry region but highly unstable after the flow is fully
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developed. Scheele and Hanratty ([2]-[4]) have reported that

in the case of buoyancy assisted flow (heated upward flow),

the development of points of inflection in velocity profiles is

cause of the instability. The flow is super-critically stable and

the transition to turbulence is gradual. For the case of buoy-

ancy opposed flow (heated downward flow) the instability is

associated with separation from the wall and the flow is sub-

critically unstable. Transition is sudden and occurs shortly

after the flow becomes unstable. They have also observed

in their experiment that the flow stability depends primarily

on the shape of the velocity profile, which is modified by

heating, and the dependence on the Reynolds number is

only secondary. In fluid environment, the theoretical work

on the stability of poiseuille flow in a vertical pipe has

been presented by Yao ( [5], [6]). Yao has investigated the

linear stability analysis for an upward fully-developed flow

in a heated vertical pipe (with the consideration that fluid is

water i.e Pr=7.0) and found that the fully-developed non-

isothermal flow is super-critically unstable. The flow can

become unstable when Rayleigh number > 75 and Reynolds

number > 40 and the most unstable flow pattern is double

spiral i.e. the most unstable azimuthal wave number is unity.

Yao and his group also have reported important pioneering

work on identifying linear thermal instability in vertical

annulus ([7] - [11]) and a vertical pipe [12]. Instability in

pipe flow also reported recently by Cotrell et. al. [13] and

their results shows that the long-puzzling, unphysical result

that linear stability analyzes lead to no transition in pipe

flow, even at infinite Reynolds number, is ascribed to the

use of stick boundary conditions, because they ignore the

amplitude variations associated with the roughness of the

wall. Once that length scale is introduced (here, crudely,

through a corrugated pipe), linear stability analyzes lead

to stable vortex formation at low Reynolds number above

a finite amplitude of the corrugation and unsteady flow at

a higher Reynolds number, where indications are that the

vortex dislodges.

More recently in fluid zone, Su and Chung [14] have

presented the numerical study on the linear stability of mixed

convective flow in a vertical pipe in both the cases: (i) buoy-

ancy assisted and opposed and found that the most unstable

flow pattern is double spiral i.e. the most unstable azimuthal

wave number is unity. They have given the main emphasis on

the instability mechanism and the effect of Prandtl number.

They have selected three Prandtl numbers, 0.0248, 7.0 and

100 to simulate the stability characteristics of liquid mercury,

water and oil respectively. The effect of Prandtl number plays

a integral role in buoyancy assisted flow instability but in

the buoyancy opposed flow, the effect of Prandtl number

is less significant since the flow is unstably stratified. In

porous media, we have studied the least stable mode of

convective flow, induced by external pressure gradient and
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buoyancy force in the vertical pipe filled with porous medium

([15], [16]). From the above reviews, most works on mixed

convection through vertical pipe is pertained in the purely

fluid environment, whereas, in porous media, it introduces a

new research area. It is essential to investigate the stability

of buoyancy opposed poiseuille flow in vertical pipe filled

with porous media under different controlling parameters.

A. Mathematical Formulation

We consider a fully developed mixed convection flow
caused by an external pressure gradient and a buoyancy
force in a vertical pipe filled with porous medium. The wall
temperature is linearly varying with z as Tw = T0+C1R0z

∗,
where C1 is a constant and T0 is upstream reference wall
temperature and R0 is radius of the pipe. The gravitational
force is aligned in the negative z∗-direction. As shown
schematically in figure 1.
The thermo-physical properties of the fluid are assumed to be
constant except for density dependency of the buoyancy term
in the momentum equations. The porous medium is saturated
with a fluid that is in local thermodynamic equilibrium with
the solid matrix. The medium is assumed to be isotropic in
permeability. In expressing the equations for the flow in the
porous medium, it should be noted that the Darcy model
presents a linear relationship between velocity of discharge
and the pressure gradient. As the Darcy model does not hold
when the flow velocity is not sufficiently small or when
the permeability is high, extensions to this model known
as Brinkman-extended or Forchheimer-extended models ex-
ist. In short, the Brinkman term is found to be needed
for satisfying a no-slip boundary condition at solid walls,
whereas the Forchheimer term accounts for the form drag.
Also in analogy with the Navier-Stokes equations, the Darcy
model has been extended by including the material derivative.
The necessity of the simultaneous inclusion of all or some
of these extensions has been discussed in the literature
[17]. Therefore, in order to cover extreme values of input
parameters i.e., high permeability, high velocity and low
thermal diffusivity; the governing equations for the flow and
heat transfer in cylindrical polar coordinate system using
following non-dimensional quantities:

r =
r∗
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∗
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− T ∗
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where,
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In the above equations the dimensionless parameters are

the Rayleigh number, Ra =
gβTC1

∗R0
∗4

ν̃α
, the Prandtl num-

ber, Pr =
ν̃

α
, and Λ =

µf

µ̃
.

