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Abstract—The present paper investigates the embedding
problem for time-homogeneous Markov chains. A discrete-
time Markov chain with time unit 1 is embeddable in case
there exists a compatible Markov chain regarding time unit
1
m

(with m ∈ N,m ≥ 2). An embeddable Markov chain
has a transition matrix for which there exists an m-th root
that is a probability matrix. The present paper examines
the embedding problem for discrete-time Markov chains with
three states. Sufficient embedding conditions are presented in
case of a diagonalizable transition matrix with all eigenvalues
nonnegative.

Index Terms—Markov chain; embedding problem; matrix
root.

I. INTRODUCTION

THE use of discrete-time Markov chains as mod-
elling tool is well-known and widespread. Discrete-time

Markov models are intensively used in engineering ([13],
[3]), and in other fields as there are manpower planning
([1], [5], [10]) and finance ([2]). A discrete-time Markov
chain enables to describe the system on subsequent epochs
of a discrete set of times {0, 1, ..., t, t+ 1, ...}. A Markov
chain is characterized by the transition probabilities regarding
time intervals with unit 1 between the states of the system.
The transition probabilities are assumed only to depend on
the current state, and not in addition on the states in pre-
vious epochs. A discrete-time Markov model is considered
with a finite number of states S1, ..., Sk and that is time-
homogeneous with transition matrix P = (pij). A transition
matrix has all its elements nonnegative and all the row sums
equal to 1 and is therefore a probability matrix. Let us
denote ni(t), the number of items in state Si at time t,
and nij(t, t + 1), the number of items of state Si at time
t that are in state Sj at time t+ 1. In case data is available
regarding ni(t) and nij(t, t + 1) for t = 0, 1, ..., T − 1, the
transition probability pij can be estimated by the maximum
likelihood estimator p̂ij =

∑T−1
t=0 nij(t,t+1)∑T−1

t=0 ni(t)
([1]). In case for

example the time unit is one year and information is available
on annual base for some subsequent years, p̂ij provides an
estimation for the transition probability pij from state i to
state j in one year. When there is no data available on
time intervals of 6 months, but nevertheless insights would
be useful regarding the transition probabilities aij on semi-
annual base, the question is whether a probability matrix
A = (aij) does exist that satisfies A2 = P. If this is the
case, for the Markov chain with time unit 1 and transition
matrix P there does exist a compatible Markov chain with
time unit 0.5, and the Markov chain with transition matrix P
is said to be embedded in the Markov chain with transition

Manuscript received March 7, 2014; revised March 25, 2014.
M.A Guerry is member of the Department Business, Technology and

Operations at the Vrije Universiteit Brussel e-mail: maguerry@vub.ac.be

matrix A ([4]). More in general, a Markov chain with
transition matrix P is embeddable in case for a natural
number m ∈ N, m ≥ 2 there does exist a probability matrix
A that is an m-th root of P, i.e. that satisfies Am = P.
For an embeddable Markov chain with transition matrix P a
probability m-th root provides information on the transition
probabilities regarding a time interval with length 1

m . In this
way probability m-th roots of the transition matrix of an
embeddable Markov chain are useful in practice.

The embedding problem is first introduced by Elfving
([4]). The embedding problem for discrete-time Markov
chains and the existence of probability roots of transition
matrices are investigated in [12], [9], [7] and [8]. Espe-
cially for Markov chains with two states detailed insights
are already known: Necessary and sufficient embedding
conditions are formulated and the probability m-th roots
are described in analytic form ([8], [6]). For three-state
Markov chains so far some insights are published: In He
and Gunn (2003) all real root matrices that are functions
of a (3 × 3) transition matrix are presented. Their study
focuses on real root matrices without requiring that these
roots itself are probability matrices ([8]). Higham and Lie
formulated necessary embedding conditions based on the set
of all eigenvalues of (3× 3) probability matrices ([9]).

