
 

  
Abstract — This paper provides procedures for constructing 

prediction limits on order statistics of future samples using the 
results of a previous sample from the same underlying inverse 
Gaussian distribution. Prediction limits are obtained from a 
point of view of frequentist approach. Bayesian methods are 
not considered here. The results have direct application in 
reliability theory, where the time until the first failure in a 
group of several items in service provides a measure of 
assurance regarding the operation of the items. The prediction 
limits are required as specifications on future life for 
components, as warranty limits for the future performance of a 
specified number of systems with standby units, and in various 
other applications. Prediction limit is an important statistical 
tool in the area of quality control. The lower prediction limits 
are often used as warranty criteria by manufacturers. The 
technique used here does not require the construction of any 
tables. It requires a quantile of the Gθθθθ and F distributions and 
is conceptually simple and easy to use. The prediction limits 
obtained in the paper are generalizations of the usual 
prediction limits on observations or functions of observations of 
only one future sample. For illustration, a numerical example is 
given. 
 

Index Terms — Future samples, order statistics, prediction 
limits 

I. INTRODUCTION 

HE inverse Gaussian distribution is a well-known 
distribution whose properties and applications have a 

remarkable similarity to those of the normal distribution 
(Chhikara and Folks [1], Folks and Chhikara [2]). It arises as 
the distribution of the first passage time of a Browning 
motion with positive drift and so it is logical to use it as a 
lifetime model. For example, as outlined in Chhikara and 
Folks [1], it has been used to describe the time for a 
reservoir to empty, to describe the interpurchase time for a 
consumable commodity, to model the time to failure of a 
device, or to model the distribution of strikes. Dennis, 
Munholland, and Scott [3] used it to describe the time to 
extinction of endangered species. For skewed data, the 
inverse Gaussian distribution has advantages over the 
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traditional lognormal, gamma, or Weibull distributions in 
that a comprehensive methodology now exists similar to that 
of a normal distribution.  

In this paper we discuss predictive inferences for the 
inverse Gaussian distribution, which was proposed by 
Chhikara and Folks [4], among others, as a lifetime model. 
The sampling theory and statistical methods for inverse 
Gaussian parametric estimation and hypothesis testing are 
well developed and are shown to have close analogy with 
their counterparts for the normal (Folks and Chhikara [2]). 
However, for certain applications in reliability and other 
fields (Banerjee and Bhattacharyya [5], Lancaster [6], 
Whitmore [7], and Folks and Chhikara [2]), it may be 
desirable to obtain confidence limits not for a parameter of 
the distribution, but for a future random observation drawn 
from the inverse Gaussian distribution itself. Such limits are 
called prediction limits. Statistical prediction limits have 
many applications in quality control and in reliability 
problems and the determination of these limits has been 
extensively investigated, particularly for the normal 
distribution. When the characteristic of interest is measured 
in time, say failure or repair time, distributions other than the 
normal are generally more appropriate. The gamma and 
Weibull distributions are frequently applied in studying the 
properties of life-time phenomena and there are several 
publications on the subject of their prediction intervals (see, 
for instance, Aitchison [8]).  

Prediction limits can be of several forms. Hahn [9] dealt 
with simultaneous prediction limits on the standard 
deviations of all of the k future samples from a normal 
population. Hahn [10] considered the problem of obtaining 
simultaneous prediction limits on the means of all of k future 
samples from an exponential distribution. In addition, Hahn 
and Nelson [11] discussed such limits and their applications. 
Mann, Schafer, and Singpurwalla [12] gave an interval that 
contains, with probability γ, all m observations of a single 
future sample from  the same population.  

Fertig and Mann [13] constructed prediction intervals to 
contain at least m − k + 1 out of m future observations from 
a normal distribution with probability 1−β. They considered 
life-test data, and the performance variate of interest is the 
failure time of an item. Their lower prediction limit 
constitutes a “warranty period”. 

This paper develops prediction limits (or one-sided 
prediction intervals) for future order statistics coming from 
the inverse Gaussian distribution, using classical frequentist 
approach. In the former case, the statistical prediction limits 
can be easily obtained when one parameter is assumed 
known and the other unknown, as well as when both are 
unknown.  
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II.  MATHEMATICAL PRELIMINARIES 

A. Constructing Prediction Limits on Future Order     
Statistics under Certainty of Underlying Models 

In this section, we consider the determination of 
prediction limits on future order statistics under certainty of 
underlying models. The following results hold. 