B. Disturbance Equations of Basic Flow

The basic flow is a fully developed and steady flow that

depends on r only. Using these assumptions, the governing

equations (1)–( 5) are reduced to

d2W0

dr2
+

1

r

dW0

dr
−

Λ

Da
W0 −RaΘ0 −Re

dp

dz
= 0 (6)

d2Θ0

dr2
+

1

r

dΘ0

dr
= −W0. (7)

The corresponding boundary conditions are given by:

dW0

dr
=

dΘ0

dr
= 0 at r = 0, (8)

W0 = Θ0 = 0 at r = 1, (9)

with W0 and Θ0 being the basic velocity and temperature,

respectively. The analytic as well as numerical solutions

of basic flow are given by Ashok Kumar et. al. [15]. The

temperature may be eliminated from the above equations (6)-

(7) to give the following expression for the velocity field.
[

(∇2
−

1

2Da
)2 + λ2

]

W0 = 0 (10)

where, λ2 = Ra−
1

4Da2
and ∇

2 =
d2

dr2
+

1

r

d

dr
. The axial

pressure gradient can be determined by requirement of global

mass conservation:
∫

1

0

rW0(r)dr =
1

2
(11)

The solution of Eq. (10), for the two different cases: (i) λ2 >

0, (ii) λ2 < 0, is given by

W0(r) = a1J0(P1
1/2r) + a2I0(P2

1/2r) (12)

where,
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J0 and I0 are zeroth order first and second kind of Bessel

functions respectively. The corresponding temperature is

given by

Θ0(r) =
a1

P1

[

J0(P1
1/2r)− J0(P1

1/2)
]

−
a2

P2

[

I0(P2
1/2r)− I0(P2

1/2)
]

(13)

In linear stability analysis, infinitesimal disturbances are

imposed on the base flow. Thus the velocity, pressure and

temperature fields can be written as

(u, v, w, θ, p) =
(

ũ, ṽ,W0(r) + w̃,Θ0(r) + θ̃, P0(z) + p̃
)

(14)
where the tilde quantities denote the infinitesimal distur-
bances to the corresponding term. The linear disturbances
equations can be obtained by using the relation (14) in
equations (1) -(5) and neglecting the small non-linear terms.
They are
continuity:

∂ũ

∂r
+
ũ
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∂ṽ

∂t
+
W0

ǫ2
∂ṽ
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where
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d2

dr2
+

d
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(23)

Equations (15)-(22) can be reduced to a set of ordinary dif-
ferential equations if the disturbance quantities are expressed
in the normal-mode form such as
(

ũ, ṽ, w̃, θ̃, p̃
)

=
(

û(r), v̂(r), ŵ(r), θ̂(r), p̂(r)
)

e
[iα(z−ct)+nψ]

(24)
where, α is the wave number, n is integer azimuthal wave
number and c = ĉr+ iĉi is complex wave speed. The growth
and decay of the disturbances depend on ĉi. Depending on
whether ĉi < 0, ĉi = 0 or ĉi > 0, three different possibilities
stable, neutrally stable or unstable may be distinguished. The
governing linear equations for the infinitesimal disturbances
can be written as

dû

dr
+
û
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The required boundary conditions accompanying the

above equations (25)-(29) are specified at the wall and center.

At the wall all disturbances must vanish. This implies

û = v̂ = ŵ = θ̂ =
dp̂

dr
= 0, at r = 1 (30)

At the center of the pipe, the boundary conditions are as
follows [18]:






û = v̂ = dŵ
dr

= dθ̂
dr

= dp̂

dr
= 0, r = 0 , n = 0,

û+ iv̂ = 2 dû
dr

+ dv̂
dr

= ŵ = θ̂ = p̂ = 0, r = 0 , n = 1,

û = v̂ = ŵ = θ̂ = p̂ = 0, r = 0 , n ≥ 2.
(31)

C. Method of Solution and Validation of Code

In order to solve the coupled differential equations (25)–(29)
along with the boundary conditions (30) and (31), the Spectral
collocation method has been used ([18], [19], [20]). Verification
of the code is given in several ways. First, the independence of
the solution is examined for variation of order of base polynomial
(N). Secondly, it is checked whether or not the total rate of change
of kinetic and thermal energy at critical points are zero. Finally,
some comparisons are made with published results with our data
for specific cases ([15], [16]).

