
 

 

Abstract—We introduce an iterative method for finding a 

common element of the set solutions of equilibrium problems, 

the set of solutions of a variational inclusion problems for an 

inverse-strongly monotone mapping and set-valued maximal 

monotone mapping, and the set of fixed points of a 

nonexpansive mapping in a real Hilbert space. Then, we prove 

a strong convergence theorem of the proposed method with 

suitable control conditions. 

 
Index Terms—Fixed point, variational inequality, 

optimization problem, nonexpansive mapping  

 

I. INTRODUCTION 

HROUGHOUT  this paper, we always assume that H  be a 

real Hilbert space with inner product and norm, are 

denoted by  ,   and  , respectively and let K be a 

nonempty closed convex subset of H. Let G be a bifunction 

of K K R,  where  R is the set of real numbers. The 

equilibrium problem for a bifunction  G : K K R  is to 

find u K such that 

 

                                
G(u,v) 0, v K.                        (1.1) 

 

The set of solutions of (1.1) is denoted by EP(G). Numerous 

problems in Physics, optimization, and economics reduce to 

find a solution of (1.1). let A: K H  be a nonlinear map. 

The classical variational inequality which is denoted by 

VI(K,A) is to find u K such that Au,v u 0, v K.     

We have known from Blum and Oettli [1] that the 

equilibrium problem contains the fixed point problem, 

optimization problem, saddle point problem, variational 

inequality problem and Nash equilibrium problem as its 

special case. Given a mapping T : K H,  Let G(u,v)   

Tu,v u , u,v K.   Then z EP(G)  if and only if Tz,  

 v z 0, v K,    i.e., z is a solution of the variational 

inequality. A mapping S of K into itself is called 

nonexpansive if  Su Sv u v , u,v K.      We denoted 

by F(S) the set of fixed points of S (see [4], [5]). A mapping 

A of K into H is called   inverse-strongly monotone (see 

[3], [8]) if there exists a positive real number  such 
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2

Au Av Au Av , u,     v K. Recall that a 

mapping f : K K  is said to be contractive with coefficient 

(0,1), if f (u) f (v)  u v , u,v K.    Let B be a 

strongly positive bounded linear operator on H: that is, there 

is a constant 0   with property   
2

Bx,x x , x H.     

Let A: H H be a single-valued nonlinear mapping and let 
HM : H 2  be a set-valued mapping. We consider the 

variational inclusion, which is to find u H such that  

 

                                   
A(u) M(u),                         (1.2) 

 

where  is the zero vector in H. The set of solution of 

problem (1.2) is denote by I(A,M). It is known that (1.2) 

provides a convenient in the framework for the unified study 

of optimal solutions in many optimization related areas 

including mathematical programming, complementarity, 

variational inequalities, optimal control, mathematical 

economics, equilibria, and game theory (see [8] and the 

reference therein). If KM ,  where K is a nonempty 

closed convex subset of H and K : H [0, ]   is the 

indicator function of K, then the variational inclusion 

problem (1.2) is equivalent to variational inequality problem. 

Recall the resolvent operator M,J  associated with M and   

as M,J (u)

1(I M) (u), u H,    where M is maximal 

monotone mapping and   is a positive number. The 

resolvent operator M,J  is single-valued, monotone and 1-

inverse-strongly monotone, and that a solution of problem 

(1.2) is a fixed point of the operator M,J (I A)  for all 

0,  see for example [8]. Some methods have been 

proposed to solve the equilibrium problem, variational 

inequality and fixed point problem of nonexpansive mapping 

(see [2]-[4], [7], [9], [10], and the reference therein). Very 

recently, Jung [3] introduced a new general composite 

iterative scheme for finding a common point of the set of 

solutions of the variational inequality problem and the set of 

fixed point of a nonexpansive mapping in Hilbert space. 

Starting with   1x x K,   

 
n n n n K n n ny (u f (x )) (I (I B))SP (x Ax ),       

(1.3) 

n 1 n n n K n n nx (1 )y SP (y Ay ),n 1.       

              

They proved that under certain appropriate conditions 

imposed on n n{ },{ },  and n{ } of parameters, then  the 

sequence n{x }converges strongly to 
 
q F(S) VI(K,A), 

 
which is a solution of the optimization problem: 
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x F(S) VI(K,A)
min Bx,x x u h(x),



 
               (1.4) 

       

where h is a potential function for f .  

In this paper motivated by the iterative scheme that 

proposed by Jung [3]. We will introduce a new iterative 

method for a common element of the set solution of 

equilibrium problem, variational inclusion and the set of fixed 

point of a nonexpansive mapping which will present in the 

main result section. 