Theorem 1. Let Y1 ≤ … ≤ Yl be the l ordered observations 
in a sample of size l from a probability distribution 
(continuous or discrete) with density function gθ (y), 
distribution function Gθ (y), where θ is the parameter (in 
general, vector). Then a lower (1−α) prediction limit h on 
the kth order statistic Yk, k∈{1, …, l}, in a set of l future 
ordered observations Y1 ≤ … ≤ Yl is given by 
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where f2(l−k+1),2k;1−α is the quantile of order 1−α for the F 
distribution.  

Proof. If there is a random sample of l ordered 
observations Y1≤…≤Yl from a known distribution 
(continuous or discrete) with density function gθ (y), 
distribution function Gθ (y), then for the kth order statistic Yk  
it is well-known that 
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where F2(l−k+1),2k has the F distribution with 2(l−k+1) and 2k 
degrees of freedom. It follows from (5) that 
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This ends the proof.   � 

Corollary 1.1. Let Y1 ≤ … ≤ Yl be the l ordered 
observations in a sample of size l from a known probability 
distribution (continuous or discrete) with density function 
gθ(y), distribution function Gθ (y). Then an upper α 
prediction limit h on the kth order statistic Yk, k∈{1, …, l}, 
in a set of l ordered observations Y1 ≤ … ≤ Yl is given by 
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The main theorem, which shows how to construct lower 

(upper) simultaneous prediction limit for the order statistics 
in all of k future samples when prediction limit for a single 
future sample is available, is given below. 

Theorem 2. Let  mj  “future”  ordered observations 
) ..., ,( 1 jj mYY represent the jth random sample from the cdf 
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Gθ ,  where θ  is the parameter (in general, vector), j∈{1, …, 
l}, and let ),( jmkY  denote the kth order statistic in the jth 

sample of size mj, where mj = m for all j∈{1, …, l}. Assume 
that all of l samples from the same cdf Gθ are independent. 
Then a lower simultaneous (1−α) prediction limit h on the 
kth order statistics ),,( jmkY  j=1, …, l, of all of l future 

samples is given by 
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Proof. If there are l independent samples from the same 

known distribution (continuous or discrete) with density 
function gθ (y), distribution function Gθ (y), then a lower 
simultaneous (1−α) prediction limit h on the kth order 
statistics ),,( jmkY  j=1, …, l, of all of l future samples may be 

obtained as follows:  
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where F2(l−r+1),2r has the F distribution with 2(l−r+1) and 2r 
degrees of freedom. It follows from (14) that 
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where r=1. Taking into account (1) and (17), we obtain via 
Gθ (h) a lower simultaneous (1−α) prediction limit h on the 
kth order statistics ),,( jmkY  j=1, …, l, of all of l future 

samples as 
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This ends the proof.   � 

Corollary 2.1. If k=1 and m1 = m2 = … = ml = m, then 
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This ends the proof.   � 
Corollary 2.2. If there are l independent samples from the 

same known distribution (continuous or discrete) with 
density function gθ (y), distribution function Gθ (y), then an 
upper simultaneous α prediction limit h on the kth order 
statistics ),,( jmkY  j=1, …, l, of all of l future samples with mj 

=m is given by 
  








 =






 >>>= αθ hYhYhYPh

lmkmkmk j ),(),()1,(
 , ... , , ... ,arg  

 












=

+−+
+−

=>=
+−

+−
1

;2),1(2

;2),1(2

),( )1(

)1(
}{arg β

α

α
θ

rrl

rrl

mk frlr

frl
hYP  

 

 .
)1(

)(arg
1;2),1(2 











+−+
==

+− β
θ

kkmfkmk

k
hG .   (22) 

III.  THE INVERSE GAUSSIAN DISTRIBUTION 

A random variable X is distributed as inverse Gaussian, 
denoted as X ~ IG(µ, λ), if its probability density function is 
given by 
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where parameters µ and λ are assumed to be positive; µ is 
the mean of the distribution and λ is a shape parameter. The 
probability distribution function is given by 
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where Φ stands for the cumulative standard normal 
distribution function, and 
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When both parameters µ and λ are known, the inverse 
Gaussian distribution function can be evaluated using the 
normal distribution table. 

A. Estimation of Unknown Parameters 

Let X1, X2, …, Xn be a random sample from (23). Tweedie 
[14] showed that the maximum likelihood estimates (MLE’s) 
of µ and λ are 

 ∑
=

==
n

i
iX

n
X

1

1µ)  (26) 

and 

∑
=

−








−=

n

i i XXn 1

1 111λ
)

. (27) 

 

which are independently distributed with ) ,(IG~ λµ nX  

and ,~/ 2
1−nn χλλ

)

where 2
vχ  is a chi-squared random 
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is a complete sufficient statistic for (µ, λ). 
The MLE of the probability distribution function )(, hG λµ  

is now obtained by replacing µ and λ in (24) by their 

estimates µ) and λ
)

given in (26) and (27), respectively. 

