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Abstract—In applications wide band noises are observed
by autocovariance functions. At the same time there are in-
finitely many wide band noises having the same autocovariance
function. Each of these wide band noises creates its own
best estimate and optimal control. Therefore, it is practically
important to obtain filtering and control results which depend
on autocovariance function and independent on respective wide
band noises. Shortly, we call such results as invariant results. In
this paper we present two such results related to linear filtering
and LQG problems.

Index Terms—wide band noise, white noise, Kalman filtering,
LQG problem.

I. INTRODUCTION

ESTIMATION and stochastic control theories are heavily
based on the white noise model of disturbing noise

processes. The most significant result in estimation theory,
the Kalman filter, which originates from the works [1] and
[2] and found further developments in the literature (see,
for example, [3] and [4]), has been discovered for partially
observable linear systems with a white noise disturbance.
The same can be said about the optimal control law in LQG
(linear quadratic Gaussian) control problem as well.

Although this and other results for white noise driven
systems found wide applications in engineering problems
(see, [5]), the noises in reality are not white indeed. At
most, they are approximately white and, in general, far from
being white. Fleming and Rishel [6] wrote that the real
noises are wide band and white noises are the ideal case
of wide band noises. When the parameters of white and
wide band noises are sufficiently close to each other, white
noises take place of wide band noises to make mathematical
models simpler. Respectively, for more adequate estimation
and control results, a mathematical method of handling and
working with wide band noises is required.

According to our knowledge, there are just two major
approaches to wide band noises. One of them is based on
approximations and nearly optimal concept. This approach
developed in a series of works [7]–[11] etc. The other
approach is based on the so-called integral representation and
initiated in [12]. This approach presents wide band noises as
a distributed delay of white noises and reduces a wide band
noise driven system to a white noise driven system. It has
many common points with the approach to coloured noises,
initiated in [13].

In this paper we discuss estimation and control problems
by the second of these approaches. In the early papers [12],
[14]–[16] this approach was used to study linear filtering
problems for wide band noise driven systems via Wiener-
Hopf equation. An essential progress has been achieved in
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[17] and [18], where by use of integral representation a
wide band noise driven system was reduced to a white noise
driven system. Using this reduction, in [19] linear filtering
and LQG results were obtained for wide band noises with
a special integral representation. The reduction technique
became useful to obtain other results for wide band noise
driven systems such as controllability [20], [21], stochastic
maximum principle [22] and filtering with pointwise delayed
white noises [23]–[26].

An important problem was raised in [27]. One of the
difficulties of working with wide band noises is that in
applications they are measured by autocovariance function.
At the same time, different wide band noises may have
the same autocovariance function. Denote by W (Λ) the
collection of all wide band noises with the autocovariance
function Λ. Normally, different wide band noises from W (Λ)
create different best estimates and also different optimal con-
trols in the estimation and stochastic control problems under
consideration. It also may happen that they are independent
on wide band noises from W (Λ) and just depend on Λ. So,
the following problems can be raised:

(a) Whether the autocovariance function Λ can be sufficient
for construction of best estimates and optimal controls
independently on wide band noises from W (Λ)?

(b) If yes, then under what conditions?
(c) In the case if Λ is not sufficient, how the best one of

the best estimates and the optimal one of the optimal
controls should be selected?

(d) If answering the above questions for W (Λ) is difficult,
is there a subset W0(Λ) ⊆ W (Λ) for which the above
questions can be addressed?

(e) How reasonable is W0(Λ)?

These problems were partially formulated in [27] and
included to the list of unsolved problems in mathematical
systems and control theory. In particular, for the item (c),
a minimization of the error of estimation and the cost
functional over W (Λ) or W0(Λ) was suggested as a criteria
of selection.

A partial contribution to the solution of the above set of
problems has been done in [28] on the set W0(Λ) consisting
of wide band noises with the integral representation. It is not
yet investigated how wide is W0(Λ) in W (Λ). But there are
several theoretical and applied arguments supporting W0(Λ):

• The set W0(Λ) is rather wide. In [17] and [18] it is
shown that W0(Λ) contains infinitely many wide band
noise processes.

• The wide band noises from W0(Λ) have a natural inter-
pretation: according to [29] and [30] they are distributed
delays of white noises. So, the presence of wide band
noises in real systems can be simply explained as an
aftereffect of white noises.

