
 

 

     Abstract— In this paper, we present a new iterative 

scheme for finding a minimizer for a constrained convex 

minimization problem. We will also prove that the sequence 

generated by our new scheme converges strongly to a solution 

of the constrained convex minimization problem in real Hilbert 

spaces. 

 

   Index Terms —Average Mappings, Constrained Convex 

Minimization problem, Fixed point, Gradient Projection 

Algorithm, Nonexpansive mappings. 

 

 

I.      INTRODUCTION 

Let H be a real Hilbert space with inner product 〈⋅,⋅〉 and 

norm ‖ ‖. 

Definition 1.1 Let C be a nonempty closed and convex 

subset of a real Hilbert space H. A map T:C→H is said to be 

nonexpansive if for all x,z∈C we have  

                                 ‖     ‖  ‖   ‖. 

We denote the fixed point set of T by Fix(T).  

   Definition 1.2 For any x∈H, we define the map 

       

satisfying  ║x-   ║≤║x-z║     ∈  . 

   is called the metric projection of H onto C. it is well 

known that    is nonexpansive and  

             〈            〉         ∈                         (1) 

Clearly, (1) is equivalent to 

‖   ‖  ‖     ‖
  ‖     ‖

    ∈         ∈   

Furthermore,     is characterized by the property that 

   ∈   and 〈            〉         ∈                   (2) 

    Definition 1.3 A mapping   of   into   is called 

monotone if 〈          〉           ∈    
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  is called            monotone if there exists      

such that  〈           〉   ‖   ‖         ∈    

  is called                    monotone if there 

exists     such that  

〈           〉   ‖     ‖         ∈    

also   is                        if there exists  

    such that for all    ∈     ‖     ‖   ‖   ‖. 

    Definition 1.4 A mapping        is said to be 

firmly nonexpansive if      is nonexpansive, or 

equivalently   〈           〉  ‖     ‖       ∈    

Alternatively,   is firmly nonexpansive if   can be 

expressed as   
 

 
     , for some        

nonexpansive . As an example, the projection mappings are 

firmly nonexpansive. 

      Definition 1.5 A mapping       is said to be an 

averaged mapping if it can be written as the average of the 

identity mapping   and a nonexpansive mappings; i.e. 

                                                                     (3) 

where α∈(0,1) and S:H→H is non expansive. More 

precisely, when (3) holds, we say that T is α-averaged. 

Therefore, firmly nonexpansive mappings (e.g. projections) 

are 
 

 
-averaged mappings.  

The proposition below gives some properties of averaged 

mappings.  

  Proposition 1.1 (Bryne [3], Combettes [5]) For given 

operators S,T,V:H→H:   

(a) If T=(1−α)S+αV for some α∈(0,1) and if S is 

averaged and V is nonexpansive, then T is averaged.  

(b) T is firmly nonexpansive if and only if the 

complement I−T is nonexpansive.  

(c) If T=(1−α)S+αV for some α∈(0,1) and if S is firmly 

nonexpansive and V is nonexpansive, then T is averaged.  
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      (d) The composition of finitely many averaged 

mappings is averaged. That is, if each of the mappings 

{  }   
  is averaged, so is the composition         .  In 

particular, if      is      averaged and      is      averaged, 

where        ∈      , then the composition          is α-

averaged, where                                    . 

The following are immediately noticeable: (i) If T is 

nonexpansive, then     is monotone; (ii) the projection 

mapping    is a 1-ism. The inverse strongly monotone (also 

known as co-coercive) operators have being widely used in 

solving practical problems in diverse fields, e.g., the traffic 

assignment problems; see, [1, 6] and the references therein. 

The proposition that follows gives some important 

relationships between average mappings and inverse 

strongly monotone operators.  

   Proposition 1.2 (Bryne [3], Combettes [5])  

    (a)  T is nonexpansive if and only if the complement I−T 

is 
 

 
-ism. 

  (b)  If T is ν-ism, then for γ>0, γT is 
ν

γ
-ism.  

 (c) T is averaged if and only if the complement I−T is 

  ism for some  
 

 
. Indeed, for α∈(0,1), T is  

      α-averaged if and only if I−T is 
 

 
-ism.  

