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traditional lognormal, gamma, or Weibull distributions in
Abstract — This paper provides procedures for constructing that a comprehensive methodology now exists similar to that
prediction limits on order statistics of future samples using the of a normal distribution.
results of a previous sample from the same underlying inverse  |n this paper we discuss predictive inferences for the
Ggus&anldlstnbutlon. Prgdlctlon limits are optalned from a inverse Gaussian distribution, which was proposed by
point of view of frequentist approach. Bayesian methods are Chhikara and Folks [4], among others, as a lifetime model
not considered here. The results have direct application in ] ! o ! . :
reliability theory, where the time until the first failure in a  1he sampling theory and statistical methods for inverse
group of several items in service provides a measure of Gaussian parametric estimation and hypothesis testing are
assurance regarding the operation of the items. The prediction well developed and are shown to have close analogy with
limits are required as specifications on future life for their counterparts for the normal (Folks and Chhikara [2]).
components, as warranty limits for the future performance of a However, for certain applications in reliability and other

specified number of systems with standby units, and in various . .
other applications. Prediction limit is an important statistical fields (Banerjee and Bhattacharyya [5], Lancaster [6],

tool in the area of quality control. The lower prediction limits ~ Whitmore [7], and Folks and Chhikara [2]), it may be
are often used as warranty criteria by manufacturers. The desirable to obtain confidence limits not for a parameter of
technique used here does not require the construction of any the distribution, but for a future random observation drawn
tables. It requires a quantile of theGg and F distributions and  from the inverse Gaussian distribution itself. Such limits are
is conceptually simple and easy to use. The prediction imitS 5164 prediction limits. Statistical prediction limits have
obtained in the paper are generalizations of the usual L . - . L
prediction limits on observations or functions of observations of many applications in qu{_:lllty_ control and _'n_ reliability
only one future sample. For illustration, a numerical example is Problems and the determination of these limits has been
given. extensively investigated, particularly for the normal
distribution. When the characteristic of interest is measured
~ Index Terms — Future samples, order statistics, prediction in time, say failure or repair time, distributions other than the
limits normal are generally more appropriate. The gamma and
Weibull distributions are frequently applied in studying the
properties of life-time phenomena and there are several
THE inverse Gaussian distribution is a well-knowrpublications on the subject of their prediction intervals (see,
distribution whose properties and applications have @y instance, Aitchison [8]).
remarkable similarity to those of the normal distribution pyediction limits can be of several forms. Hahn [9] dealt
(Chhikara and Folks [1], Folks and Chhikara [2]). It arises &ith  simultaneous prediction limits on the standard

the.distri.bution .qf the_first passage “”?e of a quwnin%eviations of all of thek future samples from a normal
motion with positive drift and so it is logical to use it as opulation. Hahn [10] considered the problem of obtaining

lifetime model. For example, as outlined in Chhikara aNdimultaneous prediction limits on the means of ak hfture
Folks [1], it has been used to describe the time for a P

reservoir to empty, to describe the interpurchase time forsgmples from an gxponentlal d|st_r|put|on. In qdd|t|op, H.ahn
consumable commodity, to model the time to failure of gnd Nelson [11] discussed such limits and their applications.

device, or to model the distribution of strikes. DennisV@nn, Schafer, and Singpurwalla [12] gave an interval that

Munholland, and Scott [3] used it to describe the time tgoNtains, with probability; all m observations of a single

extinction of endangered species. For skewed data, tiéure sample from the same population.

inverse Gaussian distribution has advantages over theFertig and Mann [13] constructed prediction intervals to
contain at leasin — k + 1 out ofm future observations from
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I. INTRODUCTION

ISBN: 978-988-19253-5-0 WCE 2014
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the World Congress on Engineering 2014 Vol II,
WCE 2014, July 2 - 4, 2014, London, U.K.

Il. MATHEMATICAL PRELIMINARIES where

A. Constructing Prediction Limits on Future Order f=mee—e— (4)
Satistics under Certainty of Underlying Models
In this section, we consider the determination OThus,
pred|ct|_on limits on future ordgr statistics under certainty of PLY, <h} = P@{FZ(I—kﬂ),Zk S 1-Gy(h) 2k }
underlying models. The following results hold. Gy(h) 2(-k+1)
Theorem 1. LetY; < ... <Y, be thel ordered observations
in a sample of sizel from a probability distribution
(continuous or discrete) with density functiagy (y), =1- Pg{Fz(,_kﬂ)v2k <
distribution functionG, (y), where 6 is the parameter (in
general, vector). Then a lower—@) prediction limith on

1;F9m) 2k }' )
o(N) 20 -k+1)

the kth order statisticY,, k{1, ..., I}, in a set ofl future ~WhereFyi_1) 2« has theF distribution with 2(~k+1) and &
ordered observationg < ... <Y, is given by degrees of freedom. It follows from (5) that
h=arg[P{Y, >h} =1-a] h=arg[R{Y >h} =1-a]=arg[ F{ Y, <h} = a]
k _ 1-Gy(h) 2k | _
=arg G,(h) = , 1 _ar{Pﬁ{de—k Dok S =l-a
{ o) k+( _k+1)f24—k+1),2k;1—a‘| @ ' Go() 20 —k+1)
where fyg1) 2c1-0 1S the quantile of order—Ir for the F =ardPoF acke na < Fog-kepza-af =1-0).  (6)
distribution.