• The wide band noises from W0(Λ) are manageable.
They can be expressed via stochastic linear differential
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delay equations.
• Finally, we strongly believe that the wide band noises

disturbing real systems are of the W0(Λ)-sort for the
following reason. Let wt be a Wiener process and
consider the ratio (wt+ε − wt)/ε. This ratio is a wide
band noise of the W0(Λ)-sort. The limit of this ratio as
ε→ 0 does not exist in the ordinary sense, but we force
it to converge and call the result as a white noise. It is
evident that a substitution of wide band noises by white
noises in real systems produces more or less acceptable
filtering and control results. This allows to argue that
in fact the above ratio, as an ”uncompleted derivative”
of a Wiener process for some sufficiently small ε > 0,
acts as a noise process in real systems.

In this paper we consider a linear filtering and LQG
problems for linear signal and observation systems disturbed
by independent wide band and white noises, respectively.
We present a complete set of formulae for the best estimate
and optimal control for such systems in terms of just system
parameters, parameters of the cost functional and autocovari-
ance function of disturbing wide band noise, demonstrating
the independence of these results on ϕ ∈ W0(Λ), just
dependent on Λ. We call such results as invariant results
pointing out the fact that the knowledge of autocovariance
function is sufficient for them and there is no need for
distinction the wide band noises in W0(Λ).

II. WIDE BAND NOISES

A vector-valued random process ϕ is said to be a wide
band noise if

cov (ϕt+σ, ϕt) =

{
0, σ ≥ ε,
Λt,σ, 0 ≤ σ < ε,

where cov (· , ·) is a covariance matrix, ε > 0, and Λ is a
matrix-valued nonzero function. Note that in this paper we
do not specify the dimensions of vector-valued processes and
matrix-valued functions assuming that they are consistent.
In the case when ϕt has zero mean and Λ depends on just
its second argument, the wide band noise ϕ is said to be
stationary (in the wide sense).

One can verify that the random process

ϕt =

∫ t

max(0,t−ε)
Φt,s−t dws, t ≥ 0, (1)

where Φ is a matrix-valued function on [0,∞)× [−ε, 0] and
w is a vector-valued standard Wiener process, is a vector-
valued wide band noise with

cov (ϕt+σ, ϕt) =

∫ t

max(0,t+σ−ε)
Φt+σ,s−t−σΦ∗t,s−t ds

if 0 ≤ σ < ε. Here Φ∗ stands for the transpose of the matrix
Φ. We will call Φ as a relaxing (damping) function and (1)
as an integral representation for ϕ. If Φ depends only on its
second argument, then

cov (ϕt+σ, ϕt) =

∫ 0

max(−t,σ−ε)
Φs−σΦ∗s ds (2)

if 0 ≤ σ < ε. Consequently, ϕ becomes stationary for t ≥ ε.
In applications wide band noises are measured by aotoco-

variance function. Let ϕ be a stationary (since the instant ε)

wide band noise with the autocovariance function Λ. By (2),
ϕ has the integral representation

ϕt =

∫ t

max(0,t−ε)
Φs−t dws

if Φ is a solution of

Λσ =

∫ 0

σ−ε
Φs−σΦs ds.

This is a convolution equation. In [17], for one-dimensional
case it is proved that if Λ is a positive definite function and
some very general conditions hold, then this equation has
an infinite number of solutions Φ in the space of square
integrable functions. Notice that the positive definiteness is
a defining property of autocovariance functions. This result
seemingly extends to multidimensional and non-stationary
cases. Therefore, given an autocovariance function Λ, there
are infinitely many relaxing functions Φ and, respectively,
infinitely many wide band noise processes in the form (1),
which have the same autocovariance function Λ. We denote
the collection of such wide band noise processes by W0(Λ).

Note that the ”uncompleted derivative”

ηt =
wt−ε − wt

ε
=

∫ t

t−ε

1

ε
dws, t ≥ 0,

of the vector-valued Wiener process w for some ε > 0
belongs to W0(Λ) if

Λσ =
I(ε− σ)

ε2
, 0 ≤ σ ≤ ε,

where I is an identity matrix.
The noises of the form (1) have a universal nature,

covering basic kinds of noises discussed in mathematical
systems theory. The three kinds of such noise processes are
as follows:
• White noises. These noises are mostly popular because

of the well established Ito calculus, providing a strong
mathematical tool for investigation of systems corrupted
by white noises. Although such systems find wide ap-
plications, white noises are indeed ideal and do not exist
in the nature. Therefore, modeling of real processes
by white noise driven systems requires a compensation
from adequacy.