Thus, the MLE of )(, hG λµ  is 
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Accordingly, the MLE of )(, hG λµ  is 

 























−Φ=−=

µ
λ

λµλµ )

)

h

h
hGhG 1)(1)( MLE

,
MLE
,  

 

 .1
2

exp






















+−Φ









−

µ
λ

µ
λ

)

)

)

)

h

h
 (29) 

 
Chhikara and Folks [15] have given the minimum 

variance unbiased estimate (MVUE) of the inverse Gaussian 
distribution for different cases that might arise regarding µ 
and λ. When both of these parameters are unknown, it 
follows from their result that the MVUE of )(, hG λµ  is given 

by 
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, hG λµ  
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(30) 
 

and the MVUE of )(, hG λµ  is given by 
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where Tn−2 denotes the cdf of the Student's t distribution with 
(n−2) degrees of freedom and 
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IV.  NUMERICAL EXAMPLE 

An industrial firm has the policy to replace a certain 
device, used at several locations in its plant, at the end of 
500-hour intervals. It doesn’t want too many of these items 
to fail before being replaced. Shipments of a lot of devices 
are made to each of three firms (l=3). Each firm selects a 
random sample of m=2 items and accepts his shipment if no 
failures occur before a specified lifetime has accumulated. 
The manufacturer wishes to take a random sample and to 
calculate the lower prediction limit so that all shipments will 
be accepted with a probability of 1−α = 0.95. The resulting 
lifetimes (in terms of 100 hours) of an initial sample of size 
n=46 from a population of such devices are given in Table 1. 
  

TABLE I 
THE RESULTING LIFETIMES (IN TERMS OF 100 HOURS ) 

Observations 

Xi x1 x2 x3 x4 x5 x6 x7 

Lifetime 0.2 0.3 0.5 0.5 0.5 0.5 0.6 
x8 x9 x10 x11 x12 x13 x14 x15 

0.6 0.7 0.7 0.7 0.8 0.8 1.0 1.0 
x16 x17 x18 x19 x20 x21 x22 x23 

1.0 1.0 1.1 1.3 1.5 1.5 1.5 1.5 
x24 x25 x26 x27 x28 x29 x30 x31 

2.0 2.0 2.2 2.5 2.7 3.0 3.0 3.3 
x32 x33 x34 x35 x36 x37 x38 x39 

3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4 
x40 x41 x42 x43 x44 x45 x46  

7.0 7.5 8.8 9.0 10.3 22.0 24.5  

 
Goodness-of-fit testing. It is assumed that 
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where the parameters µ and λ are unknown.  
Considering the inverse Gaussian model for the data, 

unbiased estimates of µ and λ-1 are 
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The maximum likelihood estimate of variance is given by  
 

 .33.28/32 == λµσ
)))

 (40) 

 
The inverse Gaussian distribution with mean 3.61 and 

variance 28.33 provides a good fit to the above lifetime data, 
and so does the log normal distribution. The calculated value 
of the Kolmogorov-Smirnov test statistic is 0.0526 for the 
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inverse Gaussian and 0.0807 for the log normal, and these 
are smaller than their corresponding values expected at the 
five percent significance level. (The K-S test is considered in 
the sense that the unknown parameters of a distribution are 
estimated from the sample data.) 

Now from (29) and (31) one is able to obtain the MLE 

and MVUE of ),(xGθ  respectively. These estimates are 

given in Fig. 1 along with the MLE of )(xGθ obtained from 

the log normal. 
 

)(xGθ  

 
Lifetime, x (in terms of 100 hours) 

 

Fig. 1. Estimates of Reliability Function )(xGθ . 

 

Prediction limit. A lower (1−α) = 0.95 prediction limit h 
on the first order statistic Y1 in a set of ml = 6 future ordered 
observations Y1 ≤ … ≤ Yml is given by 
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Thus, the manufacturer has 95% assurance that no failures 
will occur in each shipment before h = 22 hours. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we propose the technique of constructing 
prediction limits on future order statistics coming from the 
inverse Gaussian distribution under parametric uncertainty. 
These prediction limits are based on a previously available 
complete sample from the same distribution. We present an 
equation for this type of prediction limits which holds for any 
distribution and any statistic from the previous sample when a 
prediction limit for a single future sample is available. The 
prediction limits are found and illustrated with a numerical 
example. The methodology described here can be extended 
in several different directions to handle various problems 
that arise in practice. We have illustrated the proposed 
methodology for the inverse Gaussian distribution. 
Application to other distributions could follow directly. 
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