Given the following constrained convex minimization 

problem:  

                         minimize {      ∈  },                     (4) 

where f:C→R is a real-valued convex function. The 

minimization problem (4) is said to be consistent if it has a 

solution. In what follows, we shall denote the solution set of 

problem (4) by S. It is well known that if f is (Fréchet) 

differentiable, then the gradient-projection method (i.e., 

GPM) generates a sequence {  } by using the following 

recursive formula:  

                          (          )                 (5) 

or in a more general form; 

                          (           )               (6) 

where   ∈   is an arbitrary initial guess in both (5) and (6), 

  or    are positive real numbers. It is known that if  f  is   

α-strongly monotone and L-Lipschitzian with constants 

α, L>0, then the operator 

                                                                       (7) 

is a contraction; thus the sequence {  } in (5) converges in 

norm to the unique minimizer of (4). More generally if the 

sequence  {  } is such that 

                                
  

  
                   (8) 

then the sequence {  } generated by (6) converges in norm 

to the unique minimizer of (4). However in a situation where 

the  f fails to be strongly monotone, the operator T defined 

by (7) would fail to be a contraction, consequently, the 

sequence {  }  generated by (6) may fail to converge in 

norm. (see [12], Sect. 4). If  f is Lipchitzian, then the 

schemes (5) and (6) can still converge weakly under certain 

assumptions. 

The GPM for finding the approximate solutions of the 

constrained convex minimization problem has been studied 

by several authors; see, for example [9] and the references 

therein. The convergence of the sequence generated by this 

method depends largely on the behavior of the gradient of 

the objective function. If the gradient fails to be strongly 

monotone, then the sequence generated by the GPM may 

fail to converge strongly. Recently alternative operator-

oriented approach to algorithm (6); namely an average 

mapping approach; see, for example Xu [12]. Xu [12] also 

presented two modifications of the gradient-projection 

algorithms which are shown to be strongly convergent. 

Very recently, based on Yamada hybrid steepest descent 

method, Tian and Huang [10] proposed respectively the 

following implicit and explicit iterative scheme:  

                                     
     

and  

                                       
      

They proved that the sequence generated by their implicit 

and explicit schemes converge strongly to a solution of the 

constrained convex minimization problem, which also 

solves a certain variational inequality problem. 

Also, motivated by the work of Xu [12], Shehu et al [8] 

proposed the following iterative scheme : 

       {
               

       (           )        
                     (9) 

they proved that the sequence generated by their scheme 

converges strongly to a solution of the constrained convex 

minimization problem, which also solves a certain 

variational inequality problem (see [8] for details). 
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Motivated by the works of Xu [12], Tian and Huang [10] 

and Shehu et al [8], we propose a new iterative scheme for 

finding the approximate solution of a constrained convex 

minimization problem and we proved that the sequence 

generated by our scheme converges strongly to a solution of 

the constrained minimization problem. 

 

II   PRELIMINARIES 

In the sequel, we shall also make use of the following 

lemmas.  

       Lemma 2.1  Let H be a real Hilbert space. Then the 

following inequality holds;  

‖   ‖  ‖ ‖   〈     〉 

for all x,y∈H.  

       Lemma 2.2  Let H be a real Hilbert space. Then the 

following inequality holds;  

‖         ‖   ‖ ‖       ‖ ‖  

                                                        ‖   ‖   

for all x,y∈H, λ∈[0,1].  

       Lemma 2.3 (Browder [2])  Let H be a real Hilbert 

space,C a closed convex subset of H and T:C→C a 

nonexpansive mapping with a fixed point. Assume that a 

sequence {  } in C is such that      weakly and 

         . Then x−Tx=y  

      Lemma 2.4 (Xu [11])  Let {  } be a sequence of 

nonnegative real numbers satisfying the following  

                                        

where 

   (i) {  }  [   ] ∑   
 
     ; 

  (ii)              (iii)       ∑   
 
     . 

Then a
n
→0 as n→∞.  

We adopt the following notions :  

• x
n

→x means that x
n

→x strongly;  

• x
n
 x means that x

n
 x weakly;  

•         {        
  } is the weak w-limit set of the 

sequence {  }   
   

 

III    MAIN RESULTS 

In this section we present a modify of the gradient 

projection method and prove its strong convergence. Our 

result in this section complements the result of Xu [12]. 

Furthermore, using the technique in [7, 12], we obtain the 

following theorem.  

    Theorem 3.1 Let C be a non empty, closed and convex 

subset of a real Hilbert space H. Suppose that the 

minimization problem (4) is consistent and let S denote its 

solution set. Assume that the gradient  f is L-Lipschitzian 

with constant L>0. For any given u∈C, let the sequence  

{  } be generated iteratively by,   ∈  , 

                  (           ) 

                                                                           (10) 

where {  }  [   ] and {  } in (0,L/2) satisfying the 

following conditions: 

  (C1)            , 

  (C2)   ∑   
 
   , 

  (C2)                              

Then the sequence {  } converges strongly to a minimizer  ̅ 

of (4), which is closest to u from the solution set S. In other 

words  ̅       

     Proof. Inspired by the method of proof of [8], it is well 

known that: 

(a)    ∈   solves the minimization problem (4) if and only 

if      solves the fixed point equation 

                                    

where     is any fixed positive number. For the sake of 

simplicity, we assume that (due to condition C3) 

                            
 

 
      

where a and b  are constants. 