• Coloured noises. These noises are more realistic taking
place between white and real noises. They are outputs
of linear systems with an additive white noise input.

• Wide band noises. These noises are indeed noises ob-
served in reality. Unlike coloured noises, wide band
noises are given by autocovariance functions.

Besides wide band noises, the noises of the form (1) cover
white and coloured noises as well. Moreover, they cover
pointwise delayed white noises as well. This is demonstrated
below.

1. White noises. Keep ε in (1) small and let λ be a
function of t, satisfying t− ε ≤ λt ≤ t. Choose

Φt,θ = Fδθ+t−λt
,

where δ is Dirac delta-function. Then

ϕt =

∫ t

max(0,t−ε)
Fδs−λt dws = Fw′max(0,λt)

.
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If λt = t, then ϕ is a white noise without any delay.
If λt = t − ε, then ϕ is a white noise with a single
time-independent delay. Otherwise, ϕ is a white noise
with time-dependent delay.

2. Coloured noises. Let ε be sufficiently large and choose
Φ in (1) as

Φt,θ = e−AθFt+θ,

where e−At is a transition matrix of −A. Then

ϕt =

∫ t

0

eA(t−s)Fs dws, 0 ≤ t ≤ ε,

implying

dϕt = Aϕtdt+ Ftdwt, ϕ0 = 0, 0 < t ≤ ε.

Thus ϕ is a coloured noise.
Since in applied problems we are given just the autoco-

variance function of a wide band noise, the multivaluedness
of Λ→ W0(Λ) is one of the difficulties for construction of
best estimates and optimal controls under wide band noises.
Therefore. it becomes important getting invariant results,
which are independent on ϕ ∈ W0(Λ), just dependent on
Λ. Below two such results are presented.

III. DISCUSSION OF MAIN IDEA ON KALMAN FILTER

It is suitable to discuss the main idea of this paper on the
example of Kalman filter. Consider the partially observable
linear system{

dxt = Axt dt+ F dwt, x0 = ξ, t > 0,
dzt = Cxt dt+ dvt, z0 = 0, t > 0,

under standard conditions assuming that w and v are corre-
lated Wiener processes with cov (wt, vt) = Et. The classic
Kalman filtering result states that the best estimation process
x̂ exists and is a unique solution of{

dx̂t = Ax̂t dt+ (PtC
∗ + FE)(dzt − Cx̂t dt),

x̂0 = 0, t > 0,

where P is a solution of the matrix Riccati equationP ′t = APt + PtA
∗ + FF ∗

−(PtC
∗ + FE)(CPt + E∗F ∗),

P0 = cov ξ, t > 0.

One can see that if in the signal system the matrix F is
unknown, and instead the matrix FF ∗ is known, then the
matrix F can be recovered in different forms. For example, in
two-dimensional case if FF ∗ = I , then each of the following
matrices

F1 =

[
1 0
0 1

]
, F2 =

[
−1 0
0 1

]
,

F3 =

[
1 0
0 −1

]
, F4 =

[
−1 0
0 −1

]
can serve for F . Respectively, the Kalman filter produces
the best estimate non-uniquely if F is unknown, just FF ∗

is known. But if E = 0 (independent white noises), then the
best estimate depends just on FF ∗ and does not depend on
the forms of F . In other words, the Kalman filter is invariant
if E = 0.

In this regard, the advantage of Kalman filtering problem is
that F is given. In the case of wide band noises, F is changed
by the relaxing function Φ and FF ∗ by the autocovariance

function Λ. We do not have the luxury of being known Φ,
instead we know Λ. Therefore, it should be expected a similar
invariant result for wide band noises.

IV. WIDE BAND NOISE OPTIMAL FILTER

In this section we present the first invariant result related
to linear filtering problem. Consider the partially observable
linear system{

x′t = Axt + ϕt, x0 = ξ, t > 0,
dzt = Cxt dt+ dvt, z0 = 0, t > 0,

(3)

where x and z are vector-valued signal and observation
processes, A and C are matrices, ϕ ∈W0(Λ) has an integral
representation (1) for some square integrable relaxing func-
tion Φ, ξ is a Gaussian random variable with zero mean, w
and v are Wiener processes, and ξ, w and v are independent.