Proof. If there is a random sample df ordered Since (from (6))
observations Y:;<...€Y; from a known distribution
(continuous or discrete) with density functiagy (y), 1-G,(h) 2k — s 7
distribution functionGy(y), then for thekth order statisticy, Gy(h) 2(-k+1) =~ ATkeda (7)
it is well-known that

we have that

L[] . .
%nsn:Zﬁ}Mmmr%mW*
i=k

k
Gy(h) = . 8
o0 Kt (I =k+D foen2x0-a ©
= IGg(h) (k,l _k+1)
This ends the proofl]

1 Gg(h) Corollary 1.1. Let Y; £ ... < Y, be thel ordered

S — Iuk‘l(l—u)“‘k+1)‘1du. (2) observations in a sample of sizéom a known probability
Bkl —k+1)

distribution (continuous or discrete) with density function
ody), distribution function Gy (y). Then an uppera

It follows from (2) that prediction limith on thekth order statisticy,, kO{1, ..., I},

in a set of ordered observation§ < ... <Y, is given by

20 -k +1)) D2
(le Gg(h) 2(-k+1)+2k
= 2 h=arg|P{Y, >h =a|=arg|P{Y, <h}=1-a
PAYi <h} B(m<20—k+n] o[P4 Vi > 1t =a]=arg[PA Y, <h} =1-d]
2’ 2

=arg Gy(h) = K
K+ K+ D oy ey aica

i B k
= ar{Gg(h) - k+(-k+1)/fgy 20-k+1)1-a :| ®

§ 1-u ok 2(-k+1)/2-1 — 2k [_E\J
u 2(0-k+1) 20-k+D\ u?

2 K +1) 20-k+1)/2
_ 2

w0  20-k+1)
2

1

20-k+1) 2K The main theorem, which shows how to construct lower
B(j 1-Gg(h) 2k (upper) simultaneous prediction limit for the order statistics
2 2 ) Geh) 20-k+1) in all of k future samples when prediction limit for a single
future sample is available, is given below.
—Kk+ _2-k+r2k Theorem 2. Let m “future” ordered observations
20 -k+1) f 2 of 3 .
2k ) ' (3) (Ylj ,...,ij)represent thgth random sample from the cdf

X (1+
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Gy, whereé is the parameter (in general, vecti)fl, ..., ol =1 +1 _20-r+1)+or
Ay x@e 20D T 11
1}, and let Y, ) denote thekth order statistic in thgth (¢ ) : (11)
sample of sizen, wheremy = mfor all j0{1, ..., I}. Assume where
that all ofl samples from the same oGf are independent. f= 1-u 2r (12)
Then a lower simultaneous<&) prediction limith on the u 20-r+1’
kth order statisticsY ) j=1, ..., |, of all of | future
m;),
samples is given by r=1 (13)
Thus,
_ . PH{Y >h .Y >h,.Y >h}
h—arg{Pg{Y(k’ml) >h ’""Y(k,mj) >h""’Y(k,m|) >h}—1 a} (k,my) (k,m;) (k,my)
PLY >h
gAY, >tz D anaaa g e PH{FZ('_HM o }h | . }
6 " =+ ) oy =Pl m > 2021 )
Kk PLY > h} or
=arg Gy(h) = . (10) =Pyl Fograp o < (k,m) (14
{ ¢ k+<m—k+1)fz<m_k+1>,2k;p} ST TRy, > 20 +D) -

Proof. If there arel independent samples from the samg, . or ' has theF distribution with 2(-r+1) and 2
known distribution (continuous or discrete) with dens'%egrees of freedom. It follows from (14) that

function gy (y), distribution functionGg (y), then a lower '
simultaneous (@a) prediction limit h on the kth order

statistich(k'mj)’ i=1, ...,1, of all of | future samples may be

P{Y, >h
h =ar PG{FZ(I—Hl),Zr < (k, m) 2r }: -

obtained as follows: 1-PAY, > 20-r+])

PAY, . >h..Y, .>h..Y, _ >h =ardPo{F arv 92 < foreparal=1-0).  (15)
omp) ~ 0 my) T )