In the present paper the embedding problem is investigated
for (3 × 3) transition matrices that are diagonalizable and
that have all eigenvalues real and nonnegative. Sufficient
embedding conditions are formulated based on the projec-
tions and the spectral decomposition of the transition matrix.
Illustrations are provided to demonstrate the practical use of
the proven properties.

II. EMBEDDING CONDITIONS

A. Necessary embedding conditions

In studying sufficient embedding conditions, the discus-
sion on the existence of probability roots can be restricted
to transition matrices that satisfy necessary embedding con-
ditions. For this reason, in this section necessary embedding
conditions for (3× 3) transition matrices are overviewed.
In case m is even, det(P) ≥ 0 is a necessary condition to
have probability m-th roots for the probability matrix P:
In case P = Am then det(P) = (det(A))

m ≥ 0. For
a (3 × 3) matrix P with eigenvalues λ1, λ2, λ3 holds that
det(P) = λ1λ2λ3. Besides a probability matrix has 1 as
eigenvalue ([11]). By denoting λ1 = 1 the determinant of
P can be expressed as det(P) = λ2λ3. In this way the
condition det(P) ≥ 0 holds for a probability matrix P with
eigenvalues λ1, λ2, λ3 satisfying λ1 = 1 and λ2λ3 ≥ 0.

Furthermore the fact that P = Am with 1, µ2, µ3 the
eigenvalues of the probability matrix A, results in eigenval-
ues of P equal to 1, λ2 = (µ2)

m
, λ3 = (µ3)

m. Therefore,
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in case m is even and the eigenvalues are real numbers, the
eigenvalues λ2 and λ3 of P are both nonnegative.

From Higham and Lin (2011) it is known that for an even
number m a real m-th root of P can only exist in case
P has an even number of Jordan blocks of each size for
every negative eigenvalue ([9], Theorem 2.3). Therefore the
combination of m even together with a negative eigenvalue
of P can only result in a real root of P in case of a
negative eigenvalue with algebraic multiplicity 2 and Jordan
blocks of size (1 × 1). Consequently in that situation P is
diagonalizable.

Having knowledge of these necessary conditions for the
embeddability of probability matrices, the goal is to find
supplementary conditions that guarantee that at least one
probability root does exist. In the present paper the study
is focused on diagonalizable transition matrices with non-
negative eigenvalues.

B. Sufficient embedding conditions

Sufficient embedding conditions for a probability matrix
P concern conditions that guarantee the existence of at least
one probability m-th root of P. Such a probability m-th root
is a probability matrix A satisfying Am = P. Searching
for probability roots of P can be organized in two steps.
Firstly roots of P can be found within the less restrictive
set of row-normalized matrices, which are matrices with all
row sums equal to 1. Secondly conditions can be formulated
under which a row-normalized root of P has all elements
nonnegative. In this section sufficient embedding conditions
are investigated for a (3 × 3) probability matrix P that is
diagonalizable and that has all eigenvalues nonnegative.

For P with eigenvalues λ1 = 1 ≥ λ2 ≥ λ3 ≥ 0 that
is diagonalizable, holds that P = QDQ−1 with diagonal
matrix

D =

 1 0 0
0 λ2 0
0 0 λ3


The transformation matrix Q and its inverse Q−1 satisfy:
Q = (R1 Rλ2 Rλ3) with R1,Rλ2 ,Rλ3 right eigenvectors
of P with respectively eigenvalue 1, λ2, λ3 and

Q−1 =

 L
′

1

L
′

λ2

L
′

λ3

 with L
′

1,L
′

λ2
,L
′

λ3
left eigenvectors of P

with respectively eigenvalue 1, λ2, λ3.
The diagonalizable matrix P has a spectral decomposition

P = P1 + λ2P2 + λ3P3. The k-th projection is defined as
Pk = QIkkQ

−1 with Ikk the (3× 3) matrix with the kk-th
element equal to 1 and all the other elements equal to 0. The
projections P1,P2 and P3 satisfy the following properties:

• PiPj = 0 ∀i 6= j ∈ {1, 2, 3}
• PiPi = Pi ∀i ∈ {1, 2, 3}
• P1 +P2 +P3 = I with I the identity matrix.