Note that the signal system in (3) is given in terms of
derivative while the observation system in terms of differen-
tial. By this, we stress on the fact that unlike white noises,
which are generalized derivatives of Wiener processes and do
not exist in the ordinary sense, wide band noises are well-
defined random processes.

Under these conditions the best estimate (in the mean
square sense) process x̂ for the system (3) is uniquely
determined as a solution of the system of equations

dx̂t = (Ax̂t + ψt,0) dt+ PtC
∗(dzt − Cx̂t dt),(

∂
∂t + ∂

∂θ

)
ψt,θ dt = Qt,θC

∗(dzt − Cx̂t dt),
x̂0 = 0, ψ0,θ = ψt,−ε = 0, −ε ≤ θ ≤ 0, t > 0,

(4)

where P , Q and R are solutions of{
P ′t = APt + PtA

∗ +Qt,0 +Q∗t,0 − PtC∗CPt,
P0 = cov ξ, t > 0,

(5)
(
∂
∂t + ∂

∂θ

)
Qt,θ = Qt,θA

∗ + Λt,−θ −Rt,θ,0
−Qt,θC∗CPt,

Q0,θ = Qt,−ε = 0, −ε ≤ θ ≤ 0, t > 0,
(6)

and{(
∂
∂t + ∂

∂θ + ∂
∂τ

)
Rt,θ,τ = Qt,θC

∗CQ∗t,τ ,
R0,θ,τ =Rt,−ε,τ =Rt,θ,−ε=0, −ε≤ θ,τ ≤0, t>0.

(7)

Moreover, the mean square error of estimation equals to

et = E‖x̂t − xt‖2 = trPt.

We call the filter, determined by equations (4)–(7) as a wide
band noise filter. This filter with minor modifications is
proved in [28].

The classic Kalman filter consists of two equations for x̂
and P . But the wide band noise filter includes the associated
equations for ψ, Q and R. What are the meanings of them
within the filter? The solution of the equation for ψ (the
second equation in (4)) has the representation

ψt,θ =

∫ t

max(0,t−θ−ε)
Qs,s−t+θC

∗(dzs − Cx̂sds),

implying

ψt,0 =

∫ t

max(0,t−ε)
Qs,s−tC

∗(dzs − Cx̂sds).

Therefore, ψt,0 in the first equation in (4) acts as a wide band
noise with the relaxing function Ψt,θ = Qt+θ,θC

∗ generated
by the innovation process. Denote its autocovariance function

Proceedings of the World Congress on Engineering 2014 Vol II, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19253-5-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



Fig. 1. The wide band noise filter (4)–(7).

by Σ. The function Q is an essential factor of the relaxing
function of ψt,0. Q satisfies the equation (6), which includes
Rt,θ,0. R satisfies the equation (7) and has the representation

Rt,θ,τ =

∫ t

max(0,t−θ−ε,t−τ−ε)
Qs,s−t+θC

∗CQ∗s,s−t+τ ds.

This implies

Rt,θ,0 =

∫ t

max(0,t−θ−ε)
Qs,s−t+θC

∗CQ∗s,s−t ds.

One can see that in fact Rt,θ,0 = Σt,−θ. Therefore, the wide
band noise filter (4)–(7) works in the following form:
(a) The equation (7) produces the covariance function of

the wide band noise ψt,0.
(b) The equation (6) produces an essential factor of the

relaxing function of the wide band noise ψt,0.
(c) The equation (5) is a modified Riccati equation from

classic Kalman filter.
(d) The second equation in (4) produces the wide band

noise ψt,0.
(e) All these make the first equation in (4) to be driven

by the sum of white and wide band noises with clear
autocovariance and relaxing functions. This equation
produces the best estimate process x̂.

The equations (5)–(7) are deterministic and can be solved
beforehand independently on (4) and the values of P and Q
stored somewhere in computer. For the solution of (5)–(7),
simple numerical methods for solution of partial differential
equations can be used. Then the wide band noise filter (4)–
(7) acts as in Figure 1, in which Γ stands for an operator,
transforming a function h, on [−ε, 0] to its value h0.