II. PRELIMINARIES 

Let K be a nonempty closed convex subset of  a real 

Hilbert space H. It well known that H satisfies the Opial’s 

condition (see [6]), that is, for any sequence n{x }with n{x }  

converges weakly to x (denote by w

nx x ), the 

inequality: n n
n n

liminf x x liminf x y
 

   holds for every 

y H  with y x.  

 The following lemmas are useful for proving our theorem. 

 

Lemma 2.1 (See [3].) In a real Hilbert space H, there holds 

the inequality 
2 2

x y x 2 y,x y , x,y H.       

 

Lemma 2.2  (See [7].) Assume A is a strongly positive linear 

bounded operator on a Hilbert space H with coefficient 

0   and 
1

0 A .


    Then I A 1 .     

 

Lemma 2.3  (See [4].) Assume  na  is a sequence of    

nonnegative real numbers such that 

n 1 n n na (1 )a ,    n 0,  

where  n  is a sequence in (0,1) and  n  is a sequence in 

R  such that 

(1) nn 1 ;
     

(2) n

nn

limsup 0





 or nn 1 .
     

Then  n nlim a 0.   

 

For solving the equilibrium problem for a bifunction 

G : K K R   where R is the set of real numbers, let us 

assume that G satisfies  the following conditions: 

(A1) G(x,x) 0  for all x K;  

(A2) G is monotone, that is, G(x,y) G(y,x) 0  for all 

x,y K;  

(A3) for each x,y,z K, t 0lim G(tz (1 t)x,y)     

         G(x, y);  

(A4) for each x K,  y G(x,y) is convex and lower 

semicontinuous. 

 

Lemma 2.4 (see [8].) Let K be a convex closed subset of a 

Hilbert spaces H. Let G : K K R  ,  

 is a bifunction satisfying (A1)-(A4). Let 0   and 

x H. Then. There exists z K  such that 

1G(z,y) y z,z x 0, y K.


       

Moreover, let  F : H K  be a mapping defined by 

 1F (x) z K : G(z,y) y z,z x 0, y K , 
         

for all x H. Then, the following hold: 

(1) F is a single value; 

(2) F is firmly nonexpansive; that is, for any 

x,y H,
2

F x F y F x F y,x y ;         

(3) F(F ) EP(G);   

(4)  EP(G) is closed and convex. 

 

Lemma 2.5 (See [3].) Let C be a bounded nonempty closed 

convex subset of a real Hilbert space H,  and   let  g : C R  

   be a proper lower semicontinuous differentiable 

convex function. If *x is a solution to the minimization 

problem 
*

x C
g(x ) inf g(x),


  then

*g (x),x x  0,x C. 
    

Inparticular, if *x solves the optimization problem 

 
21

2 2
x C
min Bx,x x u h(x),




    

then u f (I  
* *B))x ,x x 0,x C,     where h is a 

potential function for f .
 

III. MAIN RESULT 

In this section, we prove a strong convergence theorem. 

 

Theorem 3.1. Let K be a nonempty closed convex subset of 

a real Hilbert space H such that K K K,  let 

G : K K R  is a bifunction satisfying (A1)-(A4), and 
HM : H 2  be a maximal monotone mapping. Let A be an 

  inverse-strongly monotone mapping of K into H and S a 

nonexpansive mappings of K into itself such that 

: F(S) EP(G) I(A,M) .     Let f be a contractive of 

K into itself with constant (0,1)  and let B be a strongly 

positive bounded linear operator on K with constant 

(0,1).  Assume that 0  and 0 (1 ) / .       Let 

n{x }  be a sequence generated by 1x x K,   

           
     

       
1

n n n nrn
F(u , y) y u ,u x 0, y K,     

    (3.1)  

n n n n M, n n nn
y (u f (x )) (I (I B))SJ (u Au ),                                                                                       

  n 1 n n n M, n n nn
x (1 )y SJ (y Ay ),n 1,            

    

where n r nn
u F x , n n n{ } [0,1),{ } [0,2 ],{r } (r, ),      

r 0, and n{ } [0,1]  satisfy :  

    i) n
n
lim 0;


    n
n 1

;




     

 ii) n [0,d)  for all n 0 and for some d (0,1);   

    iii) n [a,b]  for all n 0 and for some a, b with  

        0 a b 2 ;     

    iv) n 1 n n 1 n
n 1 n 1

, ,
 

 
 

         n 1 n
n 1

r r ,





       

          and n 1 n
n 1

.
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Then n{x }converges strongly to z F(S) EP(G)  
 

I(A,M), which is a solution of the optimization problem 

 

       

21
2 2

x F(S) EP(G) I(A,M)
min Bx,x x u h(x),



  
              (3.2) 

 

where h is a potential function for f .  