These properties result in the fact that for m ∈ N,m ≥
2 holds Pm = (P1 + λ2P2 + λ3P3)

m
= P1 + λm2 P2 +

λm3 P3.
In Lemma 1 and Lemma 2 some further properties of the
projections are presented.

Lemma 1 For a diagonalizable probability matrix P =
QDQ−1 with spectral decomposition P1 + λ2P2 + λ3P3,

the projections P1,P2,P3 can be expressed, as follows, in
terms of left and right eigenvectors:

P1 = R1L
′

1, P2 = Rλ2L
′

λ2
, P3 = Rλ3L

′

λ3

Proof: Since the k-th projection is defined as
Pk = QIkkQ

−1 with Ikk the (3 × 3) matrix with
the kk-th element equal to 1 and all the other ele-
ments equal to 0, the ij-th element of Pk can be ex-
pressed as (Pk)ij =

∑3
l=1

∑3
m=1 Qil (Ikk)lm

(
Q−1

)
mj

=∑3
l=1

∑3
m=1 Qilδlkδmk

(
Q−1

)
mj

= Qik

(
Q−1

)
kj

. The k-
th projection Pk is therefore the product of the k-th column
of the transformation matrix Q and the k-th row of the
inverse matrix Q−1. Which proves the Lemma.

Lemma 2 For a probability matrix P with spectral decom-
position P1 + λ2P2 + λ3P3, the projections corresponding
with an eigenvalue different from 1 have all row sums equal
to zero.

Proof: A left eigenvector L
′

λ of the matrix P corre-
sponding with eigenvalue λ 6= 1 satisfies L

′

λP = λL
′

λ.
Therefore

∑3
j=1

(
L
′

λP
)
j
=
∑3
i=1

(
λL
′

λ

)
i

that is equiva-

lent with:
∑3
j=1

∑3
i=1

(
L
′

λ

)
i
(P)ij = λ

∑3
i=1

(
L
′

λ

)
i

⇔
∑3
i=1

(
L
′

λ

)
i

∑3
j=1 (P)ij = λ

∑3
i=1

(
L
′

λ

)
i

⇔
∑3
i=1

(
L
′

λ

)
i
= λ

∑3
i=1

(
L
′

λ

)
i

since the row sums of
the probability matrix P are equal to 1.
Let us conclude that for an eigenvalue λ 6= 1, the coordinates
of a left eigenvector L

′

λ sum up to 0:
∑3
i=1

(
L
′

λ

)
i
= 0.

Furthermore according to Lemma 1 the projection Pk satis-
fies Pk = Rλk

L
′

λk
. For λk 6= 1 this results in:

3∑
j=1

(Pk)ij =
3∑
j=1

(Rλk
)i

(
L
′

λk

)
j
= (Rλk

)i

3∑
j=1

(
L
′

λk

)
j
= 0

Consequently all row sums of the projection Pk are equal
to 0. Which proves the Lemma.

Corollary 1 For a probability matrix P with spectral de-
composition P1+λ2P2+λ3P3 and nonnegative eigenvalues
λ2 6= 1, λ3 6= 1, the values of the row sums of the matrix
P(c2, c3) = P1+ c2P2+ c3P3 do not depend on the values
of c2, c3 ∈ R.

Proof: Since λ2 6= 1, λ3 6= 1, Lemma 2 results in∑3
j=1 (P2)ij =

∑3
j=1 (P3)ij = 0. Which proves the

corollary.