V. APPLICATION TO LQG PROBLEM.

Application of the wide band noise filter (4)–(7) to LQG
problem can be done by use of control result from [19].
Consider LQG problem of minimizing the cost functional

J(u)=E

(
〈xT , HxT 〉+

∫ T

0

(〈xt,Mxt〉+〈ut, Nut〉) dt
)

(8)

over the partially observable system{
x′t = Axt +But + ϕt, x0 = ξ, 0 < t ≤ T,
dzt = Cxt dt+ dvt, z0 = 0, 0 < t ≤ T, (9)

where E stands for expectation. Assume that the conditions
of the previous section hold and, additionally, B, H , M and
N are matrices of respective dimensions in which H and M
are nonnegative and N is positive. Then the optimal control
u∗ in the LQG problem (8)–(9) is uniquely determined by

u∗t = −G−1B∗
(
Vtx̂
∗
t +

∫ min(T,t+ε)

t

Y∗s,tVsψt,t−s ds
)
, (10)

where x̂∗t is the best estimate of the signal x∗t , defined by
(9) and corresponding to the optimal control u = u∗, ψ is
the associated process, both satisfying

dx̂∗t = (Ax̂∗t + ψt,0 +Bu∗t ) dt
+PtC

∗(dz∗t −Cx̂∗t dt),(
∂
∂t + ∂

∂θ

)
ψt,θ dt = Q∗t,θC

∗(dz∗t − Cx̂∗t dt),
x̂∗0 =0, ψ0,θ=ψt,−ε=0, −ε≤θ≤0, 0<t≤T,

(11)

z∗ is the observation process, defined by (9) and correspond-
ing to the optimal control u = u∗, V is a solution of the
Riccati equation{

V ′t + VtA+A∗Vt +M − VtBN−1B∗Vt = 0,
VT = H, 0 ≤ t < T,

(12)

P , Q and R are solutions of (5)–(7), and Y is a bounded per-
turbation of the transition matrix eAt of A by −BN−1B∗Vt.

This result is proved in [19], pp. 224–225, for relaxing
functions of special form. The filter from the previous section
makes it valid under conditions of this section.

Similar to the wide band noise filter from previous section,
the optimal control law (10)–(12) is also independent of ϕ ∈
W0(Λ), just depends on Λ. In other words, this is also an
invariant result. Another notable feature of this result is that
it does not fall into the frame of classical separation principle
since the observations zs, 0 ≤ s ≤ t, are dependent on xτ
for t ≤ τ ≤ t + ε, that is, (9) is an acausal system. Indeed,
this result falls into extended separation principle (see [19],
pp. 135–139).

VI. CONCLUDING REMARKS

Two invariant results are presented in this paper. These
results provide a complete sets of equations for designing the
optimal filter and optimal control in the linear filtering and
LQG problems on the base of the system and cost functional
parameters A, B, C, M , N , H and the autocovariance
function Λ of the wide band noise ϕ. Just ordinary differ-
ential equations in the case of classic theory are modified
to systems of equations which include ordinary and partial
differential equations.

To point out another implicit advantage from theorems of
this paper, assume that a study of some real process requires
estimation of a linear system disturbed by a wide band noise
ϕ. To simplify the model, replace ϕ by a white noise, which
is more or less close to ϕ. Then the error of estimation by
white noise Kalman filter will deviate from the real error. One
of the reasons for this deviation is the replacement of ϕ by
a white noise. Therefore, the error of estimation of the wide
band noise filter from Section IV is more adequate (precise)
than the one of classic Kalman filter. This does not means
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that the error of wide band noise filter is always smaller
than the error of the classic Kalman filter. If it is smaller,
this is a consequence from the improvement of adequacy of
the model. On the contrary, if it is greater, then this can be
explained as an inappropriate replacement of ϕ by a white
noise. This issue should be of great importance in tracking
of satellites, in particular, for getting preciseness of GPS. In
this way, it is remarkable numerical calculations from [25],
where it was detected that a replacement of wide band noise
(in the form of pointwise delayed white noise) by a white
noise produces a lost of preciseness which is asymptotically
(as time increases) nonrecoverable.

Another issue is a study of filtering and control problems
for wide band noise driven observation systems. At this
stage of developments, the author expects an interesting
interpretation in terms of relaxing functions for the non-
degeneracy of the observation white noise in the Kalman’s
filtering model.
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