(b) The gradient    is 
 

 
    . 

(c)            is 
    

 
 average for     

 

 
  Hence we 

have that, for each n,           is 
    

 
 average. 

Therefore we can write  

          
     

 
  

     

 
   

                                     ,                               (11) 

where    is nonexpansive and    
     

 
∈ [     ] where  

   
    

 
  and    

    

 
    

Then we can write (10) as 

                [               ] 

                                                                            (12) 

Let   ∈  , observing that      , we have 
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‖      ‖  ‖                       
     

      ‖ 

                     ‖               
        

                              
                 ‖ 

                              
  ‖    ‖    

 ‖      ‖ 

                                 ‖   ‖ 

                           ‖    ‖    ‖   ‖ 

                         {‖    ‖ ‖   ‖}  

Therefore, by induction, we have  

             ‖    ‖     {‖    ‖ ‖   ‖}           

Hence the sequence {  }  is bounded and  so {    }  

     Now we have the following: 

‖      ‖  ‖         

   [               ]  ‖  

                    ‖         
           

                                    ‖
 .                                (13) 

We can observe that; 

‖     ‖  ‖    ‖  

 〈           〉

 〈         〉  〈         〉 

 〈           〉  〈         〉 

 〈           〉  〈         〉

 〈         〉  

which implies that  

       ‖     ‖   〈         〉                          (14) 

Using Lemma (2.1), (13) and (14) we obtain that 

‖      ‖  ‖         
          

         ‖
  

              ‖    ‖    
 ‖       ‖

  

                           
 ‖       ‖

   〈       
         〉 

                   〈               〉 

              ‖    ‖    
 ‖       ‖

  

                       
 ‖       ‖

     〈           〉  

            ‖      ‖    
    

    ‖       ‖
  

                     〈           〉. 

Hence, 

  
    

    ‖       ‖
  ‖    ‖  ‖      ‖  

                                           〈           〉.     (15) 

Since {  }  is bounded, then there exists a constant 

    such that     〈           〉        .       

Therefore (15) gives  

‖      ‖  ‖    ‖    
    

    ‖       ‖
  

                                                                               (16)                                 

The rest of the proof will be done considering 2 cases. 

    Case 1: Assume that the sequence {‖     ‖} is a 

monotonically decreasing sequence. Then {‖     ‖} 

converges. 

Clearly, we have that  

               ‖       ‖  ‖     ‖     

Now by (16) we obtain that  

                       
 ‖       ‖

     

Using the condition that   ∈ [   ]       , we have 

                     ‖       ‖                                 (17) 

Now we show that         . 

Let   ∈        and {   
} be a subsequence of {  } such 

that    
      We may assume that    

    ; then 

    
 

 
. We set               hence T is 

nonexpansive. 

From (17), we have 

‖   
     

‖  ‖   
    

   
‖  ‖   

   
     

‖ 

                      =‖   
    

   
‖  ‖      

 

                                  
      

          
        

 ‖ 

                  ‖   
    

   
‖  |   

  | ‖      
 ‖ 

                  ‖   
    

   
‖  |   

  |           

Therefore, by Lemma (2.3) we have that  

                                          . 

We next prove that the sequence {  } converges strongly 

to  ̅ ∈  , where  ̅ is the solution of (4), which is the closest 

to u from the solution set S.  

Firstly, we show that          〈    ̅    ̅〉     

Observe that there exists a subsequence {   
} of {  } 

satisfying 

         〈    ̅    ̅〉           〈   
  ̅    ̅〉  

Since {   
} is bounded, there exists a subsequence {    

} of 

{   
} such that     

  ∈         without loss of 

generality, we assume that    
  ∈       . 

Then we obtain 

         〈    ̅    ̅〉           〈   
  ̅    ̅〉 

                                              〈   ̅    ̅〉          (18) 

Now, we have 
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‖      ̅‖  ‖              [         

                                    ]       ̅‖  

                  ‖           ̅        ̅  

                                     ‖
  

                         ‖    ̅‖     〈   ̅       ̅〉 

                            
 〈              ̅〉 

                      ‖    ̅‖     〈   ̅       ̅〉                         

                                  
 〈              ̅〉.             (19) 

It is clear that         
 
〈             ̃〉   . 

Therefore, by Lemma (2.4) applied to (19),  

we obtain that         ‖    ̃‖   . 