Corollary 2 For x ∈ R and P probability matrix
with nonnegative eigenvalues and spectral decomposition
P1 + λ2P2 + λ3P3, the matrices P(λ2

x, λ3
x) = P1 +

λ2
xP2 + λ3

xP3, P(−λ2x, λ3x) = P1 − λ2xP2 + λ3
xP3,

P(λ2
x,−λ3x) = P1+λ2

xP2−λ3xP3, P(−λ2x,−λ3x) =
P1 − λ2xP2 − λ3xP3 are all row-normalized matrices.

Proof: According to Corollary 1 the row sums of
P = P1 + λ2P2 + λ3P3 = P(λ2, λ3) and P(λ2

x, λ3
x),

P(−λ2x, λ3x), P(λ2
x,−λ3x), P(−λ2x,−λ3x) are equal.

Since P is a probability matrix, all these matrices have row
sums equal to 1 and are therefore row-normalized.

For a diagonalizable probability matrix P with eigenvalues
λ1 = 1 ≥ λ2 ≥ λ3 ≥ 0, sufficient conditions for the
existence of an m-th root of P are presented in Theorem

Proceedings of the World Congress on Engineering 2014 Vol II, 
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19253-5-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014



2 in the situation that λ1 = 1 > λ2 > λ3 > 0. For the
special cases with λ2 = 1, λ2 = λ3 or λ3 = 0, it is proved
in Theorem 1 that any probability matrix P (without any
condition) has a probability m-th root.

Theorem 1 For a probability matrix P with spectral
decomposition P = P1 + λ2P2 + λ3P3 and nonnegative
eigenvalues that satisfy either λ2 = 1, λ2 = λ3 or λ3 = 0, a
probability m-th root of P exists for all m ∈ N,m ≥ 2.

Proof: Under the condition that either λ2 = 1, λ2 = λ3
or λ3 = 0, the probability matrix P = P1 + λ2P2 + λ3P3

is of the form P = P̂1 + λ̂P̂ with λ̂ ≥ 0 since
• λ2 = 1 results in P = (P1 +P2) + λ3P3;
• λ2 = λ3 results in P = P1 + λ2(P2 +P3) and
• λ3 = 0 results in P = P1 + λ2P2.

Furthermore
(
P̂1 +

m
√
λ̂ P̂
)m

= P̂1 + λ̂P̂ = P and

therefore m
√
P = P̂1 +

m
√
λ̂ P̂ is an m-th root of P.

Depending on the situation, the matrix P̂ is equal to either
P3, or P2+P3, or P2. According to Lemma 2, the matrix P̂
has all row sums equal to zero. The row sums of P̂1 are equal
to the row sums of the probability matrix P. Consequently
all row sums of m

√
P are equal to 1 and therefore m

√
P is a

row-normalized m-th root of P.
Since for each pair (i, j) ∈ {1, 2, 3} × {1, 2, 3} the function
fij(x) =

(
P̂1

)
ij
+
(
λ̂
)x (

P̂
)
ij

is monotonous (increasing

or decreasing) with fij(0) =
(
P̂1

)
ij
+
(
P̂
)
ij
= Iij ∈ [0, 1]

and fij(1) =
(
P̂1

)
ij
+ λ̂

(
P̂
)
ij

= Pij ∈ [0, 1], holds that(
m
√
P
)
ij
∈ [0, 1] for all m ∈ N,m ≥ 2. For these reasons

P̂1 +
m
√
λ̂ P̂ is a probability matrix and an m-th root of P.

Which proves the Theorem.
From Theorem 1 it is known that in the situation where

the diagonalizable transition matrix P has eigenvalues λ1 =
1 ≥ λ2 ≥ λ3 ≥ 0 satisfying λ2 = 1, λ2 = λ3 or
λ3 = 0, the Markov chain is embeddable. In the rest of this
section, sufficient embedding conditions are examined for
a diagonalizable transition matrix P with eigenvalues that
satisfy λ1 = 1 > λ2 > λ3 > 0.