 

Proof. From the condition i), we may assume that 
1

n (1 B ) .   Applying Lemma 2.2, we obtain 

n nI (I A)) 1 (1 ) .      Let v . Since n r nn
u F x

we have n r n r nn n
u v F x F v x v ,      n N.   Let 

n M, n n nn
z J (u u )  and n M, n n nn

v J (y y ),  n N.  As 

nI A   is nonexpansive and v ,   we have   nz v   

  M, n n n M, n nn n
J (u Au ) J (v Av) u v ,       n N.

 

Similarly, we have 
 

 

                              n nv v y v , n N.                 (3.3) 

 

Then we obtain 

 

                              n nz v x v , n N.                 (3.4) 

 

From the condition i) and (3.1), we have 

  

  
        n n n n ny Sz u f (x ) Sz 0,n .         (3.5) 

 

For v ,  and let (I B),   we have 

 
 

n n n n n ny v u f (x ) v I Sz v           

            n n(1 ((1 ) ) ) x v          

                            
f (v) v u

n (1 )
((1 ) ) , n 1.

  

 
         

 

Then we have 

 

         
 f (v) v u

n 1 n (1 )
x v max x v , , n 1.

  

  
          (3.6) 

 

It follows from (3.6) and induction that nx v max   

 f (v) v u

1 (1 )
x v , ,n 1.

  

 
  Hence n{x } is bounded, so are 

n n n n n n n{u },{y },{f(x )},{Sz },{Sv },{Ay },{Au },and
 n{ Sz }.

 
Next we show that n 1 n

n
lim x x 0.


  We observe that  
 

n n 1 r n r n 1n n 1
u u F x F x 

  
                                      (3.7) 

                 
1

n n 1 n 1 n n 1 n 1r
x x r r ( u x ),       

       

         
  

r 0, n N.    Moreover, we can note that  

n n 1z z   

M, n n n M, n 1 n 1 n 1n n 1
J (u Au ) J (u Au )    

   
           (3.8) 

n n 1 n n 1 n 1u u Au .      
                 

                                

Similarly, we have 

 

n n 1 n n 1 n n 1 n 1v v y y Ay                             (3.9) 

 

Using (3.7) and (3.8), we obtain
       

 
 1

n n 1 n n 1 n n 1 n 1 n 1r
z z x x r r u x         

     (3.10) 

                    n n 1 n 1Au   
 

               
 

From (3.1) and (3.10), we have  

 

n n 1 n n 1 n 1 n 1y y ( u f (x ) Sz )            

                     

n n n 1(1 ((1 ) ) ) x x        
             (3.11) 

               
 1

n n 1 n 1 n 1 n 1 n n 1r
r r u x Au .          

                
 

        
              

    

It follows from (3.3)and (3.11), we obtain  

 

n 1 n n n n 1x x (1 ((1 ) ) ) x x           

                    1 n n 1 2 n n 1G G      
                  (3.12) 

                 
1

3 n n 1 4 n n 1r
G G r r ,     

                
 

    

where  1 n nG sup u f (x ) Sz : n ,      2G sup
 

 n nAu By : n ,  3 n nG sup Sv y :  n , and 

4 nG sup u nx : n .   Then, from the condition i) 

and iv), we have  

 

                                n 1 n
n
lim x x 0.


                       (3.13) 

 

By using the condition ii), we can show that 

 

     
d

n 1 n n 1 n n n(1 d)
x y x x Sz y . 

                   (3.14) 

 

Combining (3.5) and (3.13), we get the following 

 

                                   
n 1 n

n
lim x y 0.


                     (3.15) 

 

We can also get that 

 

                                      n n
n
lim x y 0.


                     (3.16) 

 

Next, we show    n n
n
lim x u 0.


   Since 
2

nu v   

  2 2 21
n n n n2

u v x v x u ,     we have 

 

                       

2 2 2

n n n nu v x v x u .              (3.17) 

 

It follows from (3.15) and using n nz v u v , n N,      

we have 

 
2 2 2

n 1 n n nx v u f (x ) v x v        
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2

n n n(1 (1 ) x u    
                     (3.18) 

               n n n2 u f (x ) v z v .     
                 

          
Then we also have 

 

 
2

n n n(1 (1 ) x u   

2 2

n n nu f (x ) v x v        

    

2

n 1 n n nx v 2 u f (x ) v z v       
                       

2

n nu f (x ) v    
                            (3.19) 

               
 n n 1 n n 1x v x v x x     

              

                          n n n2 u f (x ) v z v .                                  

 

By the condition i) and using (3.11), we have 

 

                              
n n

n
lim x u 0.