    Case 2:  Assume that {‖     ‖} is not a 

monotonocally decreasing sequence. Set 

   {‖     ‖}  and let τ : N → N be a mapping for all 

     (for some    large enough ) 

By  τ (n) =    { ∈                  } }. 

Clearly,    is a non-decreasing sequence such that 

              and                     for     . 

From (17) we can see that  

     
         

  ‖                ‖            

as     . Further more ,we have that  

                             ‖                ‖
 
   as    .  

Using similar argument as in case 1, we can show that 

      converges weakly to  ̃ as        and 

             〈    ̃        ̃〉   . We know that for all 

       ‖         ̃‖
 
 ‖       ̃‖

 
 

       [ 〈    ̃          ̃〉     
 
〈           

                                              ̃〉  ‖       ̃‖
 
] 

which implies that  

‖       ̃‖
 
  〈    ̃          ̃〉 

                      
 
〈                                 ̃〉   

Therefore, we conclude that         ‖       ̃‖    

Hence,                              

Furthermore, for     , one could observe easily that     

                  if       , that is       , because 

           for           . 

As a consequence, we obtain for all       

                                 {                }           .  

Thus                   that is {  } converges strongly to 

 ̃. This completes the proof. 

 

    Corollary 3.2   Let   be a nonempty, closed and convex 

subset of a real Hilbert space  . Suppose that the minimization 

problem (5) is consistent, and let   denote its solution set. 

Assume that the gradient    is   Lipschitzian with constant 

   . For any given  ∈  , let the sequence {  } be generated 

iteratively by   ∈    

                  (          ) 

                                                                                  (20) 

where  ∈         and {  }  [   ] satisfies the following 

conditions: 

   (C1)            

  (C2) ∑   
 
   . 

Then the sequence {  }  converges strongly to a minimizer  ̅ of 

(4).  

IV   APPLICATION 

We give an application of Theorem 3.1 this section. We 

apply Theorem 3.1 to the split feasibility problem (denoted 

as SPF), which was introduced by Censor and Elfving [4]. 

SFP has received considerable attention of many authors 

because of its applications in image reconstruction, signal 

processing and intensity-modulation therapy (see [3, 8, 10] 

and the references therein). 

SFP can be mathematically formulated as a problem of 

finding a point   with the property that  

                    ∈         ∈                                         (21) 

Where   and   are nonempty, closed and convex subset of 

Hilbert spaces    and    respectively and             is a 

bounded linear operator. 

Clearly,    is a solution of SFP (21) if and only if   ∈   

and               

The proximity function  f  is defined by 

                               

 
‖  

 
      ‖                       (22) 

and consider the constrained convex minimization problem  

    ∈          ∈ 
 

 
 ‖  

  
      

 
‖                (23)  

Then    solves the minimization problem (24). In [3] CQ 

algorithm was introduced to solve SFP.  

           (  –    
 
(  –    ) )              (24)               

where     

‖ ‖ 
. It was proved that the sequence generated 

by (25) converges weekly to a solution of the SFP.  

  Now we introduce the following algorithm to obtain a 
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strong convergence iterative sequence to solve the SFP.  Let 

 ∈   be given and the sequence {  } be generated by 

  ∈    

                 

                           
    –              

                                                                  (25) 

where {  }    [   ]       and {  }            

satisfy the following conditions: 

(C1)            

(C2) ∑   
 
     . 

(  
 )                      

‖ ‖   
   

 Applying Theorem 3.1, we obtain the following 

convergence result for solving the SFP (21).  

          Theorem 4.2 Assume that the split feasibility 

problem (SFP) (21) is consistent. Let the sequence 

{  } be generated by (26), where the sequence 

{  }  [   ] and {  } in (  
 

 
) satisfy conditions 

      
    Then the sequence {  }  converges strongly 

to a solution of the split feasibility problem (21).  

        Proof From the definition of the proximity 

function    we have  

                          (    )                                    (26) 

and    is Lipchitz continuous, i.e., 

                  ‖           ‖   ‖   ‖                         (27) 

where   ‖ ‖   

Set            
 

 
‖ ‖   

Consequently,  

                                

   (    )      

and      is Lipchitzian with Lipchitz constant ‖ ‖  

   Therefore the iterative scheme (25) is equivalent to  

                  (           ) 

                                                                                  (28) 

where {  }  [   ]     and {  } in (  
 

  
) satisfy the 

following conditions:  

(C1)           

(C2) ∑   
 
      

(  
 )                      

‖ ‖   
         

Where    ‖ ‖    

The conclusion follows from Theorem 3.1. 
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