Lemma 3 For f : [0, 1] → R, x → a1 + a2λ2
x + a3λ3

x

with f(0), f(1) ∈ [0, 1], 1 > λ2 > λ3 > 0 and a1, a2, a3 ∈
R holds:
The range of f is a subset of [0, 1] iff

1) a2a3 ≥ 0 or
2) a2a3 < 0 and x∗ /∈]0, 1[ or
3) a2a3 < 0 and x∗ ∈]0, 1[ with f(x∗) ∈ [0, 1]

with x∗ = log λ2
λ3

(
−a3 lnλ3

a2 lnλ2

)
The proof of Lemma 3 is presented in Appendix A.

Remark
Since f

′′
(x∗) = λ3

x∗a3 lnλ3 (lnλ3 − lnλ2) and 1 > λ2 >
λ3 > 0, the sign of f

′′
(x∗) corresponds with the sign of

a3. Therefore in case a3 > 0, f(x∗) results in a minimum
value for f and the sufficient condition f(x∗) ∈ [0, 1] can
be relaxed to f(x∗) ≥ 0. In case a3 < 0, f(x∗) results in a
maximum value for f and the sufficient condition f(x∗) ∈
[0, 1] can be replaced by f(x∗) ≤ 1.

The following Theorem provides in sufficient embedding
conditions for a probability matrix P with eigenvalues 1 =
λ1 > λ2 > λ3 > 0.

Theorem 2 Let P be a probability matrix with spectral
decomposition P = P1 + λ2P2 + λ3P3 and 1 > λ2 >
λ3 > 0. In case for each pair (i, j) ∈ {1, 2, 3} × {1, 2, 3}
and x∗ij = log λ2

λ3

(
− (P3)ij lnλ3

(P2)ij lnλ2

)
one of the following

conditions holds
1) (P2)ij(P3)ij ≥ 0 or
2) (P2)ij(P3)ij < 0 and x∗ij /∈]0, 1[ or
3) (P2)ij(P3)ij < 0 and x∗ij ∈]0, 1[ with (P1)ij +

λ
x∗ij
2 (P2)ij + λ

x∗ij
3 (P3)ij ∈ [0, 1]

then m
√
P = P1+

m
√
λ2 P2+

m
√
λ3 P3, with m ∈ N,m ≥ 2,

is a probability m-th root of P.
Proof: The matrix m

√
P = P1 + m

√
λ2 P2 + m

√
λ3 P3

is an m-th root of P since
(
m
√
P
)m

= P. According to

Corollary 2 the m-th root m
√
P = P1 +

m
√
λ2P2 +

m
√
λ3P3

is a row-normalized matrix.
Furthermore for each pair (i, j) ∈ {1, 2, 3} × {1, 2, 3} the
function fij(x) = (P1)ij + λ2

x(P2)ij + λ3
x(P3)ij can be

introduced, satisfying fij
(

1
m

)
=
(
m
√
P
)
ij

. Since fij(0) =

(P1)ij + (P2)ij + (P3)ij = Iij , holds that fij(0) ∈ [0, 1].
Besides fij(1) = (P1)ij + λ2(P2)ij + λ3(P3)ij = Pij and
therefore satisfies fij(1) ∈ [0, 1]. Consequently for a1 =
(P1)ij , a2 = (P2)ij and a3 = (P3)ij , the conditions of
Lemma 3 are fullfilled. All the elements of the matrix m

√
P =

P1 + m
√
λ2 P2 + m

√
λ3 P3 have therefore a value between

0 and 1. Consequently the matrix m
√
P is a probability m-th

root of P.

Remarks
(1) Some of the conditions in Theorem 2 can
be reformulated. For example the condition
x∗ij = log λ2

λ3

(
− (P3)ij lnλ3

(P2)ij lnλ2

)
∈]0, 1[ for 1 > λ2 > λ3 > 0

can also be expressed as lnλ2

lnλ3
< − (P3)ij

(P2)ij
< λ2 lnλ2

λ3 lnλ3
.