II. RESULTS AND DISCUSSION

In the study presented here, the linear theory of stability analysis
has been used to answer the question of the condition for the occur-
rence of the maximum stability of different fluids in the vertical pipe
filled with porous medium. The investigation is concentrated only
the buoyancy opposed cases. For all numerical results presented
here porosity ǫ and heat capacity ratio σ, always take the values
0.9 and 1, respectively. Three different fluids: air, water and heavy
oil are mainly considered to simulate the stability characteristics.
To give a thorough study in the highly porous media, four different
Darcy numbers, i.e., 10−1, 10−2, 10−3 and 10−4 are used. The
selection of the lower limit of Da is based on numerical experiments
only. To characterize the effect of azimuthal number on the least
stable mode of the buoyancy opposed flow figures 2, 3 and ?? are
plotted as a function of Re for air, water and heavy oil respectively.
As can be seen from above figures, first, the first azimuthal mode is
always least stable mode. Second, effect of azimuthal numbers die
out on decreasing permeability of the media. Third, the instability
boundary curves in zero azimuthal mode for Da equal to 10−1

and 10−2 show anticipated results for air and water. Regarding the
influence of media permeability on base flow stability, in general
it can be seen from the above figures that, similar to assisted
flow, stability of the flow increases on decreasing of Da. Since
permeability increase implies allowing more flow into the system
(equivalent to strengthen the convective flow), consequently, a slight
increase of Re enhances the convection in the main flow direction
and more fluid can be transported upwards to destabilize the flow
shown by fall of critical heating condition. It is expected that
enhancement of media permeability reduces flow stability. In order
to check the existence of anticipated result at Da = 10−2, the table
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TABLE I
CRITICAL RAYLEIGH NUMBER (| Ra |) FOR OPPOSED FLOW AT Re =

500 AND n = 1.

Da Pr = 0.7 Pr = 7.0 Pr = 70

10−1 221.15286 221.58543 221.20206

10−2 1351.40322 1354.93697 928.41921

10−3 15204.40642 13212.27782 7601.62278

10−4 142972.18284 124748.38083 90369.59374

Isotropic
Porous
Media

T w
=

T 0
+

C 1
R

0
z*

Flow

R0

ψ
r*

z*

g

Fig. 1. Physical model and co-ordinate system.

200 400 600 800 1000
0

2

4

6

8

10

n = 0
n = 1

(a) Da = 10-1

Re

|Ra|

x102

200 400 600 800 1000
14

16

18

20

n = 0
n = 1

(c) Da = 10-3

Re

|Ra|

x103

200 400 600 800 1000
10

20

30

40

50

60

n = 0
n = 1

(b) Da = 10-2

Re

|Ra|

x102

200 400 600 800 1000
13

13.5

14

14.5

15

n = 0
n = 1

(d) Da = 10-4

Re

|Ra|

x104

Fig. 2. The stability boundary for (a) Da = 10−1, (b) Da = 10−2, (c) Da
= 10−3 and (d) Da = 10−4 at and Pr= 0.7.

of critical Ra is made at Re equal to 500, Pr = 70. It can be seen
from the table I that the results are as usual expected one. From the
same table it can be also observed that for Da= 10−1 critical value
of Ra is almost independent of fluid i.e. Pr, which is not usual.

200 400 600 800 1000
10

15

20

25

30

35

n = 0
n = 1

(b) Da = 10-2

Re

|Ra|

x102

200 400 600 800 1000
10

11

12

13

14

15

16

n = 0
n = 1

(c) Da = 10-3

Re

|Ra|

x103

200 400 600 800 1000
10

11

12

13

14

15

n = 0
n = 1

(d) Da = 10-4

Re

|Ra|

x104

200 400 600 800 1000
0

2

4

6

8

10

n = 0
n = 1

(a) Da = 10-1

Re

|Ra|

x102

Fig. 3. The stability boundary for (a) Da = 10−1, (b) Da = 10−2, (c) Da
= 10−3 and (d) Da = 10−4 at and Pr=7.
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Fig. 4. The stability boundary for (a) Da = 10−1, (b) Da = 10−2, (c) Da
= 10−3 and (d) Da = 10−4 at and Pr=70.

A. Conclusion

We have attempted to gain an understanding of instability of
pressure gradient driven buoyancy opposed poiseuille flow in a
vertical pipe filled with fluid-saturated porous medium. To this end,
we adopted Brinkman-Wooding-extended Darcy model. By means
of linear theory, we were able to extract detailed information of
transition of basic flow through a porous medium for different fluids.
The Spectral Collocation Method is used to solve the set of linear
ordinary differential equations. The main objective in this study was
to investigate the effect of permeability as well as Prandtl number
on the stability of base flow. The following conclusions can be
drawn from this study.

• The first azimuthal mode is always least stable mode.
• Increasing the the media permeability, reduces the stability of

the basic flow.
• The effect of azimuthal numbers die out on decreasing per-

meability of the media.
• The instability boundary curves in zero azimuthal mode for

Da equal to 10−1 and 10−2 show anticipated results for air
and water.
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• The stability analysis indicates that for the same Reynolds
number (Re), the fully developed base flow is highly unstable
for fluid of high Prandtl number.

• In contrast to a pure viscous fluid, where the effect of Pr is
not significant, in isotropic porous medium Prandtl number
takes a significant role in characterizing the flow stability in
buoyancy opposed case.
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