Since (from (15))

|
= Pa{Y > h} =[Py, >h]'
D (k;mj) (k,m) PAY > 1 or

=f P 16
1 _Pg{Y(k B > h} 2(| —r +1) 2(-r+1,2r1-a ( )
L (1 . . '
=1- 30| L-PoAY, o > B TRAY, > i
j;ﬂ(Jj te.m) (. m) we have that
-1— - | —r+2)f,_ 1o
=1l gy, oy 1T +D) PAY,  >h= ( ) forinraa =5 (7)
(k. m) r+(-r+f 2(-r+1).2rl-a
1 l—Pg{Y(rym)>h}
=1-— Ju"l(l—u)("”l)‘ldu wherer=1. Taking into account (1) and (17), we obtain via
B(r.l-r+1) 0 Gg(h) a lower simultaneous €h) prediction limith on the
kth order statistich(k’mj)y j=1, ..., I, of all of | future
: 20-r+1)/2
[2(! 2|r +1)j 1-PA Y m>h}  20-r+D)+2r samples as
=1- u ?
B(Zr 2(0-r +1)j ! h=arg|P4 Yum >t = Al
2" 2
k
- . =ard Gy(h) = . (18)
x 1—U 2r 20 r+1)/2 ! —2I’ [_%j { ¢ k+(m_k+1)f2(m—k+l),2k;ﬂ:|
u 2(-r+1 20-r+D u?
This ends the proofl]
20 -r+1) 2(-r+1)/2 Corollary 2.1. If k=1 andmy=m,= ... =m=m, then
(le o 204
i) & P
B( j PAYrm> 2 h :arg{Pg{Y(lml) >h ,...,Y(lmj) > h""’Y(lm|) > h} :1—0}
2 2 ) 1-R{ Y my>h} 20-14])
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_ __ 1 (AN A-pw? 2k
=ard Gg(hy=———|. (29) 91 (X) = 3 ex , x>0, (23)
Proof.
where parameterg and A are assumed to be positive;is
P@{Y(lml) >h '---’Y(l m;) >h ""’Y(lm|) > h} the mean of the distribution ankdis a shape parameter. The
probability distribution function is given by
[
= P{Y >h}=[ P{Y _ >Hhj' 1
H wm;) wm G#A(X)zq{\/Z(l_J
: x\u )]
_ [
1 -P{ Y(l m S h}] )
| +ex;{2}1{— i(hlj , (24)
- H X H
[1 Z[ j[Ge(h)] [1-Gy(h)]™' ] y
where ® stands for the cumulative standard normal
=[[1—Gg( h)]m]' =[1-Gy(h)™ distribution function, and
Sh(m ' mi-) G, ()=1-G,, () = ® \ﬁl—l
=1—Z‘1( j )Gg(h)]lll—eg(h)] B = ud X\ u
j:
Gg(h)
S j u@-u)™*du —ex;{ﬁ}b - i(ulj . (25)
B@Am) ¢ H XU M
—1-plp. . 517Ge() 2 When both parameterg and A are known, the inverse
g1 2 Gy(h) 2ml Gaussian distribution function can be evaluated using the
normal distribution table.
_ 1-Gg(h) 2 L
= Pys Fam 2 S—G o =Py{Fan 2< fam2h (20) A. Estimation of Unknown Parameters
p(n) 2m Let Xy, X, ..., X, be a random sample from (23). Tweedie
where [14] showed that the maximum likelihood estimates (MLE’s)
1 of yandA are
Gy(h)y=——. (21) n
T+mifo, -x=1yx, (26)
This ends the proof[] Mzt
Corollary 2.2. If there ard independent samples from theand
same known distribution (continuous or discrete) with e 1G(1 1 27
density functiong, (y), distribution functionGy (y), then an _ﬁizzll X, X/ (27)
upper simultaneousr prediction limit h on thekth order
statistich(k'mj)’ j=1, ...,1, of all of | future samples witim

which are independently distributed wit ~1G(u, nA)
=mis given by and nA/A~x2, where x2 is a chi-squared random

h=arg_P5{Y(k’ml) >h ,...,Y(k’mj) >h,...,Y(km) >h}=a}

variable withv degrees of freedom. Furthermorg, n/T'l)

is a complete sufficient statistic fqu,(A).
The MLE of the probability distribution functio®,, , (h)

(=r+Df o riparg is now obtained by replacingg and A in (24) by their
—— =0

=arg| P{Y >h} =
I A (k,m) } r"'(I_r"':I-)1:2(I—r+1),2r;a

estimates zand Agiven in (26) and (27), respectively.
Thus, the MLE ofG,, , (h) is