(2) For P = P1 + λ2P2 + λ3P3 and for m even
number, besides P1 + m

√
λ2P2 + m

√
λ3P3, the matrices

P1 − m
√
λ2P2 + m

√
λ3P3, P1 + m

√
λ2P2 − m

√
λ3P3 and

P1− m
√
λ2P2− m

√
λ3P3 are all row-normalized m-th roots

of P.

III. ILLUSTRATIONS

In this section for a transition matrix P, it is illustrated how
the proven sufficient embedding conditions can be helpful in
getting insights on the existence of probability m-th roots.
The use of Theorem 2 let us conclude the following: For the
first example m

√
P is not a probability matrix (and this for

all m ∈ N,m ≥ 2); for the second example for all m ∈
N,m ≥ 2 holds that m

√
P is a probability root of P; for

the last example m
√
P is a probability root for all natural

numbers m between identified lower and upper bounds.

Example 1 The probability matrix

P =

 0.8 0.2 0
0.5 0.3 0.2
0.1 0.4 0.5
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has eigenvalues λ1 = 1, λ2 = 0.3+
√
0.08, λ3 = 0.3−

√
0.08

and projections (the elements of the projections are
mentioned up to three decimals)

P1 =

 0.658 0.244 0.098
0.658 0.244 0.098
0.658 0.244 0.098


P2 =

 0.240 −0.070 −0.170
−0.260 0.076 0.184
−0.967 0.283 0.684


P3 =

 0.102 −0.174 0.072
−0.398 0.680 −0.282
0.309 −0.527 0.218


For i = 1 and j = 3 the function f13(x) = (P1)13 +
λ2
x(P2)13+λ3

x(P3)13 has one critical value namely x∗13 =

log λ2
λ3

(
− (P3)13 lnλ3

(P2)13 lnλ2

)
≈ 0.33 < 1, resulting in a minimum

value f13(x∗13) ≈ −0.025. Moreover f13(0) = I13 = 0 and
f13(1) = P13 = 0. Therefore for each value x ∈]0, 1[ holds
that f13(x) < 0. In particular for each value x = 1

m , with
m ∈ N,m ≥ 2, holds that

(
m
√
P
)
13

= f13
(

1
m

)
< 0 so that

the matrix m
√
P is not a probability matrix.

Example 2 The probability matrix

P =

 0.7 0.2 0.1
0.1 0.8 0.1
0.1 0.3 0.6


has eigenvalues λ1 = 1, λ2 = 0.6, λ3 = 0.5 and projections

P1 =

 0.25 0.55 0.2
0.25 0.55 0.2
0.25 0.55 0.2


P2 =

 0.75 −0.75 0
−0.25 0.25 0
−0.25 0.25 0


P3 =

 0 0.2 −0.2
0 0.2 −0.2
0 −0.8 0.8


Since the elements of the first column of P3 and the third
column of P2 are all equal to zero, condition 1 holds
for all pairs (i, j) ∈ {1, 2, 3} × {1, 3}. Condition 1 is
also satisfied for i = 2 and j = 2: (P2)22 (P3)22 =
0.05 > 0. For i ∈ {1, 3} and j = 2 the values for
x∗ij are x∗12 = log λ2

λ3

(
− (P3)12 lnλ3

(P2)12 lnλ2

)
≈ −5.58 < 0 and

x∗32 = log λ2
λ3

(
− (P3)32 lnλ3

(P2)32 lnλ2

)
≈ 8.05 > 1, and therefore

condition 2 is satisfied. Theorem 2 let us conclude that m
√
P

is a probability m-th root of P, and this conclusion holds
for all m ∈ N,m ≥ 2.