                             (3.20) 

 

We note from (3.1) and the condition iii) that 

 
2 2 2

n n n ny p u f (x ) v x v       
   

                 n n n2 u f (x ) v z v     
                 (3.21) 

              

2

n n(1 (1 ) )a(b 2 ) Au Av .      
                 

 
Hence, we obtain

 

 
2

n n(1 (1 ) )a(b 2 ) Au Av      
 

 
2

n n n nu f (x ) v x v y v        
            (3.22) 

   n n n n nx y 2 u f (x ) v z v .      
                 

                             

Using (3.16), (3.22), and the condition i), we have 

 

                                 
n

n
lim Au Av 0.


                      (3.23) 

 

Furthermore, applying Lemma 2.1, we obtain  

 
2 2 2

n n n nz p x p u z    
                                (3.24) 

               

22

n n n n n n2 u z ,Au Av Au Av .      
                

 

                                   

Then we obtain 

 
2

n n n(1 (1 ) ) u z   

 
2

n n n n n nu f (x ) v x v y v x y         
 

   
 n n n n n2 1 (1 ) u z ,Au Av      

                (3.25) 

    

2

n n(1 (1 ) )c(d 2 ) Au Av      
 

    n n n2 u f (x ) v z v .                                     

 

Using (3.16), (3.23), (3.25), and the condition i), we have 

 

                                     
n n

n
lim u z 0.


                      (3.26) 

 

Moreover, by the condition i) and (3.26), we have 

 

                                   
n n

n
lim y Su 0.


                      (3.27) 

 

It follows from n n n n n ny u y x x u     and using 

(3.16) and (3.20), we obtain 

 

                                     
n n

n
lim y u 0.


                      (3.28) 

 

Using (3.27), (3.28), and this inequality n nSu u   nSu  

n n ny y u ,   we have 

                                   
n n

n
lim Su u 0.


                      (3.29) 

 

Next, we show that n
n

limsup u ( f )x,y x 0,


      where 

x  is a solution of (3.2). To show this inequality, we first 

show that  n
n

limsup u ( f )x,Su x 0.


        Since
 n{u } is 

bounded, we choose a subsequence ni
{u }  of n{u } such that 

ni
i i

limsup u ( f )x,Su x limsup
 

      u ( f )x,S   

nu x  Without loss of generality, we can assume 

that
w

ni
u z. From (3.24), we have 

w

ni
y z.  It 

follows by (3.1) and (A2) that
un ui ni

n ri ni
y u ,


  ni

G(y,u ).
 

Since 
un ui ni

rni
0


 (as i ) and 

w

ni
u z, it  follows by 

(A4) that 0 G(y,z) for all y H.  For t with 0 t 1   and 

y H,  let ty ty (1 t)z.    Since y H and z H,  we 

have ty H and hence  tG(y ,z) 0. From (A1) and (A4), 

we have  t t t t0 G(y ,y ) tG(y ,y) (1 t)G(y ,z)    tt(y ,y),  

and t0 G(y ,y). From (A3), we have 0 G(z,y) for all 

y H and Lemma 2.4, we have zEP(G). By the same 

argument as in proof of Theorem 3.1 of Plubtieng and 

Sriprad [8], we have z F(S) I(A,M).  Then we have z
 

 . It follows from Lemma 2.5 and (3.29) that   

n
n

limsup u ( f )x,Su x


     
ni

i

limsup u ( f ) x,Su


     

ni
x u ( f )x,u x         u ( f )x,z x 0.       

We can note that 
n

limsup


n nu ( f )x,y Su   
n

limsup



 

nu ( f )x,Su x    
n

n

limsup u ( f )x,Su x


      
 

n n
n

limsup u ( f )x y Su


   
n

limsup u ( f ) x,


    

nSu x .  It follows from (3.27) and (3.29), we obtain that 

n
n

limsup u ( f (I B))x,y x 0.


       Finally, we show 

that n
n
lim x x 0,


  where x is a unique solution of (3.2). 

Using Lemma 2.1, we can note that 

 
2 2

n 1 n nx x (1 2 ((1 ) )) x x          
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22 2
n n((1 ) ) x x    

                       (3.30) 

                     n n n n2 x x y x    
 

                     n n2 u ( f )x,y x .                         

              

Applying Lemma 2.3 to (3.30), we have n nlim x x  
 

0, that is, n{x }  converges strongly to x.  This completes the 

proof.
 
 

IV. CONCLUSION 

We proposed an iterative method and proved that the 

sequence of the proposed iterative method converges to a 

point of solutions of above three sets. This iterative method 

and convergence theorem are improved and extended from 

Theorem 3.1 of Jung [3]. 
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