— = k :
= af{Gg(h) k+(m-k+1) f omk+1) 26,8, ] - G ()= CD[\/Z(_
h{ z

Ill. THE INVERSEGAUSSIAN DISTRIBUTION

=0
|
N’
L

A random variableX is distributed as inverse Gaussian, > 1 h
denoted aX ~ IG(y, 1), if its probability density function is +e><l{ jq’ - F(H_j (28)
given by
ISBN: 978-988-19253-5-0 WCE 2014
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Accordingly, the MLE ofG,, , (h) is X[n(2+vi)+\/4n(n—1)vi+(nvi)2}
U= _ . (36)

— 2(n+VvXx)
G,5F () =1-G}5F (h) =& \/Z(l—ﬂj
h H IV. NUMERICAL EXAMPLE

An industrial firm has the policy to replace a certain
- = device, used at several locations in its plant, at the end of
—exr{ﬁ]d)[— i(yﬂj] (29) 500-hour intervals. It doesn’t want too many of these items
7,

h to fail before being replaced. Shipments of a lot of devices
are made to each of three firms3). Each firm selects a
Chhikara and Folks [15] have given the minimunfandom sample af=2 items and accepts his shipment if no
variance unbiased estimate (MVUE) of the inverse Gaussifilures occur before a specified lifetime has accumulated.
distribution for different cases that might arise regarging The manufacturer wishes to take a random sample and to
and A. When both of these parameters are unknown, Galculate the lower prediction limit so that all shipments will

follows from their result that the MVUE a8, , (h) is given be accepted with a probability of & = 0.95. The resulting
’ lifetimes (in terms of 100 hours) of an initial sample of size

by MVUE n=46 from a population of such devices are given in Table 1.
Gy (h)
LA
TABLE |
0 h <L THE RESULTING LIFETIMES (IN TERMS OFlOOHOURS)
' Observations
1 h>U Xi X1 X2 X3 X4 X5 Xs X7
- Lifetime 02 03 05 0.5 0.5 0.5 0.6
Xg X9 X10 X11 X12 X13 X14 X15
, 4n-1) 1) (=372 _ 0.6 07 07 07 08 08 10 10
Th-2(W) Tl T2 tW, )otherwise X16 X17 X18 X19 X20 X21 X22 X23
1.0 1.0 11 1.3 1.5 1.5 1.5 15
(30) X24 X25 X26 X271 X28 X29 %30 X31
2.0 20 22 25 2.7 3.0 3.0 3.3
o X32 X33 X34 X35 X36 X37 X3g X39
and the MVUE ofG,, , (h) is given by 3.3 40 40 45 47 5.0 5.4 5.4
' Xa0 Xa1 Xa2 X43 Xa4 Xa5 X46
7.0 75 88 9.0 103 220 245
GMVUE (h)
HA Goodness-of-fit testing. It is assumed that
1 h<L 12 A 2
- i —H
0 h>U 9pa (%)= 3| X _)(,—2
- 27%; 207X
4(n ) n-3)/2 .
T o(-w) - [ = } T, fw, )otherwise X4 A> 0),i=101046 (37)

(31) where the parametersand/ are unknown.
Considering the inverse Gaussian model for the data,
whereT,, denotes the cdf of the Studenttistribution with  unbiased estimates pfandA™ are
(n—2) degrees of freedom and

— 1<
v= "(_1_1} (32) T ﬁz | )
i\ X X
A_l—i n i—i =
= Jn(n-2)(h-x) (33) A "n—1i:1(xi XJ 060 (39)

JVX(NX - h)h—n(h- )2
The maximum likelihood estimate of variance is given by

1/n(n 2)[X+(n- 2)h/n] (34) I

2=1% |h = 2833 40
* (X -hh-n(h-%)? o (40)

The inverse Gaussian distribution with mean 3.61 and

i[n (2+VX)—\/4n(n—1)vX+ (nvi)z} variance 28.33 provides a good fit to the above lifetime data,

L= (35) and so does the log normal distribution. The calculated value
2(n+VX) of the Kolmogorov-Smirnov test statistic is 0.0526 for the
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inverse Gaussian and 0.0807 for the log normal, and these V. CONCLUSION AND FUTURE WORK

are smaller than their corresponding values expected at thg, this paper, we propose the technique of constructing
five percent significance level. (The K-S test is considered [f}egiction limits on future order statistics coming from the
the sense that the unknown parameters of a distribution §6erse Gaussian distribution under parametric uncertainty.
estimated from the sample data.) These prediction limits are based on a previously available
Now from (29) and (31) one is able to obtain the MLEomplete sample from the same distribution. We present an
and MVUE of Gy(x), respectively. These estimates arequation for this type of prediction limits which holds for any
given in Fig. 1 along with the MLE o6, (x) obtained from distribution and any statistic from the previous sample when a
prediction limit for a single future sample is available. The
prediction limits are found and illustrated with a numerical
example. The methodology described here can be extended
in several different directions to handle various problems
that arise in practice. We have illustrated the proposed
el methodology for the inverse Gaussian distribution.
Application to other distributions could follow directly.

the log normal.
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