Example 3 The probability matrix

P =

 0.5 0.3 0.2
0.3 0.3 0.4
0.1 0.2 0.7


has eigenvalues λ1 = 1, λ2 = 0.25 +

√
0.0425,

λ3 = 0.25 −
√
0.0425 and projections (the elements

of the projections P2 and P3 are mentioned up to three
decimals)

P1 =

 0.25 0.25 0.5
0.25 0.25 0.5
0.25 0.25 0.5



P2 =

 0.526 0.148 −0.674
0.148 0.041 −0.189
−0.337 −0.095 0.432



P3 =

 0.223 −0.398 0.175
−0.398 0.708 −0.310
0.087 −0.155 0.068


The projections P2 and P3 have a difference in sign for
the corresponding elements (P2)ij and (P3)ij in case of
(i, j) ∈ {(1, 2), (2, 1), (1, 3), (3, 1)}. Since the values of
x∗12 and x∗21 are greater than 1, Theorem 2 assures that(
m
√
P
)
12
,
(
m
√
P
)
21
∈ [0, 1], and this for all m ∈ N,m ≥ 2.

For i = 1, j = 3 and i = 3, j = 1, x∗13 = x∗31 = 0.012792 ∈
[0, 1]. The function f13(x) = (P1)13 + λ2

x(P2)13 +
λ3
x(P3)13 has one critical value namely x∗13 and is therefore

monotone on the interval [x∗13, 1]. Since 1
38 ,

1
2 ∈ [x∗13, 1]

with f13
(
1
2

)
and f13

(
1
38

)
both elements of [0, 1], holds that(

m
√
P
)
13
∈ [0, 1] for all m values satisfying 2 ≤ m ≤ 38.

The same conclusions are valid for i = 3, j = 1. Besides
f13
(

1
39

)
< 0 and therefore m

√
P is not a probability matrix

for m ≥ 39. Consequently m
√
P is a probability root of P

for all m values in between 2 and 38.

IV. CONCLUSION

The present paper investigates probability roots for a
transition matrix P that is diagonalizable and that has all
eigenvalues nonnegative. In this way sufficient embedding
conditions are obtained for a Markov chain with such a
transition matrix P. For an embeddable Markov chain a
probability m-th root provides information on the transition
probabilities regarding time intervals with length 1

m .
According to Theorem 1 for a diagonalizable transition

matrix with either λ2 = 1, λ2 = λ3 or λ3 = 0, for
all m ∈ N,m ≥ 2, a probability m-th root of P exists.
For all other cases of a diagonalizable transition matrix P
with nonnegative eigenvalues, Theorem 2 provides sufficient
conditions for the existence of a probability m-th root of P.

Further research should investigate sufficient conditions
under which probability roots do exist either in case the
transition matrix is diagonalizable with not all eigenvalues
nonnegative or in case the transition matrix is not diagonal-
izable.

APPENDIX A
PROOF OF LEMMA 3

In case a2a3 ≥ 0, f(x) = a1 + a2λ2
x + a3λ3

x is a
monotonous function.

In case a2a3 < 0, f(x) has one critical value:

f
′
(x) = a2λ2

x lnλ2 + a3λ3
x lnλ3 = 0

⇔ x = x∗ = log λ2
λ3

(
−a3 lnλ3
a2 lnλ2

)
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In case a2a3 < 0 and x∗ /∈]0, 1[, the function f(x) has no
critical value in ]0, 1[ and consequently f(x) is monotonous
on [0, 1].

Therefore in case a2a3 ≥ 0 and in case a2a3 < 0 with
x∗ /∈]0, 1[, the range of f(x) is a subset of [0, 1] since f(x)
is a monotonous function on [0, 1] with f(0), f(1) ∈ [0, 1].

In case a2a3 < 0 and x∗ ∈]0, 1[ the function f(x) has x∗

as critical value in [0, 1]. In case the value f(x∗) belongs
to the interval [0, 1], the range of f(x) is a subset of [0, 1].
Which proves the Lemma.
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